
N1541 1

Doc No: N1541=03-0124
Date: 13 Nov 2003

Reply to: Matt Austern
austern@apple.com

Library Extension Technical Report Issues List
Revision 1: Post-Kona

1 TR Introduction issues
1.1 How to disable TR features
Section: 1 [tr.intro]
Submitter: Matt Austern
Status: NAD

The TR says that implementers should not enable the TR by default, and should hide TR features
more thoroughly than just putting them in another namespace. It's vague on exactly what
implementers should do: have files in another directory (perhaps even shadow headers, like an
alternate version of <functional>), or use a macro, or something else. Should we be more
specific?

Resolution:
The LWG decided that the current text is satisfactory.

1.2 Feature test macros for the TR
Section: 1 [tr.intro]
Submitter: Beman Dawes
Status: New

How can users determine whether or not a particular compiler/library implementation supports
the components described in the library extension TR? Should we have a coarse-grained macro
(yes or not), or should we have a fine-grained facility so users can perform feature tests for
individual pieces?

2 Smart pointer issues
2.1 shared_ptr constructor from auto_ptr missing postcondition
Submitter: Beman Dawes
Section: 2.2.3 [tr.util.smartptr.shared.const]
Status: Voted into the TR

N1541 2

For
 template <class Y> shared_ptr<Y>(auto_ptr<Y> & r)
The Postcondition clause says:

use_count() == 1

Resolution:
change it to

use_count() == 1 && r.get() == 0

2.2 Error in shared_ptr constructor
Submitter: Pete Becker
Section: 2.2.3 [tr.util.smartptr.shared.const]
Paper: c++std-lib-11461, 11463-11510, 11512-11524
Status: Closed

template<class Y> explicit shared_ptr(Y *p);
template <class Y, class D> shared_ptr(Y *, D d);
template <class Y> shared_ptr<auto_ptr<Y> & r);

The Effects clauses for the first two ctors say:
Constructs a shared_ptr that owns the pointer p [and the deleter d].

and their Postconditions clauses say:
use_count() == 1 && get() == p

Similarly, the Effects clause for the third ctor says:
Constructs a shared_ptr that stores and owns r.release()

and the Postcondition clause says:
use_count == 1

Issues:
• Is this the correct behavior when p or r.release() is a null pointer? Consistency with the

default constructor would suggest that use_count() == 0 for a null pointer, i.e. the result is
an empty shared_ptr.

• If use_count() should be 0, this raises the lesser issue of whether smart_ptr(null, Dtor)
should remember _Dtor, or should be equivalent to smart_ptr(). I'm pretty sure I prefer
the latter, 'cause it's the way I've implemented it. (It's also simpler and more efficient to
treat all null pointers the same way).

Resolution:
Discussed at Kona. There are several ways of phrasing this issue: Do we reference-count null
pointers? Are null pointers a special case? What is the deleter argument good for? There wasn’t
consensus for changing what the TR already says, but it was agreed that this exposed another
issue (2.3, see below).

N1541 3

2.3 shared_ptr equality and operator<
Submitter: Beman Dawes
Section: [tr.util.smartptr.shared]
Status: New

When two shared_ptrs p1 and p2 are constructed from the same underlying pointer, the behavior
of operator== and operator< is surprising. We will have p1 == p2, but also either p1 < p2 or p1 >
p2. We thus violate the usual trichotomy condition. For example, if you have a whole bunch of
shared_ptrs in a set, you can't search for it by constructing a new shared_ptr.

It may seem that this is irrelevant because it's never correct to have two shared_ptrs with the
same underlying pointer, but that's wrong. It's valid in two cases: (1) when the underlying pointer
is null; or (2) when you're using a user-defined deleter object that doesn't do deletion.

3 Type traits issues
3.1 Use of Language in type transformations
Submitter: Pete Becker
Status: Voted into the TR

See N1519 for discussion of the issue.

Resolution:
Accept the proposed resolution for N1519. [but editorial change: also add a non-normative note
pointing out what it means for cv-qualified types]

3.2 Why three headers?
Submitter: Pete Becker
Status: Voted into the TR

Three headers seems excessive. Why not put them all into <type_traits>? That would simplify
things for users, who wouldn't have to remember which of the three headers defines the template
they're interested in. Currently, <type_traits> has 33 templates (not counting helpers),
<type_compare> has 3, and <type_transform> has 11. The classification is reasonable in itself,
but I don't think it's particularly helpful.

A number of people expressed support for one header on the LWG reflector.

Resolution: Combine the three type traits headers into a single header named <type_traits>.

3.3 Is integral_constant an implementation detail?
Submitter: Pete Becker
Status: NAD

See N1519 for discussion of the issue.

N1541 4

Resolution:
NAD. We accepted several changes that require integral_constant to be exposed explicitly.

3.4 Revising the Unary Type Traits Requirements
Submitter: John Maddock
Status: voted into the TR

See N1519 for discussion of the issue.

Resolution: Accept the proposed resolution from N1519.

3.5 New type trait: alignment_of
Submitter: John Maddock
Status: voted into the TR

See N1519 for discussion of the issue.

Resolution: Accept the proposed resolution from N1519.

3.6 New type trait: has_virtual_destructor
Submitter: John Maddock
Status: voted into the TR

See N1519 for discussion of the issue.

Resolution: Accept the proposed resolution from N1519, but add a proviso that false is the
fallback position if the compiler can’t determine an exact answer.

3.7 New type trait: is_safely_destructible
Submitter: Bronek Kozicki
Status: NAD

See N1508 for discussion of the issue.

Resolution: The LWG decided not to accept this proposal. If we accepted it, it would be better
for the template to have two parameters: can class D be safely destroyed via a pointer to class B?
But as is, the trait seems too high level: it answers a complicated compound question, not an
atomic question.

3.8 New type trait: rank
Submitter: John Maddock
Status: Open

See N1519 for discussion of the issue.

Resolution:

N1541 5

Discussed at Kona. The LWG wasn’t sure whether this was useful; the few people who could
use it reliably for metaprogramming would probably find it just as easy to write it themselves.

3.9 New type trait: dimension
Submitter: John Maddock
Status: Open

See N1519 for discussion of the issue.

Resolution:
Discussed at Kona. Same status as rank: the LWG wasn’t sure whether this was useful.

3.10 New type trait: aligned_storage
Submitter: John Maddock
Status: Voted into the TR

See N1519 for discussion of the issue.

Resolution:
Accept the proposed resolution from N1519, but say “unspecified” instead of “implementation
defined.”

3.11 New type trait: remove_all_dimensions
Submitter: John Maddock
Status: Voted into the TR

See N1519 for discussion of the issue.

Resolution:
Accept the proposed resolution from N1519.

3.12 Conversion of traits to integral_constant
Submitter: Dave Abrahams
Status: New

Every traits class X has a nested typedef type, and has a conversion operator, operator type()
const. Automatic conversions are useful and important, but a conversion operator is the wrong
way to do it. Instead, we should say that X inherits from type. This would be consistent with
actual implementation practice.

3.13 is_base_and_derived<X,X>
Submitter: Dave Abrahams
Status: New

N1541 6

Currently, is_base_and_derived<X,Y> returns false when X and Y are the same. This is
technically correct (X isn’t its own base class), but it isn’t useful. The definition should be
loosened to return true when X and Y are the same, even when the type isn’t actually a class.

4 Random number generator issues
4.1 Confusing Text in Description of v.min()
Submitter: Pete Becker (see N1535)
Status: Voted into the TR

In "Uniform Random Number Requirements" the text says that v.min() "Returns ... l where l is
...". This is the letter ell, which is too easily confused with the numeral one. Can we change it to
something less confusing, like "lim"?

Resolution:
Change the first sentence of the description of v.min() in 5.1.1 [tr.rand.req], Table 5.2 (Uniform
random number generator requirements) from:

Returns some l where l is less than or equal to all values potentially returned by operator().
to:

Returns a value that is less than or equal to all values potentially returned by operator().

4.2 Confusing and Incorrect Text in Description of v.max()
Submitter: Pete Becker (see N1535)
Status: Voted into the TR

In "Uniform Random Number Requirements" the text says that v.max() "returns l where l is less
than or equal to all values...". Should this be "greater than or equal to"? And similarly, should
"strictly less than" be "strictly greater than."?

Resolution:
Change the first sentence of the description of v.max() in 5.1.1 [tr.rand.req], Table 5.2
(Uniform random number generator requirements) from:

If std::numeric_limits<T>::is_integer, returns l where l is less than or equal
to all values potentially returned by operator(), otherwise, returns l where l is strictly
less than all values potentially returned by operator().

to:
If std::numeric_limits<T>::is_integer, returns a value that is greater than or
equal to all values potentially returned by operator(), otherwise, returns a value that is
strictly greater than all values potentially returned by operator().

