
Document number: J16/03-0126 = WG21 N1543
Date: 14 November, 2003

Reply to: William M. Miller
The MathWorks, Inc.
wmm@world.std.com

Analysis and Proposed Resolution for Core Issue 39

0. Introduction

Issue 39 has been one of the most intractable and frustrating problems the Core Language Working
Group has dealt with. After four years of deliberation, a resolution was approved in October, 2002, and
was moved to “Ready” status in April, 2003.

Unfortunately, a discussion in the comp.std.c++ newsgroup1 in July, 2003, led me to the conclusion
that the proposed resolution is flawed. I posted a message at that time about my concerns to the core
group email reflector2, but there was no comment from other members of the group. More recently, I
elaborated on that analysis with a proposed alternative resolution3, but again no one replied.

This paper is the result of combining two documents I produced in preparation for the Kona meeting
with the result of the core group deliberations, with some minor changes and elaborations (discussed in
footnotes).

The next section contains a summary view of what lookup in class scope is attempting to achieve, while
succeeding sections provide analysis of the current wording of the Standard, the fundamental defect
that is reported in issue 39, and the pre-Kona proposed resolution. Those who already feel comfortable
with this background information can skim it or skip directly to Section 5 and following. These
sections cover the reasons I think the pre-Kona proposal is flawed, an unneeded restriction in both the
current wording and the earlier proposed resolution, and a revised proposal reflecting the core group
discussions in Kona.

1. Concepts of Class-Scope Lookup

The purpose of name lookup is to associate a given use of a name with one or more declarations of that
name (3.4¶1). The fundamental concepts involved in looking up a name in class scope are inheritance,
hiding, dominance, and ambiguity.

Inheritance and hiding are the two most important influences on class-scope lookup. A member of a
base class is also a member of a class derived from it, so names declared in base classes are normally
visible in derived classes as well. A name declared in a derived class, however, hides any declarations
of the same name in its base class(es). Consequently, looking up that name in the derived class scope
will find the derived class declaration(s) and not any that are inherited.

Dominance is a variation on ordinary name hiding. There may be multiple paths through the

1 See http://tinyurl.com/q8zn to read the thread via Google Groups. Note in particular the exchange between
Daveed Vandevoorde and me for the portion of the discussion most directly relevant to this issue.

2 http://www.research.att.com/~ark/cgi-bin/wg21/message?wg=core&msg=10033
3 http://www.research.att.com/~ark/cgi-bin/wg21/message?wg=core&msg=10165

Analysis and Proposed Resolution for Core Issue 39 J16/03-0126 = WG21 N1543

inheritance DAG from a derived class to a given base class, and a name declared in that base
class might be visible on some paths and hidden on others. If the base class in question is a
virtual base and lookup finds both a declaration from that class and one that hides it, the hiding
declaration is chosen. For example,

struct B {
int i;

};
struct I: virtual B {

int i;
};
struct D: I, virtual B {

void f() {
i = 2; // I::i -- B::i is dominated by I::i

}
};

Example 1

There are two different kinds of ambiguity that can result from a class member reference or
qualified-id, and it is important to distinguish between them. I will call the first kind multiple-
declaration ambiguity. It results when lookup finds more than one declaration of a name and the
names do not form an overload set:

struct B1 {
int i;
void f();

};
struct B2 {

int i;
void f(int);

};
struct D: B1, B2 {

void g() {
i = 5; // ambiguous: B1::i or B2::i?
f(0); // ambiguous: B1::f() or B2::f(int)?

}
};

Example 2

Note that ambiguity detection precedes and is distinct from overload resolution: the presence of
the argument in the attempt to call B2::f(int) does not disambiguate the reference to the

2 of 21

Analysis and Proposed Resolution for Core Issue 39 J16/03-0126 = WG21 N1543

name f. Because B1::f() and B2::f(int) are declared in different scopes, they do not
form an overload set, causing any use of the name f to be ambiguous.

The second kind of lookup ambiguity is what I call multiple-subobject ambiguity. This kind of
ambiguity occurs when the name lookup finds the declaration of a nonstatic data member or
nonstatic member function in a base class B and there is more than one B base class subobject in
the class in which the lookup occurs. For example,

struct B {
int i;
void f();

};
struct I1: B { };
struct I2: B { };
struct D: I1, I2 {

void g() {
i = 5; // ambiguous: I1's B::i or I2's B::i?
f(); // ambiguous: I1's B::f() or I2's B::f()?