4.3 Table "Number Generator Requirements" Unnecessary
Submitter: Pete Becker (see N1535)
Status: Voted into the TR

N1541 7

The table "Number Generator Requirements" has only one entry: X::result_type. While it's
true that random nunber generators and random distributions have this member, it doesn't seem
like a useful basis for classification -- there's nothing in the proposal that depends on knowing
that some type satisfies this requirement. I think the specification of X::result_type should
be in "Uniform Random Number Generator Requirements" and in "Random Distribution
Requirements."

Resolution:
Copy the description of X::result_type from 5.1.1 [tr.rand.req], Table 5.1 (Number
generator requirements) to 5.1.1 [tr.rand.req], Table 5.2 (Uniform random number generator
requirements) and to 5.1.1 [tr.rand.req], Table 5.4 (Random distribution requirements) and
remove 5.1.1 [tr.rand.req], Table 5.1 (Number generator requirements).

4.4 Should a variate_generator Holding a Reference Be Assignable?
Submitter: Pete Becker (see N1535)
Status: Voted into the TR

The third paragraph says, in part:
Specializations of variate_generator satisfy the requirements of CopyConstructible.
They also satisfy the requirements of Assignable unless the template parameter Engine is of
the formU&.

This looks like an implementation artifact. Is there a reason that variate_generators whose engine
type is a reference should not be copied?

Resolution:
Change the first two sentences of the third paragraph of 5.1.3 [tr.rand.var] from:

Specializations of variate_generator satisfy the requirements of CopyConstructible.
They also satisfy the requirements of Assignable unless the template parameter Engine is of
the form U&.

to:
Specializations of variate_generator satisfy the requirements of CopyConstructible
and Assignable. [Note: If the template parameter Engine is of reference type it is the
reference, not the object referred to, that is copied. —End Note]

4.5 Normal Distribution Incorrectly Specified
Submitter: Pete Becker (see N1535)
Status: Voted into the TR

For normal_distribution, the paper says that the probability density function
is1/sqrt(2*pi*sigma) * exp(- (x - mean)^2 / (2 * sigma^2)). The
references I've seen have a different initial factor, using 1/(sqrt(2*pi) * sigma). That
is, sigma is outside the square root.

Resolution:
Change the first paragraph of 5.1.7.8 [tr.rand.dist.norm] from:

A normal_distribution random distribution produces random numbers x distributed

N1541 8

with probability density function (1/sqrt(2*pi*sigma))e-(x-mean)2/(2*sigma2), where
mean and sigma are the parameters of the distribution.

to:
A normal_distribution random distribution produces random numbers x distributed
with probability density function (1/(sqrt(2*pi)*sigma))e-(x-mean)2/(2*sigma2), where
mean and sigma are the parameters of the distribution.

4.6 Should Random Number Initializers Take Iterators by Reference
or by Value?

Submitter: Pete Becker (see N1535)
Status: Open

See N1535 for a full discussion. Summary: when engines are seeded, the seed may be arbitrarily
large. For compound engines we use a range where the first iterator is taken by reference and
updated. This is an unconventional interface and will invite bugs. The obvious solution would
be to have a function that takes iterators first and last by value and returns the updated
version of first. However, this is an awkward solution for constructors. One possibility would
be to abandon range constructors, and rely instead on two-phase initialization where the iterators
are passed to a member function.

Resolution: Discussed at Kona, no decision. The status quo is awkward, but we don’t have a
better solution yet. Pete and Jens will work on this and will propose a solution for Sydney.

4.7 Are Global Operators Overspecified?
Submitter: Pete Becker (see N1535)
Status: Open

See N1535 for a full discussion. Summary: Do we literally want to require the existence of a
namespace-scope operator==, or do we just want to say that when x and y are engines, x ==
y is required to work?

Resolution: Discussed at Kona, general agreement that we don’t want to require a specific
signature. Pete and Jens will provide wording along these lines.

4.8 Should the Template Arguments Be Restricted to Built-in Types?
Submitter: Pete Becker (see N1535)
Status: Voted into the TR.

See N1535 for a full discussion. Summary: Generators and distributions are parameterized on
arithmetic types. The TR tries to allow user defined number-like types, but it’s very hard to get
that sort of thing right. We should restrict it to the built-in arithmetic types.

Resolution:
Replace in 5.1.1 [tr.rand.req], last paragraph

Furthermore, a template parameter named RealType shall denote a type that holds an
approximation to a real number. This type shall meet the requirements for a numeric type

N1541 9

(26.1 [lib.numeric.requirements]), the binary operators +, -, *, / shall be applicable to it, a
conversion from double shall exist, and function signatures corresponding to those for type
double in subclause 26.5 [lib.c.math] shall be available by argument-dependent lookup (3.4.2
[basic.lookup.koenig]). [Note: The built-in floating-point types float and double meet these
requirements.]

by
Furthermore, the effect of instantiating a template that has a template type parameter
namedRealType is undefined unless that type is one of float, double, or long
double.

Delete from 5.1.7 [tr.rand.dist]
A template parameter named IntType shall denote a type that represents an integer number.
This type shall meet the requirements for a numeric type (26.1 [lib.numeric.requirements]),
the binary operators +, -, *, /, % shall be applicable to it, and a conversion from int shall exist.
[Footnote: The built-in types int and long meet these requirements.]

...

No function described in this section throws an exception, unless an operation on values of
IntType or RealType throws an exception. [Note: Then, the effects are undefined, see
[lib.numeric.requirements].]

Add after 5.1.1 [tr.rand.req], last paragraph
The effect of instantiating a template that has a template type parameter named IntType is
undefined unless that type is one of short, int, long, or their unsigned variants.

The effect of instantiating a template that has a template type parameter named UIntType is
undefined unless that type is one of unsigned short, unsigned int, or unsigned
long.

4.9 Do Engines Need Type Arguments?
Submitter: Pete Becker (see N1535)
Status: Open

See N1535 for a discussion. Summary: engines are parameterized by type, but this is pretty
much redundant. The appropriate type can be deduced from the template arguments.

Resolution: Discussed at Kona. No consensus that this change would be a good idea.

4.10 Unclear Complexity Requirements for variate_generator
Submitter: Pete Becker (see N1535)
Status: Voted into the TR

The specification for variate_generator says
Specializations of variate_generator satisfy the requirements of CopyConstructible.
They also satisfy the requirements of Assignable unless the template parameter Engine is of

N1541 10

the formU&. The complexity of all functions specified in this section is constant. No function
described in this section except the constructor throws an exception.

Taken literally, this isn't implementable. operator() calls the underlying distribution's
operator(), whose complexity isn't directly specified. The distribution's operator()
makes an amortized constant number of calls to the generator's operator(), whose
complexity is, again, amortized constant. So the complexity
ofvariate_generator::operator() ought to also be amortized constant.

variate_generator also has a constructor that takes an engine and a distribution by value,
and uses their respective copy constructors to create internal copies. There are no complexity
constraints on those copy constructors, but given that the default constructor for an engine has
complexity O(size of state), it seems likely that an engine's copy constructor would also have
complexity O(size of state). This means thatvariate_generator's complexity is at best
O(size of engine's state), not constant.

I suspect that what was intended was that these functions would not introduce any additional
complexity, that is, their complexity is the "larger" of the complexities of the functions that they
call.

Resolution:
Replace in 5.1.3 [tr.rand.var]

The complexity of all functions specified in this section is constant.
by

Except where otherwise specified, the complexity of all functions specified in this section is
constant.

Add for variate_generator(engine_type e, distribution_type d)
Complexity: Sum of the complexities of the copy construtors of engine_type
anddistribution_type.

Add for result_type operator()()
Complexity: Amortized constant.

Add for result_type operator()(T value)
Complexity: Amortized constant.

4.11 xor_combine Over-generalized?
Submitter: Pete Becker (see N1535)
Status: Editorial

For an xor_combine engine, is there ever a case where both s1 and s2 would be non-zero?
Seems like this would produce non-random values, because the low bits (up to the smaller of the
two shift values) would all be 0.

If at least one has to be 0, then we only need one shift value, and the definition might look more
like this:
 template <class _Engine1, class _Engine2, int _Shift = 0>

N1541 11

...

with the output being (_Eng1() ^ (_Eng2() << _Shift)).

Resolution: Discussed at Kona. The LWG felt that this interface is still the simplest. The right
solution is to add a non-normative note advising users that only one of these parameters should
be nonzero. The project editor is directed to add that note.