}
};

Example 3

It's important to note that this has historically been a lookup ambiguity, dating back to the ARM
and continuing through the pre-Kona proposed resolution for issue 39. In these formulations, it
has nothing to do with, for instance, the conversion of the this pointer from D* to B* in the
call to B::f(). The ambiguity is based solely on the fact that the lookup found a nonstatic
declaration and that there are multiple base class subobjects of the class containing that
declaration.

2. Exploring the Current Wording of the Standard

The current description of class-scope lookup is found in 10.2¶2:

The following steps define the result of name lookup in a class scope, C. First,
every declaration for the name in the class and in each of its base class sub-objects
is considered. A member name f in one sub-object B hides a member name f
in a sub-object A if A is a base class sub-object of B. Any declarations that are so
hidden are eliminated from consideration. Each of these declarations that was
introduced by a using-declaration is considered to be from each sub-object of C
that is of the type containing the declaration designated by the using-

3 of 21

Analysis and Proposed Resolution for Core Issue 39 J16/03-0126 = WG21 N1543

declaration.96) If the resulting set of declarations are not all from sub-objects of
the same type, or the set has a nonstatic member and includes members from
distinct sub-objects, there is an ambiguity and the program is ill-formed.
Otherwise that set is the result of the lookup.
——————
96) Note that using-declarations cannot be used to resolve inherited member ambiguities; see 7.3.3.

The first thing to note from this wording is that lookup is described completely in terms of base
class subobjects, rather than base/derived class relationships. This means, for instance, that in
example 3 above, the lookup set for i contains two declarations – both I1's and I2's B::i –
from the outset (“... every declaration for the name ... in each of its base class sub-objects...”).
This is a very different perspective from that of the rest of the Standard, where member
declarations are typically considered to belong to classes rather than objects, and the shift is both
significant and easily overlooked.

The second important point of interest is how hiding is handled. Because the description is in
terms of subobjects, dominance is an implicit outcome rather than being described explicitly. To
see how this works, consider Example 1 above. Because B is a base class subobject of I, I::i
hides B::i. However, there is only a single B base class subobject in D and consequently only a
single declaration of B::i in the original lookup set. Removing it because of the hiding
declaration in I means that it cannot be found by the lookup, even though D directly inherits it
from B.

The next notable feature in the current wording is the implementation of multiple-declaration
ambiguity detection: “If the resulting set of declarations are not all from sub-objects of the same
type... there is an ambiguity.” Translating this to the more usual class-based perspective, it
means that, after consideration of inheritance and hiding, all the remaining declarations must be
direct (not inherited) members of the same class.

There are two practical implications of this requirement. The first is that it prevents the result of
the lookup from containing incompatible declarations. According to 3.4¶1, the result of a lookup
can contain more than one declaration only if the the declarations form a set of overloaded
functions. Requiring that all the declarations found by a lookup be members of a single class
enforces this restriction because a heterogeneous set (e.g., one containing both a data member
and a function) cannot be declared in a single scope (3.3¶4). The only way such a set could result
is via inheritance from two different classes, and this rule precludes that possibility.

The other consequence of note is that an overload set must be created explicitly by declarations
in a single scope; it cannot be the implicit result of inheritance, as noted above in the discussion
of Example 2. The rationale for this restriction is that it prevents hijacking of overload

4 of 21

Analysis and Proposed Resolution for Core Issue 39 J16/03-0126 = WG21 N1543

resolution. Consider the following example:

struct B {
void f(int);

};
struct libA { };
struct D: B, libA { };
void g(D* dp, short s) {

dp->f(s); // calls B::f(int)
}

Example 4

Assume that class libA comes from an externally-supplied library. If a new release of this
library added the function libA::f(short), the call dp->f(s) would be quietly redirected
from B::f(int) to the new function, were it not for the prohibition of creating implicit
overload sets.

The next feature to note from the current wording is the implementation of multiple-subobject
ambiguity detection: “If ... the set has a nonstatic member and includes members from distinct
sub-objects, there is an ambiguity.” As discussed above in the commentary on Example 3, this
is a lookup ambiguity and applies regardless of whether the declaration(s) are data members or
member functions and without consideration of the context in which the name reference occurs –
function call, forming a pointer-to-member, etc. Furthermore, it applies to mixed sets of static
and nonstatic member functions: even if overload resolution would have picked a static member
function from the set, multiple-subobject ambiguity is diagnosed if any of the member functions
are nonstatic.

The final item of interest from the Standard wording is the treatment of using-declarations:
“Each of these declarations that was introduced by a using-declaration is considered to be from
each sub-object of C that is of the type containing the declaration designated by the using-
declaration.” I call this approach transparent using-declarations. Naturally, the other technique
(in which a using-declaration is considered to belong to the class in which it appears) will be
termed opaque using-declarations.

The principal reason for choosing transparent using-declarations is, I believe (with support from
the attached footnote and the more complete discussion in 7.3.3¶14), to detect multiple-subobject
ambiguities. Consider, for instance,

5 of 21

Analysis and Proposed Resolution for Core Issue 39 J16/03-0126 = WG21 N1543

struct B {
void f();

};
struct I1: B { };
struct I2: B { };
struct D: I1, I2 {

using B::f;
void g() {

f(); // ambiguous: multiple B subobjects
}

}

Example 5

If the using B::f; declaration were treated as opaque, the lookup of D::f would be
unambiguous, even though there is clearly an ambiguity – there are two B subobjects, and the
function expects a pointer to one of them as its implicit this parameter. The Standard wording
handles this situation by treating the using B::f; declaration as coming from each B
subobject. Consequently, the lookup set contains two declarations of B::f and, because B::f
is nonstatic, a multiple-subobject ambiguity is detected.

Treating using-declarations as transparent also prevents the spurious detection of ambiguities
that aren't really there:

struct B {
void f();

};
struct I1: virtual B {

using B::f;
};
struct I2: virtual B {

using B::f;
};
struct D: I1, I2 {

void g() {
f(); // unambiguous

}
};

Example 6

Opaque using-declarations would lead to diagnosis of a multiple-declaration ambiguity in this

6 of 21

Analysis and Proposed Resolution for Core Issue 39 J16/03-0126 = WG21 N1543

case where none actually exists. Because the using-declarations are transparent, and because
there is only a single B subobject in D, there is only a single declaration in the lookup set and the
reference is unambiguous.

3. Problems with the Standard's Wording

The first problem is the one that gave rise to issue 39 and is illustrated by the following example:

struct A {
int x(int);

};
struct B: A {

using A::x;
float x(float);

};
int f(B* b) {

b->x(3); // ambiguous
}

Example 7

Under the current wording of the Standard, this is a multiple-declaration ambiguity. Because
using-declarations are treated as transparent, the lookup set for x in B contains both
A::x(int) and B::x(float). These are obviously not both “from sub-objects of the same
type,” so a multiple-declaration ambiguity exists.

Equally obviously, this outcome is not what was intended. The example in 7.3.3¶12 is
essentially identical to Example 7, and the wording in 7.3.3¶13 clearly assumes that lookup will
succeed in such cases and allow overload resolution to proceed:

For the purpose of overload resolution, the functions which are introduced by a
using-declaration into a derived class will be treated as though they were
members of the derived class. In particular, the implicit this parameter shall be
treated as if it were a pointer to the derived class rather than to the base class.

A similarly problematic case (not described in issue 39) is suggested by Example 4 above. As
noted in the commentary there, the restriction that all declarations must come from a single class
exists expressly to prevent implicitly combining base class scopes into an overload set. If one
wanted explicitly to create a merged overload set, the obvious way to do so would be via using-
declarations:

7 of 21

Analysis and Proposed Resolution for Core Issue 39 J16/03-0126 = WG21 N1543

struct fixed {
int f(int);
long f(long);

};
struct float {

float f(float);
double f(double);

};
struct arith: fixed, float {

using fixed::f;
using float::f;

};

Example 8

Again because of transparent using-declarations, any attempt to look up f in the scope of
arith will be both a multiple-declaration ambiguity (not all declared in the same class) and a
multiple-subobject ambiguity (“...has a non-static member and includes members from distinct
sub-objects,” namely fixed and float).

A separate problem with the current wording, not directly related to using-declarations, was
reported in issue 306: what happens when a type name is found in two different scopes? The
following example is one illustration of the issue:

struct A {
struct B { };

};
struct C : public A, public A::B {

B *p;
};

Example 9

The lookup for B in the scope of C finds two different declarations, one in each base class. In A,
the declaration that is found is the class B itself. In A::B, it is the injected-class-name (9¶2,
3.4¶3). The fact that both these declarations name the same type is irrelevant; because they are
not “from sub-objects of the same type,” there is a multiple-declaration ambiguity. As the text of
the issue points out, typedefs can also pose the same problem.

Another problem with the current wording is not yet on the issues list; I noticed it while

8 of 21

Analysis and Proposed Resolution for Core Issue 39 J16/03-0126 = WG21 N1543

investigating issue 39. According to 3.3.7¶2,

A class name (9.1) or enumeration name (7.2) can be hidden by the name of an
object, function, or enumerator declared in the same scope. If a class or
enumeration name and an object, function, or enumerator are declared in the same
scope (in any order) with the same name, the class or enumeration name is hidden
wherever the object, function, or enumerator name is visible.