4.12 xor_combine::result_type Incorrectly Specified
Submitter: Pete Becker (see N1535)
Status: Voted into the TR

xor_combine has a member
 typedef typename base_type::result_type result_type;

However, it has no type named base_type, only base1_type and base2_type. So, what
should result_type be?

Resolution:
In 5.1.4.6 [tr.rand.eng.xor] replace

typedef typename base_type::result_type result_type;
by

typedef /* see below */ result_type;

and add at the end of the paragraph below the class definition
The member result_type is defined to that type
ofUniformRandomNumberGenerator1::result_type
andUniformRandomNumberGenerator2::result_type that provides the most
storage [basic.fundamental].

4.13 subtract_with_carry's IntType Overpecified
Submitter: Pete Becker (see N1535)
Status: Voted into the TR

The IntType for subtract_with_carry "shall denote a signed integral type large enough to store
values up to m - 1." The implementation subtracts two values of that type, and if the result is <
0 it adds back the m, which makes the result non-negative. In fact, this also works for unsigned
types, with just a small change in the implementation: instead of testing whether the result is <
0 you test whether it's < 0 or greater than or equal to m. This works because unsigned arithmetic
wraps, and it makes the template a bit easier to use.

I suggest that we loosen the constraint to allow signed and unsigned types. Thus the constraint
would read "shall denote an integral type large enough to store values up to m - 1."

Resolution:
In 5.1.4.3 [tr.rand.eng.sub], replace

The template parameter IntType shall denote a signed integral type large enough to store

N1541 12

values up to m-1.
by

The template parameter IntType shall denote an integral type large enough to store values
up to m.

4.14 subtract_with_carry_01::seed(unsigned) Missing Constaint
Submitter: Pete Becker (see N1535)
Status: Voted into the TR

The specification for subtract_with_carry::seed(IntVal) has a Requires clause
which requires that the argument be greater than 0. This member function needs the same
constraint.

Resolution:
Add:

Requires: value > 0
to the description of subtract_with_carry_01::seed(unsigned) in 5.1.4.4
[tr.rand.eng.sub1]. (See resolution of issue 4.19, which also affects the wording in this area.)

4.15 subtract_with_carry_01::seed(unsigned) Produces Bad Values
Submitter: Pete Becker (see N1535)
Status: Voted into the TR

subtract_with_carry_01::seed(unsigned int) uses a linear congruential
generator to produce initial values for the fictitious previously generated values. These values are
generated as(y(i)*2^-w) mod 1. The linear congruential generator produces values in the
range [0, 2147483564), which are at most 31 bits long. If the template argument w is
greater than 31 the initial values generated by seed will all be rather small, and the first values
produced by the generator will also be rather small. The Boost implementation avoids this
problem by combining values from the linear congruential generator to produce longer values
when w is larger than 32. Should we require something more like that?

Resolution:
In 5.1.4.4 [tr.rand.eng.sub1] replace

 void seed(unsigned int value = 19780503)
Effects: With a linear congruential generator l(i) having parameters m = 2147483563, a =
40014, c = 0, and l(0) = value, sets x(-r) ... x(-1) to (l(1)*2-w) mod 1 ... (l(r)*2-w) mod 1,
respectively. If x(-1) == 0, sets carry(-1) = 2-w, else sets carry(-1) = 0.
Complexity: O(r)

With
 void seed(unsigned long value = 19780503ul)
Effects: With n=(w+31)/32 (rounded downward) and given an iterator range [first,
last)that refers to the sequence of values lcg(1) ... lcg(n*r) obtained from a linear
congruential generator lcg(i) having parameters mlcg = 2147483563, alcg = 40014, clcg = 0,
and lcg(0) =value, invoke seed(first,last) .
Complexity: O(r*n)

N1541 13

4.16 subtract_with_carry_01::seed(unsigned) Argument Type Too
Small

Submitter: Pete Becker (see N1535)
Status: Voted into the TR

subtract_with_carry_01::seed(unsigned) has a default argument value of
19780503, which is too large to fit in a 16-bit unsigned int. Should this argument be unsigned
long, to ensure that it's large enough for the default?

Resolution:
In 5.1.4.2 [tr.rand.eng.mers], change the signature of a constructor and a seed function from
 explicit mersenne_twister(result_type value);
 void seed(result_type value);
to
 explicit mersenne_twister(unsigned long value);
 void seed(unsigned long value);

In 5.1.4.3 [tr.rand.eng.sub], change the signature of a constructor and a seed function from
 explicit subtract_with_carry(IntType value);
 void seed(IntType value = 19780503);
to
 explicit subtract_with_carry(unsigned long value);
 void seed(unsigned long value = 19780503ul);

In 5.1.4.4 [tr.rand.eng.sub1], change the signature of a constructor and a seed function from
 subtract_with_carry_01(unsigned int value);
 void seed(unsigned int value = 19780503);
to:
 subtract_with_carry_01(unsigned long value);
 void seed(unsigned long value = 19780503ul);

4.17 subtract_with_carry::seed(In&, In) Required Sequence Length
Too Long

Submitter: Pete Becker (see N1535)
Status: Voted into the TR

For both subtract_with_carry::seed(In& first, In last)
andsubtract_with_carry_01::seed(In& first, In last) the proposal says:
"With n=w/32+1 (rounded downward) and given the values z0 ... zn*r-1." The idea is to
use n unsigned long values to generate each of the initial values for the generator, so n
should be the number of 32-bit words needed to provide wbits. Looks like it should be
"n=(w+31)/32". As currently written, when w is 32, the function consumes two 32-bit values
for each value that it generates. One is sufficient.

Resolution:
Change

With n=w/32+1 (rounded downward) and given the values z0 ... zn*r-1

N1541 14

to
With n=(w+31)/32 (rounded downward) and given the values z0 ... zn*r-1

in the description of subtract_with_carry::seed(In& first, In last) in
5.1.4.3 [tr.rand.eng.sub] and in the description of
subtract_with_carry_01::seed(In& first, In last) in 5.1.4.4
[tr.rand.eng.sub1].

4.18 linear_congruential -- Giving Meaning to a Modulus of 0
Submitter: Pete Becker (see N1535)
Status: Voted into the TR

Some linear congruential generators using an integral type _Ty also use a modulus that's equal to
numeric_limts<_Ty>::max() + 1 (e.g. 65536 for a 16-bit unsigned int). There's no way
to write this value as a constant of the type _Ty, though. Writing it as a larger type doesn't work,
because the linear_congruential template expects an argument of type _Ty, so you typically end
up with a value that looks like 0.

On the other hand, the current text says that the effect of specifying a modulus of 0
forlinear_congruential is implementation defined. I decided to use 0 to mean max()+1,
as did the Boost implementation. (Internally, the implementation of mersenne_twister
needs a generator with a modulus like this). Seems to me this is a reasonable choice, and one that
users ought to be able to rely on. Is there some other meaning that might reasonably be ascribed
to it, or should we say that a modulus of 0 meansnumeric_limits<_Ty>::max() + 1
(suitably type-cast)?

Resolution:
Replace in 5.1.4.1 [tr.rand.eng.lcong], in the paragraph after the class definition

If the template parameter m is 0, the behaviour is implementation-defined.
by

If the template parameter m is 0, the modulus m used throughout this section
isstd::numeric_limits<IntType>::max() plus 1. [Note: The result is not
representable as a value of type IntType. —end note]

4.19 linear_congruential::seed(IntType) -- Modify Seed Value When c
== 0?

Submitter: Pete Becker (see N1535)
Status:

When c == 0 you get a generator with a slight quirk: if you seed it with 0 you get 0's forever; if
you seed it with a non-0 value you never get 0. The first path, of course, should be avoided. The
proposal does this by imposing a requirement on seed(IntType x0), requiring that c > 0
|| (x0 % m) > 0. The boost implementation uses asserts to check this condition. The only
reservation I have about this is that it can only be checked at runtime, when the only suitable
action is, probably, to abort. An alternative would be to force a non-0 seed in that case (perhaps
1, for no particularly good reason). I think the second alternative is marginally better, and I

N1541 15

suggest we change this requirement to impose a particular seed value when a user passes 0 to a
generator with c == 0.