There is nothing in this description to indicate that class scope is exempted from this behavior –
it simply says “the same scope,” without exception – but the description of hiding in 10.2¶2
omits any mention of the “struct stat” (or “scope-and-a-half”) hack. Readers of the Standard tend
to approach 10.2 as a complete, self-contained description of looking up a name in class scope,
and there has been some confusion as to whether the “struct stat” hack applies.

The intent of the Committee was that the “struct stat” hack should apply to class scope as it does
to all other scopes (cf core issue 400). The purpose of the hack is to enhance compatibility with
C programs, where struct and enumeration tags are in a separate “namespace” and thus cannot
conflict with object, function, and enumerator names. Even though C does not have class scope,
it does allow lexical nesting of struct definitions. Thus, exempting class scope from the “struct
hack” would result in incompatibility with C in cases like the following:

struct S {
struct X { /* ... */ };
int X;

};

Example 10

I did not do a thorough survey of implementations, but the EDG compiler, at least, agrees with
this interpretation and applies the “struct stat” hack to class scope.

It could be argued with some justification that the specification in 3.3.7¶2 is intended to be
implicitly understood in the 10.2¶2 description. However, the fact that base/derived hiding is
mentioned in 3.3.7¶1,3 and yet described again in detail in 10.2¶2 could lead readers to conclude
that the latter passage is intended to be a complete de novo specification of all aspects of lookup
in class scope. Indeed, informal discussions have indicated some level of confusion about the
question of whether the hack applies to class scope. I believe that the intent should be made
explicit in 10.2.

Finally, a similar confusion has arisen regarding whether the “transparency” of object
declarations when looking up the name in an elaborated-type-specifier is intended to apply to

9 of 21

Analysis and Proposed Resolution for Core Issue 39 J16/03-0126 = WG21 N1543

class scope.4 Consider the following example:

struct B {
struct X { };

};
struct I: B {

void X();
};
struct D: I { };
struct D::X x; // Ill-formed?

Example 11

Because the current version is worded in terms of “removing declarations from consideration,” it
could be argued that the normal processing described by 3.4.4 cannot apply to class scope
lookup. Again, I believe this is an indication that 10.2 should be a complete specification of how
to look up a name in class scope.

4. The Pre-Kona Proposed Resolution of Issue 39

At the April, 2003, meeting in Oxford, the Core Working Group agreed that the proposed
resolution for issue 39 correctly addressed the defect and moved it to “Ready” status, in
preparation for a vote by the full Committee at the October, 2003, meeting to accept it as an
official Defect Report. This resolution takes a completely different approach from that currently
found in the Standard and would replace 10.2¶2 with the following:

The following steps define the result of name lookup for a member name f in a
class scope C.

The lookup set for f in C, called S(f,C), consists of two component sets: the
declaration set, a set of members named f; and the subobject set, a set of
subobjects where declarations of these members (possibly including using-
declarations) were found. In the declaration set, using-declarations are replaced
by the members they designate, and type declarations (including injected-class-
names) are replaced by the types they designate. S(f,C) is calculated as follows.

If C contains a declaration of the name f, the declaration set contains every
declaration of f in C (excluding bases), the subobject set contains C itself, and

4 See http://www.research.att.com/~ark/cgi-bin/wg21/message?wg=core&msg=10198.

10 of 21

Analysis and Proposed Resolution for Core Issue 39 J16/03-0126 = WG21 N1543

calculation is complete.

Otherwise, S(f,C) is initially empty. If C has base classes, calculate the lookup set
for f in each direct base class subobject Bi, and merge each such lookup set S(f,Bi)
in turn into S(f,C).

The following steps define the result of merging lookup set S(f,Bi) into the
intermediate S(f,C):

● If each of the subobject members of S(f,Bi) is a base class subobject of at least
one of the subobject members of S(f,C), S(f,C) is unchanged and the merge is
complete. Conversely, if each of the subobject members of S(f,C) is a base
class subobject of at least one of the subobject members of S(f,Bi), the new S
(f,C) is a copy of S(f,Bi).

● Otherwise, if the declaration sets of S(f,Bi) and S(f,C) differ, the merge is
ambiguous: the new S(f,C) is a lookup set with an invalid declaration set and
the union of the subobject sets. In subsequent merges, an invalid declaration
set is considered different from any other.

● Otherwise, consider each declaration d in the set, where d is a member of
class A. If d is a nonstatic member, compare the A base class subobjects of
the subobject members of S(f,Bi) and S(f,C). If they do not match, the merge
is ambiguous, as in the previous step. [Note: It is not necessary to remember
which A subobject each member comes from, since using-declarations don't
disambiguate.]