Resolution:
Replace in 5.1.4.1 [tr.rand.eng.lcong]

 explicit linear_congruential(IntType x0 = 1)

Requires: c > 0 || (x0 % m) > 0
Effects: Constructs a linear_congruential engine with state x(0) := x0 mod m.
 void seed(IntType x0 = 1)

Requires: c > 0 || (x0 % m) > 0
Effects: Sets the state x(i) of the engine to x0 mod m.
 template linear_congruential(In& first, In last)

Requires: c > 0 || *first > 0
Effects: Sets the state x(i) of the engine to *first mod m.
Complexity: Exactly one dereference of *first.

by
 explicit linear_congruential(IntType x0 = 1)

Effects: Constructs a linear_congruential engine and invokes seed(x0).
 void seed(IntType x0 = 1)

Effects: If c mod m = 0 and x0 mod m = 0, sets the state x(i) of the engine to 1 mod m,
else sets the state x(i) of the engine to x0 mod m.
 template linear_congruential(In& first, In last)

Effects: If c mod m = 0 and *first mod m = 0, sets the state x(i) of the engine to 1 mod
m, else sets the state x(i) of the engine to *first mod m.
Complexity: Exactly one dereference of *first.

Replace in 5.1.4.2 [tr.rand.eng.mers]
 void seed()

Effects: Invokes seed(4357).
 void seed(result_type value)

Requires: value > 0
Effects: With a linear congruential generator l(i) having parameters ml = 232, al = 69069,
cl = 0, and l(0) = value, sets x(-n) ... x(-1) to l(1) ... l(n), respectively.
Complexity: O(n)

by
 void seed()

Effects: Invokes seed(0).
 void seed(result_type value)

Effects: If value == 0, sets value to 4357. In any case, with a linear congruential

N1541 16

generator lcg(i) having parameters mlcg = 232, alcg = 69069, clcg = 0, and lcg(0) = value,
sets x(-n) ... x(-1) to lcg(1) ... lcg(n), respectively.
Complexity: O(n)

Replace in 5.4.1.3 [tr.rand.eng.sub]
 void seed(unsigned int value = 19780503)
Requires: value > 0
Effects: With a linear congruential generator l(i) having parameters ml = 2147483563, al
= 40014, cl = 0, and l(0) = value, sets x(-r) ... x(-1) to l(1) mod m ... l(r) mod m,
respectively. If x(-1) == 0, sets carry(-1) = 1, else sets carry(-1) = 0.
Complexity: O(r)

by
 void seed(unsigned long value = 19780503ul)
Effects: If value == 0, sets value to 19780503. In any case, with a linear congruential
generator lcg(i) having parameters mlcg = 2147483563, alcg = 40014, clcg = 0, and lcg(0)
=value, sets x(-r) ... x(-1) to lcg(1) mod m ... lcg(r) mod m, respectively. If x(-1) == 0,
sets carry(-1) = 1, else sets carry(-1) = 0.
Complexity: O(r)

Replace in 5.4.1.4 [tr.rand.eng.sub1]
 void seed(unsigned int value = 19780503)
Effects: With a linear congruential generator l(i) having parameters m = 2147483563, a =
40014, c = 0, and l(0) = value, sets x(-r) ... x(-1) to (l(1)*2-w) mod 1 ... (l(r)*2-w) mod
1, respectively. If x(-1) == 0, sets carry(-1) = 2-w, else sets carry(-1) = 0.
Complexity: O(r)

by
 void seed(unsigned long value = 19780503ul)
Effects: If value == 0, sets value to 19780503. In any case, with a linear congruential
generator lcg(i) having parameters mlcg = 2147483563, alcg = 40014, clcg = 0, and lcg(0)
=value, sets x(-r) ... x(-1) to lcg(1) mod m ... lcg(r) mod m, respectively. If x(-1) == 0,
sets
Complexity: O(r)

4.20 linear_congruential -- Should the Template Arguments Be
Unsigned?

Submitter: Pete Becker (see N1535)
Status: Voted into the TR

This template takes three numeric arguments, a, c, and m, whose type is IntType. IntTypeis
an integral type, possibly signed. These arguments specify the details of the recurrence relation
for the generator:
 x(i + 1) := (a * x(i) + c) mod m

Every discussion that I've seen of this algorithm uses unsigned values. Further, In C and C++
there is no modulus operator. The result of the % operator is implementation specific when either
of its operands is negative, so implementing mod when the values involved can be negative
requires a test and possible adjustment:
 IntType res = (a * x + c) % m;

N1541 17

 if (res < 0)
 res += m;

If the three template arguments can't be negative the recurrence relation can be implemented
directly:
 x = (a * x + c) % m;

This makes the generator faster.

Resolution:
In clause 5.1.4.1 [tr.rand.eng.lcong] replace every occurrence of IntType with UIntType and
change the first sentence after the definition of the template from:

The template parameter IntType shall denote an integral type large enough to store values
up to(m-1).

to:
The template parameter UIntType shall denote an unsigned integral type large enough to
store values up to (m-1).

4.21 linear_congruential::linear_congruential(In&, In) -- Garbled
Requires Clause

Submitter: Pete Becker (see N1535)
Status: Voted into the TR

The Requires clause for the member template template <class In>
linear_congruential(In& first, In last) got garbled in the translation to .pdf
format.

Resolution:
Change the Requires clause for the member template template <class In>
linear_congruential(In& first, In last) in 5.1.4.1 [tr.rand.eng.lcong] from:

Requires: c > 0 — *first ¿ 0—

to:
Requires: c > 0 || *first > 0

4.22 bernoulli_distribution Isn't Really a Template
Submitter: Pete Becker (see N1535)
Status: Voted into the TR

The text says that bernoulli_distribution is a template, parametrized on a type that is
required to be a real type. Its operator() returns a bool, with the probability of returning
true determined by the argument passed to the object's constructor. The only place where the
type parameter is used is as the type of the argument to the constructor. What is the benefit from
making this type user-selectable instead of, say, double?

Resolution:

N1541 18

In 5.1.7.2 [tr.rand.dist.bern], change the section heading to "Class bernoulli_distribution",
remove template <class RealType = double> from the declaration of
bernoulli_distribtion, change the declaration of the constructor from:
 explicit bernoulli_distribution(const RealType& p = RealType(0.5));
to:
 explicit bernoulli_distribution(double p = 0.5);

and change the header for the subclause describing the constructor from:
 bernoulli_distribution(const RealType& p = RealType(0.5))
to:
 bernoulli_distribution(double p = 0.5)

4.23 Streaming Underspecified
Submitter: Pete Becker (see N1535)
Status: Open

See N1535 for a full discussion. Summary: the goal is for engines to be well enough specified so
that the state of an engine can be streamed out on one system and read in on a different system,
and so that the engine on the second system would produce the same sequence of values as it
would on the first. Distributions are less clear-cut, but at least we want to be able to save and
restore on the same system for the sake of checkpointing. Given that we don’t care about
portability, streaming of distributions may be adequately specified. However, we may not want
to call it operator<< and operator>>, because implementers will probably want to use
binary formats.

4.24 Garbled characters
Submitter: Jens Maurer
Status: Editorial

There are some places where the TR draft contains garbled characters. This issue points out the
places where editorial changes to rectify this need to be performed.

• 5.1.4.3 [tr.rand.eng.sub], first paragraph
• 5.1.4.4 [tr.rand.eng.sub1], first paragraph
• 5.1.4.5 [tr.rand.eng.disc], after the class definition
• 5.1.4.5 [tr.rand.eng.disc], effects clause of operator()

4.25 class vs. type
Submitter: Jens Maurer
Status: Voted into the TR

The wording in section 5.1.1 isn’t parallel.

Resolution: Replace in section 5.1.1 [tr.rand.req], last paragraph
In the following subclauses, a template parameter named UniformRandomNumberGenerator
shall denote a class type that satisfies all the requirements of a uniform random number
generator.

N1541 19

4.26 Fix section reference
Submitter: Jens Maurer
Status: Voted into the TR, Editorial

A section reference needs to be fixed.

Resolution:
Replace in section 5.1.4 [tr.rand.eng], second paragraph

The class templates specified in this section satisfy all the requirements of a pseudo-random
number engine (given in tables in section x.x 5.1.1 [tr.rand.req]), except where specified
otherwise. Descriptions are provided here only for operations on the engines that are not
described in one of these tables or for operations where there is additional semantic
information.

4.27 Avoid confusion for "ell" and "one"
Submitter: Jens Maurer
Status: Voted into the TR

We need to be careful with subscripts: “l” and “1” look very similar in most fonts, so “l” is a
poor choice for a variable that will be used in subscripts.

Resolution:
Replace in 5.4.1.2 [tr.rand.eng.mers]

Effects: With a linear congruential generator l(i) having parameters ml = 232, al = 69069,
cl = 0, and l(0) = value, sets x(-n) ... x(-1) to l(1) ... l(n), respectively.

by
Effects: With a linear congruential generator lcg(i) having parameters mlcg = 232, alcg =
69069, clcg = 0, and lcg(0) = value, sets x(-n) ... x(-1) to lcg(1) ... lcg(n), respectively.