● Otherwise, the new S(f,C) is a lookup set with the shared set of declarations
and the union of the subobject sets.

The result of name lookup for f in C is the declaration set of S(f,C). If it is an
invalid set, the program is ill-formed. [Example:

struct A { int x; }; // S(x,A) =
// { { A::x }, { A } }

struct B { float x; }; // S(x,B) =
// { { B::x }, { B } }

struct C: public A, public B { }; // S(x,C) = { invalid,
// { A in C, B in C } }

struct D: public virtual C { }; // S(x,D) = S(x,C)

11 of 21

Analysis and Proposed Resolution for Core Issue 39 J16/03-0126 = WG21 N1543

struct E: public virtual C { char x; }; // S(x,E) =
// { { E::x }, { E } }

struct F: public D, public E { }; // S(x,F) = S(x,E)
int main() {

F f;
f.x = 0; // OK, lookup finds { E::x }

}

S(x,F) is unambiguous because the A and B base subobjects of D are also base
subobjects of E, so S(x,D) is discarded in the first merge step. --end example]

The specification in the Standard is based on essentially the following steps:

● Create a set of declarations of the name, with one for each subobject in the DAG whose
class directly contains such a declaration.

● Remove any hidden declarations.

● Test the results for violation of the ambiguity rules.

In contrast, the proposed resolution defines a recursive algorithm for traversing the inheritance
tree (not a DAG, because the algorithm does not distinguish between virtual and non-virtual
bases in the traversal) and accumulating the results of the lookup. This algorithm has the
following characteristics:

● The traversal stops when it encounters a class containing a declaration of the name
being looked up, including a using-declaration – that is, it does not examine any base
classes of a class that contains such a declaration. This feature provides the
implementation of ordinary base/derived hiding. It is also the source of opacity for
using-declarations.

● The first step of the merge phase of the algorithm (“If each of the sub-object members
of [one set] is a base class subobject of at least one of the subobject members of [the
other set]...”) is the implementation of dominance. A virtual base class may be visited
many times, but a set in which the virtual base appears directly will be trumped by a set
in which it is a base-class subobject, i.e., one that contains a dominating declaration.

● The second step of the algorithm (“if the declaration sets differ”) is the check for
multiple-declaration ambiguity. Even if a multiple-declaration ambiguity is detected,
however, the subobject sets are maintained to allow the dominance check to proceed in
more-derived classes. It is here that the transparency of using-declarations (“using-
declarations are replaced by the members they designate”) comes into play,

12 of 21

Analysis and Proposed Resolution for Core Issue 39 J16/03-0126 = WG21 N1543

suppressing the multiple-declaration ambiguity when separate using-declarations
designate the same entity.

● The third step screens for multiple-subobject ambiguity: if any member of the
declaration set is a nonstatic member, the subobject sets being merged must have only a
single subobject of the class containing that member. Again, the comparison takes
advantage of transparent using-declarations.

● Issue 306 is dealt with by the statement that “type declarations (including injected-
class-names) are replaced by the types they designate.”

It's instructive to apply this algorithm to the sample code from issue 39 (Example 7 above).
Because B contains a declaration of the name being looked up, x, the algorithm's terminal
condition is immediately satisfied: “If C contains a declaration of the name f, the declaration set
contains every declaration of f in C (excluding bases), the subobject set contains C itself, and
calculation is complete.” Thus, after replacing the using-declaration by the member it
designates, the result of the lookup is { A::x(int), B::x(float) } and there is no
ambiguity, which is the desired result.

5. Problems with the Pre-Kona Proposed Resolution

I believe there are three flaws in the pre-Kona version of the proposed resolution of issue 39.
Although only the first of these is serious, I'll discuss the other two briefly at the end of this
section.

To begin the discussion of the major problem with the algorithm, it may be helpful to consider
the example in 7.3.3¶14, contrasting how the Standard wording and the proposed resolution
handle it. (The question posed by the original poster in the comp.std.c++ thread mentioned
earlier was, “Why is this example ambiguous?”) For ease of reference, the example is as
follows:

struct A { int x(); };
struct B : A { };
struct C : A {

using A::x;
int x(int);

};
struct D : B, C {

using C::x;
int x(double);

13 of 21

Analysis and Proposed Resolution for Core Issue 39 J16/03-0126 = WG21 N1543

};
int f(D* d) {

return d->x(); // ambiguous: B::x or C::x
}

Example 12

The analysis according to the Standard wording runs as follows. First, create a set containing
every declaration of x in D and each of its subobjects, considering declarations introduced by
using-declarations as coming from each subobject of the type containing the declaration
designated by the using-declaration. D has a B subobject, a C subobject, and two A subobjects.
This results in the following set of declarations:

{ A::x() in B,
A::x() in C,
C::x(int),
D::x(double) }

This set fails the multiple-subobject ambiguity test: “If ... the set has a nonstatic member and
includes members from distinct subobjects, there is an ambiguity.”