Replace in 5.4.1.3 [tr.rand.eng.sub]
Effects: With a linear congruential generator l(i) having parameters ml = 2147483563, al
= 40014, cl = 0, and l(0) = value, sets x(-r) ... x(-1) to l(1) mod m ... l(r) mod m,
respectively. If x(-1) == 0, sets carry(-1) = 1, else sets carry(-1) = 0.

by
Effects: With a linear congruential generator lcg(i) having parameters mlcg =
2147483563, alcg= 40014, clcg = 0, and lcg(0) = value, sets x(-r) ... x(-1) to lcg(1) mod m
... lcg(r) mod m, respectively. If x(-1) == 0, sets carry(-1) = 1, else sets carry(-1) = 0.

Replace in 5.4.1.4 [tr.rand.eng.sub1]
Effects: With a linear congruential generator l(i) having parameters m = 2147483563, a =
40014, c = 0, and l(0) = value, sets x(-r) ... x(-1) to (l(1)*2-w) mod 1 ... (l(r)*2-w) mod 1,
respectively. If x(-1) == 0, sets carry(-1) = 2-w, else sets carry(-1) = 0.

by
Effects: With a linear congruential generator lcg(i) having parameters mlcg =
2147483563, alcg= 40014, clcg = 0, and lcg(0) = value, sets x(-r) ... x(-1) to (lcg(1)*2-w)
mod 1 ... (lcg(r)*2-w) mod 1, respectively. If x(-1) == 0, sets carry(-1) = 2-w, else sets
carry(-1) = 0.

N1541 20

[Note to editor: see issue 19 for another issue that touches these words.]

4.28 xor_combine: fix typo
Submitter: Jens Maurer
Status: Voted into the TR

Resolution:
Replace in 5.1.4.6 [tr.rand.eng.xor]

The template parameters UniformRandomNumberGenerator1 and
UniformRandomNumberGenerator12 shall denote classes that satisfy all the requirements of a
uniform random number generator, ...

[Replace "1" by "2" once.]

4.29 Require additional properties for Engine result_type
Submitter: Jens Maurer
Status: Voted into the TR

Currently, there are no restrictions on
UniformRandomNumberGenerator::result_type, althoughvariate_generator
is supposed to possibly convert between integer and floating-point types.

Proposed resolution:
In 5.1.1 [tr.rand.req], replace the pre/post-condition for result_type:

std::numeric_limits<T>::is_specialized is true
by

T is an arithmetic type [basic.fundamental]

4.30 Garbled precondition for min()
Submitter: Jens Maurer
Status: Voted into the TR

Proposed resolution:
In 5.1.3 [tr.rand.var], add the highlighted text for min():

Precondition: distribution().min() is well-formed

4.31 xor_combine: Require additional properties for
base*_type::result_type

Submitter: Jens Maurer
Status: Voted into the TR

There are no restrictions on UniformRandomNumberGenerator1::result_type and
UniformRandomNumberGenerator2::result_type that would ensure that << and ^ are available
on them. That's well defined for unsigned integral types.

Proposed resolution:
Add in 5.1.4.6 [tr.rand.eng.xor] in the paragraph after the class definition

N1541 21

Both UniformRandomNumberGenerator1::result_type
andUniformRandomNumberGenerator2::result_type shall denote (possibly different)
unsigned integral types. The size of the state ...

4.32 Be precise about the size of the state of xor_combine
Submitter: Jens Maurer
Status: Voted into the TR

It is unclear what the "size of b1" and the "size of b2" mean, we only talk about the "size of the
state".

Proposed resolution:
Add in 5.1.4.6 [tr.rand.eng.xor] in the paragraph after the class definition:

The size of the state is the size of the state of b1 plus the size of the state of b2.

4.33 uniform_real should return open interval
Submitter: Jens Maurer
Status: Voted into the TR

uniform_real was specified with a closed interval [min, max] range, but it should have a half-
open interval [min, max) range to avoid lots of special cases in more complex distributions. (The
boost implementation and documentation does this since ever.)

Proposed resolution:

In 5.1.7.6 [tr.rand.dist.runif], replace
 min <= x <= max
by

min <= x < max

4.34 No complexity specification for copy construction and copy
assignment

Submitter: Jens Maurer
Status: Voted into the TR

In 5.1.1 [tr.rand.req], add a new paragraph after table 5.3 (pseudo-random number generator):
Additional requirements: The complexity of both copy construction and assignment is O(size
of state).

4.35 Insufficient preconditions on discard_block
Submitter: Jens Maurer
Status: Voted into the TR

discard_block does not have sufficient requirements on the r and p template parameters.

Proposed resolution:

N1541 22

Replace in 5.1.4.5 [tr.rand.eng.disc]
 r <= q
by

The following relation shall hold: 0 <= r <= p.

4.36 Insufficient preconditions on xor_combine
Submitter: Jens Maurer
Status: Voted into the TR

xor_combine does not have any requirements for s1 and s2 template parameters.

Proposed resolution:

Add in 5.1.4.6 [tr.rand.eng.xor], paragraph after the class definition, before "The size of the state
..."

The following relation shall hold: 0 <= s1 and 0 <= s2.

5 Special function issues
5.1 Clean up special function names and descriptions
Submitter: Bill Plauger, Walter Brown
Status: Voted into the TR

The names of special functions should be cleaned up so they’re all-lowercase and more spelled
out (to make them more consistent with C naming style), there should be names with f and l
suffixes for float and long double versions, and the behavior should be specified mathematically
instead of by reference.

Resolution:
Accept the changes proposed in N1542, "Mathematical special functions, v3".

6 Unordered associative container issues
6.1 Incorrect const qualification
Submitter: Rober Klarer
Status: Voted into the TR

The parameters to the container swap functions are const-qualified, and I don't think they should
be. For example the declaration for the swap function that appears in 6.2.4.3.2 is
 template <class Value, class Hash, class Pred, class Alloc>
 void swap(const unordered_set<Value, Hash, Pred, Alloc>& x,
 const unordered_set<Value, Hash, Pred, Alloc>& y);

I believe that x and y can't be references to const containers because the swap function needs to
be able to modify both containers.

N1541 23

Resolution:
In section 6.4.2 [tr.unord.unord], remove the const qualification in the parameters of the
nonmember swap functions for all four unordered associative containers, both in the header
synopses and in the text.

6.2 Erase takes const iterator
Submitter: Rober Klarer
Status: NAD

The erase member functions with iterator parameters are declared as follows
void erase(const_iterator position);
void erase(const_iterator first, const_iterator last);

This is consistent with the requirements table, but I'm not sure that it's intentional.

Resolution: Not a defect. This was intentional. The other containers should probably be
changed in a similar way in a future standard.

6.3 Bucket members not declared const
Submitter: Rober Klarer
Status: Voted into the TR

The bucket(...) and bucket_size(...) members of each container template should be const, but they
aren't declared const in the class definitions. The requirements table correctly implies that these
functions are const members.

Resolution:
In section 6.4.2 [tr.unord.unord], in the class declarations of all four unordered associative
containers, declare the bucket and bucket_size member functions as const.

6.4 Incorrect variable in requirements table
Submitter: Rober Klarer
Status: Voted into the TR

All occurences of "for const a" in the "Return Type" column of the requirements table should
actually read "for const b." Also, under the the "assertion/note/pre/postcondition" column, the
phrase "out of which a was constructed" should be "out of which b was constructed" for
b.hash_function() and b.key_eq(). Similarly, "a.end()" should be "b.end" for b.find(k), and
"std::make_pair(a.end(), a.end())" should be "std::make_pair(b.end(), b.end())" for
b.equal_range(k).

Resolution:
As above. (See N1549.)

N1541 24

7 Regular expression issues
7.1 basic_regex should Not Keep a Copy of its Initializer
Submitter: Pete Becker (N1499)
Status: Voted into the TR

The basic_regex template has a member function str which returns a string object that
holds the text used to initialize the basic_regex object. It also provides a container-like
interface to this text through the member functionsbegin and end, which return
const_iterator objects that allow inspection of the initializer text. While it might
occasionally be useful to look at the initializer string, we ought to apply the rule that you don't
pay for it if you don't use it. Just as fstream objects don't carry around the file name that they
were opened with, basic_regex objects should not carry around their initializer text. If
someone needs to keep track of that text they can write a class that holds the text and the
basic_regex object.

Resolution:
As described in N1551, Changes to N1540 to Implement N1499 Parts 1 and 2.