The application of the proposed resolution to this example is essentially identical to the analysis
of Example 7 given at the end of the preceding section. Because D contains a declaration of x,
the algorithm's terminal condition is immediately satisfied. After replacing using-declarations
by the members they designate, the resulting lookup set S(x,D) is

{ { A::x(),
C::x(int),
D::x(double) },

{ D } }

According to the proposed resolution, “The result of name lookup for f in C is the declaration set
of S(f,C). If it is an invalid set, the program is ill-formed.” In this case, the declaration set is

{ A::x(),
C::x(int),
D::x(double) }

It is not invalid, therefore there is no lookup ambiguity. Instead, overload resolution occurs,
selecting A::x(), the call expression is processed (5.2.2¶1,4), and there is a conversion
ambiguity attempting to convert d to type A* in order to pass it to the implicit this parameter
of A::x() (4.10¶3). In other words, under the proposed resolution, the example is still

14 of 21

Analysis and Proposed Resolution for Core Issue 39 J16/03-0126 = WG21 N1543

diagnosed as ambiguous, but it is a different kind of ambiguity.

Unfortunately, this safety net only works for member functions, not for data members. Consider
the following example:

struct B {
int i;

};
struct I1: B { };
struct I2: B { };
struct D: I1, I2 {

using B::i;
};
int f(D* dp) {

return dp->i;
}

Example 13

Here the result of the lookup is B::i, a valid declaration set, and there is nothing elsewhere in
the Standard to diagnose this as an ambiguity.5

The problem illustrated by these examples is that the algorithm in the proposed resolution only
detects ambiguities while merging base class lookup sets into the result set of a derived class.
Because there is no lookup in the base classes of a class containing a declaration of the name
being looked up, there is no merge step for such a class, and ambiguities that should have been
diagnosed are overlooked.

As noted above, the remaining flaws in the proposed resolution are minor and can be very easily
repaired. The second shortcoming is one that the proposed resolution shares with the Standard's
wording: as noted above, the “struct stat” hack is not explicitly described or incorporated, nor is
the special processing for lookup of names in elaborated-type-specifiers, base-specifiers, etc.

The third flaw in the proposed resolution is that it doesn't appear to handle empty lookup sets.
Consider the first bullet in the description of the merge processing:

5 During the core group discussions in Kona, it was thought that the resolution of issue 52 in 11.2¶5 addressed this
need. However, a closer reading of that paragraph shows that the object expression must be convertible to the
naming class of the member reference, not to the class of the member, so it still appears that there is nothing in
the Standard outside the lookup rules to make such data member references ambiguous.

15 of 21

Analysis and Proposed Resolution for Core Issue 39 J16/03-0126 = WG21 N1543

If each of the subobject members of S(f,Bi) is a base class subobject of at least one
of the subobject members of S(f,C), S(f,C) is unchanged and the merge is
complete. Conversely, if each of the subobject members of S(f,C) is a base class
subobject of at least one of the subobject members of S(f,Bi), the new S(f,C) is a
copy of S(f,Bi).

The case where there are no subobject members of one set or the other seems not to be handled
by either of these conditions, falling through into the next bullet:

Otherwise, if the declaration sets of S(f,Bi) and s(f,C) differ, the merge is
ambiguous.

That's clearly not intended, because every lookup in which a declaration of the name is found
only in a base class of the one being searched would result in an ambiguity. I think this was
probably intended to be read as something like

If each of the subobject members of S(f,Bi) is a base class subobject of at least one
of the subobject members of S(f,C), or if S(f,Bi) is empty, S(f,C) is unchanged
and the merge is complete. Conversely, if each of the subobject members of
S(f,C) is a base class subobject of at least one of the subobject members of S(f,Bi),
or if S(f,C) is empty, the new S(f,C) is a copy of S(f,Bi).6

6. Reducing the Scope of Multiple-Subobject Ambiguity Detection

As previously noted, the current wording is very broad in its application of the test for multiple-
subobject ambiguity: if any member of the lookup set is nonstatic, none of the declarations are
allowed to be from multiple subobjects. Furthermore, the context of the name reference is
irrelevant – whether it's a function call or forming a pointer-to-member, whether overload
resolution might choose a static member function, etc., are all ignored in the detection of
multiple-subobject ambiguities. The pre-Kona proposed resolution maintains this approach.

I believe this policy is unnecessarily restrictive and that the Committee should take advantage of
this defect resolution to consider relaxing it. There are at least three kinds of situations in which
this ambiguity is needlessly diagnosed. First, consider code like the following:

struct B {
void f();

6 Jason Merrill confirms that this was the intention, and that the “each of...” clauses were meant to subsume the
“empty” case. However, the English phrase “each of” typically presumes the existence of at least one of the
items being referred to, so it seems better to give an explicit treatment of the “empty” cases.

16 of 21

Analysis and Proposed Resolution for Core Issue 39 J16/03-0126 = WG21 N1543

static void f(int);
};
struct I1: B { };
struct I2: B { };
struct D: I1, I2 {

void g() {
f(0); // ambiguous

}
};

Example 14

In this example, an overload set that comes from multiple subobjects contains both a static and a
nonstatic member function. If the ambiguity were not diagnosed during name lookup, overload
resolution would unambiguously choose the static function. Also, as noted above in the
discussion of Example 12, even if overload resolution chose a nonstatic member function, the
ambiguity would still be diagnosed because of the attempt to convert the object expression to the
type of the implicit this parameter.

A different kind of situation that leads to the same result is illustrated by the following:

struct B1 {
void f();

};
struct B2 {

void f(int);
};
struct I1: B1 { };
struct I2: B1 { };
struct D: I1, I2, B2 {

using B1::f;
using B2::f;
void g() {

f(0); // ambiguous
}

};

Example 15

Here, the desired function is a member of a single base class subobject; it is only the fact that the
other member of the overload set comes from multiple subobjects that causes it to be diagnosed

17 of 21

Analysis and Proposed Resolution for Core Issue 39 J16/03-0126 = WG21 N1543

as ambiguous. Again, the safety net applies: if overload resolution picked the function from the
multiple subobject, the conversion ambiguity would still be detected.

The third example is perhaps the most persuasive:

struct B {
void f();

};
struct I1: B { };
struct I2: B { };
struct D: I1, I2 { };
void (B::* pmf)() = &D::f; // ambiguous

Example 16

If it weren't for the expansive wording of the multiple-subobject ambiguity rule, there would be
no reason to treat this as ambiguous at all. The type of the expression &D::f is
void (B::*)() – i.e., nothing at all reflecting the existence of the base class subobjects. It is
a pointer-to-member that could be used with any “B” object expression, not tied to D in any way.
(Attempting to convert it to void (D::*)() would, of course, be ambiguous.)

A name that resolves to a nonstatic member function can only be used to call the function or to
form a pointer-to-member (5.1¶10). In a call expression, multiple-subobject ambiguity will be
detected by the attempt to convert the object expression to the implicit this parameter. When
forming a pointer-to-member, there is no intrinsic multiple-subobject ambiguity to diagnose; the
only multiple-subobject ambiguity that can arise is in the context of a conversion, and that is
handled in 4.11¶2.

Also, the usual practice in C++ is only to diagnose erroneous function declarations and uses if
they are selected by overload resolution (cf 7.3.3¶11, indistinguishable functions introduced by
using-declarations; 11¶4, access control; 13.3.3¶4, conflicting default arguments).

In light of all these considerations, the only rationale for diagnosing multiple-subobject
ambiguity among member functions as a lookup ambiguity would seem to be the parallel with
nonstatic data members. As noted above, multiple-subobject ambiguity among nonstatic data
members is generally only diagnosed in the description of name lookup – but even for data
members, there is no reason that forming a pointer to data member should be subject to multiple-
subobject ambiguity checking. (The analysis in Example 16 applies equally well to pointers to
data members.)

18 of 21

Analysis and Proposed Resolution for Core Issue 39 J16/03-0126 = WG21 N1543

7. New Proposed Resolution

Discussions among the core group in Kona affirmed the idea of addressing the issues raised in
both item 5 and item 6 in a single revised proposed resolution. As previously noted, treating
both multiple-declaration and multiple-subobject ambiguity as lookup ambiguities dates back to
the ARM. However, there is no fundamental requirement that they be handled together.
Removing multiple-subobject ambiguity from the description of class-scope lookup and leaving
it to be dealt with in each applicable expression context would obviate the major problem with
the pre-Kona resolution described in part 5, simplify the merge algorithm by removing the check
for multiple-subobject ambiguity, and make the problematic examples in part 6 well-formed.

The following proposed wording is based on this approach, as well as incorporating changes to
address the other issues described in part 5.

1) Change 10.2¶2 to read:

The following steps define the result of name lookup for a member name f in a
class scope C.