7.2 basic_regex Should Not Have an Allocator
Submitter: Pete Becker (N1499)
Status: Voted into the TR

The basic_regex template takes an argument that defines a type for an allocator object. The
template also has several member typedefs and one member function to provide information
about the allocator type and the allocator object. This is because a basic_regex object "is in
effect both a container of characters, and a container of states, as such an allocator parameter is
appropriate." Calling it a container doesn't make it one. The allocator in basic_regex is not
very useful, and it unduly complicates the implementation.

The cost of using an allocator is high. Every type that the basic_regex object uses internally
must have its own allocator type and its own allocator object. A node based implementation
might have a dozen or more node types, requiring a dozen or more allocator objects. Allocator
objects can be created as local objects when needed, which effectively precludes allocators with
internal state; they can be ordinary members of the basic_regex object, inflating its size; or
they can be implemented as a chain of base classes (to take advantage of the zero-size base
optimization), with a high cost in readability and maintainability. None of these options is
attractive.

Further, it's not at all clear how a user can determine that a substitute allocator is appopriate or
what characteristics such an allocator should have. The STL containers have clearly spelled out
requirements for their memory usage;basic_regex objects have no such requirements (nor
should they). The implementor of the basic_regex template knows best what its memory
requirements are.

Resolution:

N1541 25

As described in N1551, Changes to N1540 to Implement N1499 Parts 1 and 2. Some memory
management interface may be a good idea, but allocators aren’t it.

7.3 The Interface to regex_traits Should Use Iterators, Not Strings
Submitter: Pete Becker (N1499)
Status: Open

The member functions of the regex_trait template support customization and
internationalization for regular expressions. Of these, the member functions transform,
transform_primary, lookup_collatename, andlookup_classname take string
as input.

This interface is inherently inefficient -- it requires creating a string object from a sequence in
order to pass that string to the function. Further, in the case of transform, the function
typically extracts iterators from the string object. Passing the text as a pair of iterators avoids
introducing unnecessary string objects.

Resolution:
The LWG thought this seemed like a good idea, but the details need to be worked out. Note that
the iterators need to be ForwardIterator, not InputIterator.

7.4 Regular expressions and internationalization
Submitter: Pete Becker (N1500)
Status: Open

See N1500 for a detailed description. Summary: We're basing regexps on ECMAScript.
However, ECMAScript is entirely unicode and doesn't deal with multiple locales and such. We're
using it in a non-unicode environment. Some of the lookups it's asking for, e.g. asking whether a
character is a digit in a locale-dependent way, are very expensive.

We allow metacharacters to be remapped, and (via the translate member function) even ordinary
characters may be remapped. Remapping metacharacters means you can't tell what a regexp does
just be looking at it. Remapping ordinary characters means that we use an expensive code path
for all matches, even ordinary case sensitive matches.

Suggestions:
• Don't use translate for case-sensitive matches. (Or at least only use it if we're using the

collate option when compiling the regex string into the regex object.
• Get rid of the syntax_type function that allows you to remap the meaning of

metacharacters.

Resolution:
Discussed at Kona, the LWG was generally sympathetic to this simplification. The one Japanese
representative in the room thought that this was a good idea, and that it matches the way that
Japenese programmers use regular expressions. The LWG believes we should make these
changes at the next meeting, pending specific wording.

N1541 26

7.5 Bad rationale for regex_ prefixes
Submitter: Pete Becker (N1507)
Status: NAD

Pete writes:
I'm not strongly for or against the regex_ prefixes. They may well be helpful in understanding
code. But I'm strongly against the notion that the standard library should use prefixes because
users abuse using declarations.

Resolution: NAD. The rationale isn’t part of the TR. If we decide to change the names, that
will be a separate issue.

7.6 Unintended occurrence of reg_expression
Submitter: John Maddock (N1507)
Status: Voted into the TR

There is a systematic error in the "proposed text" section: the various algorithms have been
defined to accept a type "reg_expression" which does not in fact exist in the proposal, and which
should of course be called "basic_regex". This is an editing error that crept in when the name of
that class was changed from reg_expression to basic_regex.

The fix is to just replace all occurrences of "reg_expression" with "basic_regex" throughout that
section.

Resolution: As above.

7.7 Iterators have incorrect definitions of the types “reference” and
“pointer”

Submitter: John Maddock (N1507)
Status: Voted into the TR

In regex_iterator and regex_token_iterator the definitions given for the types "iterator" and
"reference" are wrong: as given these types refer/point to the value_type of the underlying
iterator type, but should of course refer/point to the actual value_type being enumerated (the two
are not the same type).

Resolution:
Change:

typedef typename
iterator_traits<BidirectionalIterator>::pointer
 pointer;
typedef typename
iterator_traits<BidirectionalIterator>::reference
 reference;

To:
typedef const value_type* pointer;
typedef const value_type& reference;

N1541 27

In both the regex_iterator and regex_token_iterator definitions.

7.8 regex_iterator does not handle zero-length matches correctly
Submitter: John Maddock (N1507)
Status: Open

There is a subtle bug in regex_iterator::operator++; when the previous match found matched a
zero-length string, then the iterator needs to take special action to avoid going into an infinite
loop, the current wording does this but gets it wrong because it does not allow two consecutive
zero length matches, for example iterating occurrences of “^” in the text “\n\n” yields just one
match rather than three as it should. The actual behavior should be as follows:

When the previous match was of zero length, then check to see if there is a non-zero-length
match starting at the same position, otherwise move one position to the right of the last match (if
such a position exists), and continue searching as normal for a (possibly zero length) match.

Resolution:
Discussed at Kona. Leaving open because this is tied up with the next issue, which we need
better wording for.

7.9 Regex_iterator does not set match_results::postion correctly
Submitter: John Maddock (N1507)
Status: Open

As currently specified, given:
 regex_iterator<something> i;
then i->position() == i->prefix().length() for all matches found.

This is correct for the first match found, but makes little sense for subsequent matches where the
result of i->position() is only useful if it returns the distance from the start of the string being
searched to the start of the match found.

(Recall that i->prefix() contains everything from the end of the last match found, to the start of
the current match, this allows search and replace operations to be constructed by copying i-
>prefix() unchanged to output, and then outputting a modified version of whatever matched.)

For example this problem showed up when converting a boost.regex example program from the
regex_grep algorithm (not part of the proposal) to use regex_iterator: the example takes the
contents of a C++ source file as a string, and creates an index that maps C++ class names to file
positions in the form of a std::map<std::string, int>. In order for the program to take a
regex_iterator and from that add an item to the index, it needs to know how far it is from the start
of the text being searched to the start of the current match: that was what regex_match::position()
was intended for, but as the proposal stands it instead returns the distance from the end of the last
match to the start of the current match.

Resolution:
Discussed at Kona. General agreement that this is a real issue, also that the proposed resolution
in N1507 is not the right way to resolve it. The proposed resolution replaces a bunch of code

N1541 28

with another bunch of even more complicated code. (As we found in the I/O clauses, the trouble
with specifying behavior in terms of code is that code can be buggy.) We need to describe the
behavior in text, not as a code fragment or a table.

7.10 Naming of basic_regex::getflags
Submitter: Pete Becker (N1507)
Status: Voted into the TR

basic_regex has member functions named getflags and get_allocator. The latter is consistent with
the use of the same name in STL containers. In general, it seems to me, the library tries to use an
underscore to separate a verb from its object for names of this nature. That convention would
mean that we should call the other one get_flags. On the other hand, we do have getline, but
that's arguably different because it's not a state query. Do we have a general policy here? If so,
what is it, and what should the name of getflags be?

Resolution:
Replace all occurrences of “getflags” in the document with “flags”.

7.11 Missing namespace prefix in regex_iterator description
Submitter: Pete Becker (N1507)
Status: Voted into the TR

The definition of regex_iterator in RE.8.1 mentions
regex_iterator(BidirectionalIterator a, BidirectionalIterator b, const regex_type& re,
match_flag_type m = match_default);

And
match_flag_type flags; // for exposition only

match_flag_type and match_default are defined in the nested namespace regex_constants, so
these two names need to be qualified with regex_constants::. Same thing in the first RE.8.1.1.

Resolution:
Go through the text and replace all occurrences of:

match_flag_type with regex_constants::match_flag_type,
match_default with regex_constants::match_default,
match_partial with regex_constants::match_partial,
match_prev_avail with regex_constants::match_prev_avail,
match_not_null with regex_constants::match_not_null,
format_default with regex_constants::format_default,
format_no_copy with regex_constants::format_no_copy,
format_first_only with regex_constants::format_first_only,

except in the section which defines these (RE.3.1).

7.12 Unnecessary sub-section headers in regex_iterator
Submitter: Pete Becker (N1507)
Status: editorial, voted into the TR

N1541 29

The first clause labeled RE.8.1.1 has the title "regex_iterator constructors". It contains
descriptions of the constructors, plus several operators. The second clause labeled RE.8.1.1 has
the title "regex_iterator dereference". It contains operator*, operator->, and the two versions of
operator++. Seems like both of these labels should be removed.

Resolution:
Rename the section “RE.8.1.1 regex_iterator constructors” as “regex_iterator members”, remove
the section “RE.8.1.1 regex_iterator dereference”, rename the section “RE.8.2.1 regex_iterator
constructors” as “regex_token_iterator members”, remove the section: “RE.8.2.1
regex_token_iterator dereference”.

7.13 Names of symbolic constants
Submitter: Pete Becker (N1507)
Status: voted into the TR

ECMAScript has five control escapes: t, n, v, f, r. The regex proposal has named constants for
four of them: escape_type_control_f, _n, _r, and _t. escape_type_control_v seems to be missing.
(Okay, that's not about names, but the next two are).

This is minor, but in C and C++ those five things are escape sequences, and using names that
include 'control' is a bit confusing. Granted, it fits with the terminology in ECMAScript, but I'd
lean toward more C-like names, on the line ofescape_type_f.

And finally, there's escape_type_ascii_control. (For those not familiar with the details of the
proposal, this refers to things that we might write in ordinary text as <ctrl>-X, for example.)
We've pretty much avoided the term "ascii" in the standard (it's only used twice, in footnotes,
apologetically), and I'm a bit uncomfortable with its use here. I'd
preferescape_type_control_letter, which picks up the name of the production in the ECMAScript
grammar for the letter that follows the escape. I think it's pretty clear what it means, and it avoids
"ascii".

Resolution:
Replace all occurrences of:

escape_type_control_f with escape_type_f
escape_type_control_n with escape_type_n
escape_type_control_r with escape_type_r
escape_type_control_t with escape_type_t
escape_type_ascii_control with escape_type_control

Then immediately after the line:
static const escape_syntax_type escape_type_t;

add the line:
static const escape_syntax_type escape_type_v;

Then immediately after the table entry:
escape_type_t t

N1541 30

Add the new table entry:
escape_type_v v

[Kona: in addition to the proposed resolution in this issue: the LWG felt that a review of names
throughout the regex clause is in order: the names tend to be verbose. See issue 7.41.]

7.14 Traits class versioning incompletely edited in.
Submitter: Pete Becker (N1507)
Status: Open

The paper talks about versioning of regex_traits classes, and RE.1.1 (in table RE2) says that a
traits class shall have a member X::version_tag whose type is regex_traits_version_1_tag or a
class that publicly inherits from that. Neither the <regex> synopsis (RE.2) nor the description of
regex_traits (RE.3.3) mentions either of these types. I can't tell whether this was partially edited
in or partially edited out. <g> So, is regex_traits versioning part of the proposal?

Resolution:
Discussed at Kona. It’s unclear whether this solves the versioning problem and it’s also unclear
whether an ad hoc solution that applies only to regular expressions, instead of a solution to the
versioning problem in general, is a good idea.

7.15 Specification of sub_match::length incorrect
Submitter: John Maddock (N1507)
Status: voted into the TR

The specification for sub_match::length has acquired a couple of typos (a misplaced static, and
the logic in the effects clause is back-to-front)

Resolution:
Change it to:

difference_type length();
Effects: returns (matched ? distance(first, second) : 0).

[Note to editor: throughout the regex section, we see “Effects: returns…” This is unnecessarily
convoluted, and should be replaced with plan “Returns: …”]

7.16 Traits class sentry language
Submitter: Pete Becker (N1507)
Status: Open

The proposal says:

“An object of type regex_traits<charT>::sentry shall be constructed from a regex_traits
object, and tested to be not equal to null, before any of the member functions of that object
other than length, getloc, and imbue shall be called. Type sentry performs
implementation defined initialization of the traits class object, and represents an opportunity
for the traits class to cache data obtained from the locale object.”

N1541 31

The first sentence is in passive voice, and begs the question of who shall do it: the user of the
regex instance that holds the regex_traits object, or the regex instance itself. Unless the user is
hacking around with a standalone instance ofregex_traits, it probably ought to be the regex
object that "shall" do this.

Second, sentry "performs implementation defined initialization." I think this ought to be
implementation specific, not implementation defined. I don't want to have to document the
details of the initialization that sentry performs.

Resolution:
Agreed that this is a real problem. However, the wording proposed in N1507 fails to solve the
problem of clarifying whether it’s the implementation or the user who constructs sentries.

7.17 Imprecise specification of regex_traits::char_class_type
Submitter: Pete Becker (N1507)
Status: voted into the TR

Roughly speaking, there are three categories of character class: the ones that are supported by C
and C++ locales (alnum, etc.), the additional ones for the regex proposal (d s w) and user-
supplied character classes (through extensions to regex_traits).

Is the intent of the proposal to require that for the first category, the value returned by, for
example,lookup_classname("alnum") be the value alnum as defined by ctype_base::mask? (I
don't care one way or the other, but we have to be clear about what's required).

Resolution:
Replace:

“The type char_class_type is used to represent a character classification and is capable
of holding an implementation defined superset of the values held by ctype_base::mask
(22.2.1).”

with:
“The type char_class_type is used to represent a character classification and is capable
of holding the implementation specific set of values returned by lookup_classname.”

7.18 Can anything other than basic_regex throw bad_expression
objects?

Submitter: Pete Becker (N1507)
Status: Open

The text describing the class bad_expresions says it is the type of the object thrown to report
errors "during the conversion from a string ... to a finite state machine." This suggests that it is
not thrown by the functions that try to match a string to and a basic_regex object, and this is
borne out by the throws clauses for the constructors and assignment operators for basic_regex,
which say that they throw bad_expression if the string isn't a valid regular expression, and by the
lack of throws clauses for regex_match, etc.

On the other hand, error_type has two values, error_complexity and error_stack, that only occur

N1541 32

during matching. There's no other mention of these values, so the only thing that can be done
with them is for the implementation to pass them to regex_traits::error_string, and the only way
the user can see the resulting string is by catching an exception. This suggests that
bad_expression can also be thrown by the match functions. And the text says, in the last
paragraph of RE.4, that "the functions described in this clause can report errors by throwing
exceptions of type bad_expression."

So: can the various match functions throw bad_expression, and, if so, is bad_expression the
appropriate name?

Resolution:
Discussed at Kona. This is a real problem. However, the wording proposed in N1507 doesn’t
solve the problem. The extra flags Pete notices are still there, and so is the problematic sentence
about seemingly inappropriate functions being able to throw exceptions. Finally, the LWG
wants to know the actual type of the thrown exception object.

7.19 Unneeded basic_regex members
Submitter: John Maddock
Status: voted into the TR

The following basic_regex members are redundant and should be removed:
basic_regex(const charT* p1, const charT* p2, flag_type f =
regex_constants::normal,
 const Allocator& a = Allocator());
basic_regex& assign(const charT* first, const charT* last,
 flag_type f =
regex_constants::normal);

Resolution: As above.

7.20 Missing basic_regex members
Submitter: Pete Becker (N1507)
Status: voted into the TR

The proposal has member functions named 'assign' that take argument lists that correspond to the
argument lists for constructors, with two exceptions: there's basic_regex(const charT
*, size_type len,flag_type), but no assign(const charT *, size_type,
flag_type); and there's basic_regex(), but noassign(). Are these omissions
intentional?

Resolution:
add the following member to the basic_regex class synopsis:

basic_regex& assign(const charT* ptr, size_type len, flag_type f = regex_constants::normal);

Then add the following description in the RE4.5 section:
basic_regex& assign(const charT* ptr, size_type len, flag_type f = regex_constants::normal);

Effects: Returns assign(string_type(ptr, len), f).

N1541 33

7.21 Types of match_results typedefs members
Submitter: Pete Becker (N1507)
Status: voted into the TR

The proposal says that match_results has a nested typedef
typedef const value_type& const_reference

Since match_results has an allocator, this should be
typedef typename allocator::const_reference const_reference

Resolution: As above

7.22 What does match_results::size() return?
Submitter: Pete Becker (N1507)
Status: voted into the TR

The member funtion size() returns "the number of sub_match elements stored in *this". Aside
from the suggested implementation above, there are the prefix() and suffix() sub_match
elements. Is the intention that size() should return the number of capture groups in the original
expression, and not include those two extra sub_matches? (I think the answer is probably yes).

Resolution:
Replace:

size_type size()const;

Effects: Returns the number of sub_match elements stored in *this.

With:
size_type size()const;

Effects: Returns one plus the number marked sub-expressions in the regular expression that
was matched.