The lookup set for f in C, called S(f,C), consists of two component sets: the
declaration set, a set of members named f; and the subobject set, a set of
subobjects where declarations of these members (possibly including using-
declarations) were found. In the declaration set, using-declarations are replaced
by the members they designate, and type declarations (including injected-class-
names) are replaced by the types they designate. S(f,C) is calculated as follows.

If C contains a declaration of the name f, the declaration set contains every
declaration of f declared in C that satisfies the requirements of the language
construct in which the lookup occurs. [Note: Looking up a name in an
elaborated-type-specifier (3.4.4) or base-specifier (clause 10), for instance,
ignores all non-type declarations, while looking up a name in a nested-name-
specifier (3.4.3) ignores function, object, and enumerator declarations. As another
example, looking up a name in a using-declaration (7.3.3) includes the
declaration of a class or enumeration that would ordinarily be hidden by another
declaration of that name in the same scope.] If the resulting declaration set is not
empty, the subobject set contains C itself, and calculation is complete.

Otherwise (i.e., C does not contain a declaration of f or the resulting declaration
set is empty), S(f,C) is initially empty. If C has base classes, calculate the lookup

19 of 21

Analysis and Proposed Resolution for Core Issue 39 J16/03-0126 = WG21 N1543

set for f in each direct base class subobject Bi, and merge each such lookup set S
(f,Bi) in turn into S(f,C).

The following steps define the result of merging lookup set S(f,Bi) into the
intermediate S(f,C):

● If each of the subobject members of S(f,Bi) is a base class subobject of at least
one of the subobject members of S(f,C), or if S(f,Bi) is empty, S(f,C) is
unchanged and the merge is complete. Conversely, if each of the subobject
members of S(f,C) is a base class subobject of at least one of the subobject
members of S(f,Bi), or if S(f,C) is empty, the new S(f,C) is a copy of S(f,Bi).

● Otherwise, if the declaration sets of S(f,Bi) and S(f,C) differ, the merge is
ambiguous: the new S(f,C) is a lookup set with an invalid declaration set and
the union of the subobject sets. In subsequent merges, an invalid declaration
set is considered different from any other.

● Otherwise, the new S(f,C) is a lookup set with the shared set of declarations
and the union of the subobject sets.

The result of name lookup for f in C is the declaration set of S(f,C). If it is an
invalid set, the program is ill-formed. [Example:

struct A { int x; }; // S(x,A) = { { A::x }, { A } }
struct B { float x; }; // S(x,B) = { { B::x }, { B } }
struct C: public A, public B { }; // S(x,C) = { invalid, { A in C, B in C } }
struct D: public virtual C { }; // S(x,D) = S(x,C)
struct E: public virtual C { char x; }; // S(x,E) = { { E::x }, { E } }
struct F: public D, public E { }; // S(x,F) = S(x,E)

int main() {
F f;
f.x = 0; // OK, lookup finds { E::x }

}

S(x,F) is unambiguous because the A and B base subobjects of D are also base subobjects
of E, so S(x,D) is discarded in the first merge step. —end example]

20 of 21

Analysis and Proposed Resolution for Core Issue 39 J16/03-0126 = WG21 N1543

2) Turn the non-example text of 10.2¶4-6 into notes.7

3) Add the following text as a new paragraph following the current 10.2¶7:

[Note: Even if the result of name lookup is unambiguous, use of a name found in multiple
subobjects might still be ambiguous (4.11, 5.2.5, 11.2).] [Example:

struct B1 {
void f();
static void f(int);
int i;

};
struct B2 {

void f(double);
};
struct I1: B1 { };
struct I2: B1 { };
struct D: I1, I2, B2 {

using B1::f;
using B2::f;
void g() {

f(); // Ambiguous conversion of this
f(0); // Unambiguous (static)
f(0.0); // Unambiguous (only one B2)
int B1::* mpB1 = &D::i; // Unambiguous
int D::* mpD = &D::i; // Ambiguous conversion

}
};

—end example]

4) Add the following text as a new paragraph following 5.2.5¶4:8

If E2 is a non-static data member or a non-static member function, the program is
ill-formed if the class of E1 cannot be unambiguously converted (10.2) to the
class of which E2 is directly a member.

7 The pre-Kona proposed resolution included converting paragraphs 5 and 6 into notes. The core group did not
discuss paragraph 4, but I believe it is equally non-normative.

8 As previously noted, the core group thought that 11.2¶5 dealt adequately with data member multiple-subobject
ambiguity, but that is not the case. Implementing the approach of removing multiple-subobject ambiguity thus
requires an explicit treatment, and this seemed to me to be the best place.

21 of 21