[Note to editor: put in the missing “of”]

7.23 What does match_results::position return when passed an out of
range index?

Submitter: Pete Becker
Status: voted into the TR

match_results::position() doesn't say what happens when someone asks for the position of a non-
matched group. The specification says that it's distance(first1, first2), where first1 is the
beginning of the target text and first2 is the beginning of the nth match. The specification for
sub_match says that for a failed match the iterators have unspecified contents. Do we want this
to be unspecified or undefined, or is there some meaningful value we can return?

Having looked ahead <g>, the match and search algorithms specify that non-matched groups
hold iterators that point to the end of the target text. This conflicts with the specification for
sub_match, which says they're undefined. Is that text in sub_match incorrect?

N1541 34

Resolution:
Changes to:

difference_type position(unsigned int sub = 0) const;
Effects: Returns std::distance(prefix().first, (*this)[sub].first).

Are covered in “Regex_iterator does not set match_results::postion correctly”.

Delete the following paragraphs from the sub_match specification:

When the marked sub-expression denoted by an object of type sub_match<> participated in a
regular expression match then member matched evaluates to true, and members first and
second denote the range of characters [first,second) which formed that match.
Otherwise matched is false, and members first andsecond contained undefined values.

If an object of type sub_match<> represents sub-expression 0 - that is to say the whole
match - then membermatched is always true, unless a partial match was obtained as a result
of the flag match_partial being passed to a regular expression algorithm, in which case
member matched is false, and members first and secondrepresent the character range
that formed the partial match.

The add the following to the match_results specification, immediately after the sentence ending
“except that only operations defined for const-qualified Sequences are supported.”:

The sub_match<> object stored at index zero represents sub-expression 0; that is to say the
whole match. In this case the sub_match<> member matched is always true, unless a
partial match was obtained as a result of the flag regex_constants::match_partial
being passed to a regular expression algorithm, in which case member matched is false, and
members first and second represent the character range that formed the partial match.

The sub_match<> object stored at index n denotes what matched the marked sub-
expression n within the matched expression. If the sub-expression n participated in a regular
expression match then the sub_match<> member matched evaluates to true, and
members first and second denote the range of characters [first,second) which
formed that match. Otherwise matched is false, and members first and second point to
the end of sequence that was searched.

7.24 What happens if match_results::operator[] is out of range?
Submitter: Pete Becker
Status: voted into the TR

With respect to match_results::operator[]: We need to say what happens for an index out of
range. Seems to me there are two reasonable possibilities: undefined behavior, or returns a no-
match object.

While I strongly favor undefined behavior over artificially well-defined results, I also favor well-

N1541 35

defined behavior when it is not too artificial. Thus, the behavior of sqrt(-2.0) is undefined;
free(0) does nothing. While undefined behavior provides a convenient hook for debugging
implementations, that's not its purpose, and if we can specify reasonable (which includes
inexpensive) behavior we ought to do it, rather than provide another place where users can go
astray.

In this case, I think I prefer to view operator[] as indexing into an unbounded array of sub_match
objects. The objects at match_results.size() and above would look like failed sub-matches: their
boolean flag would be false, and both their iterators would point to the end of the target string.
Since we've agreed that sub_match objects for failed sub-matches need not have distinct
addresses, this can be implemented by simply adding one sub_match element beyond those
needed for the actual results, and returning it for an index that's otherwise out of bounds.

Resolution:
replace:

const_reference operator[](int n) const;

Effects: Returns a reference to the sub_match object representing the character sequence
that matched marked sub-expression n. If n == 0 then returns a reference to a sub_match
object representing the character sequence that matched the whole regular expression.

With:
const_reference operator[](int n) const;

Effects: Returns a reference to the sub_match object representing the character sequence
that matched marked sub-expression n. If n == 0 then returns a reference to a sub_match
object representing the character sequence that matched the whole regular expression. If n >=
size() then returns a sub_match object representing an unmatched sub-expression.

7.25 Incorrect case insensitive match specification
Submitter: John Maddock (N1507)
Status: closed

The following wording:

"During matching of a regular expression finite state machine against a sequence of
characters, comparison of a collating element range c1-c2 against a character c is
conducted as follows: if getflags() ®ex_constants::collate is true, then the character c
is matched if traits_inst.transform(string_type(1,c1)) <=
traits_inst.transform(string_type(1,c)) && traits_inst.transform(string_type(1,c)) <=
traits_inst.transform(string_type(1,c2)), otherwise c is matched if c1 <= c && c <= c2.
During matching of a regular expression finite state machine against a sequence of
characters, testing whether a collating element is a member of a primary equivalence
class is conducted by first converting the collating element and the equivalence class to a
sort keys using traits::transform_primary, and then comparing the sort keys for equality."

N1541 36

Is defective in that it does not take account of case-insensitive matches, all input characters, and
all collating elements in the finite state machine should be passed through traits.inst.translate
before being converted into a sort key.

Resolution: Closed, this is covered by the issue 7.26.

7.26 Character class extensions to ECMAScript grammar need a
formal grammar

Submitter: Pete Becker (N1507)
Status: voted into the TR

The regex proposal adds to ECMAScript the ability to use named character classes through
"expressions of the form":

[[:class-name:]]
[[.collating-name.]]
[[=collating-name=]]

This isn't sufficient. In ECMAScript the expression [[] is valid, and names a character set
containing the character '['. Similarly, [[:] is also valid, and names a character set containing the
characters '[' and ':'. We need to say whether these two expressions (and their analogs for
collating names) are still valid. I suspect the answer is that they're not -- a '[' as the first character
in a character class is a special character, which must be follwed by one of ':', '.', or '=', then a
name that does not contain any of ']', ':', ".', or '=' (technically we could allow ']', but that seems
unnecessarily baroque), then the appropriate close marker.

Resolution: Adopt the proposed resolution in N1507.

7.27 Imprecise Specification of regex_replace
Submitter: Pete Becker (N1507)
Status: voted into the TR

Finds all the non-overlapping matches 'm' of type match_results<BidirectionalIterator> that
occur in the sequence [first, last).

Having found them or not, it then writes stuff depending on its arguments. It's not clear, though,
what "non-overlapping matches" are. It took me about five minutes to convince myself that these
are matches of the complete expression, and not matches of internal capture groups (which
would always overlap the full match). I think a footnote is sufficient for this. More important,
though, is what happens when matches overlap. Suppose we're searching for "aba" in the text
"ababa". There are two matches: the first three characters match, and the last three match. These
two matches overlap. Do we discard them both? Keep the first? Keep the second? My guess is
that the intention is to keep the first one, but we need to say so.

Resolution:
Replace the following clause:

Effects: Finds all the non-overlapping matches m of type
match_results<BidirectionalIterator> that occur within the sequence [first,
last). If no such matches are found and !(flags & format_no_copy) then calls

N1541 37

std::copy(first, last, out). Otherwise, for each match found, if !(flags &
format_no_copy)calls std::copy(m.prefix().first, m.prefix().last,
out), and then calls m.format(out, fmt, flags). Finally if !(flags &
format_no_copy) calls
std::copy(last_m.suffix().first,last_m,suffix().last, out)
where last_m is a copy of the last match found. If flags &format_first_only is
non-zero then only the first match found is replaced.

With:
Effects: Constructs an regex_iterator object:
regex_iterator<BidirectionalIterator, charT, traits,
Allocator> i(first, last, e, flags), and uses i to enumerate through all of
the matches m of typematch_results<BidirectionalIterator> that occur within
the sequence [first, last). If no such matches are found and !(flags &
format_no_copy) then calls std::copy(first, last, out). Otherwise, for
each match found, if !(flags & format_no_copy) calls
std::copy(m.prefix().first, m.prefix().last, out), and then calls
m.format(out, fmt, flags). Finally if !(flags & format_no_copy)
callsstd::copy(last_m.suffix().first, last_m,suffix().last, out)
where last_m is a copy of the last match found. If flags & format_first_only is
non-zero then only the first match found is replaced.

7.28 What is an invalid/empty regular expression?
Submitter: Pete Becker (N1507)
Status: Open

See N1507 for a full description. Summary: it’s not clear what kind or regex object the default
constructor returns, and how that interacts with the empty() test.

Resolution:
Discussed at Kona. The LWG agrees that the default constructor should be equivalent to
construction from an empty string. Leaving this open for now partly because we need wording
expressing that, and partly because it’s not clear that there’s any point to having the empty()
member function in the first place.

7.29 Regular expression constructor language
Submitter: Pete Becker (N1507)
Status: Open

For the basic_regex ctor that takes a const charT *p, the proposal says:
Effects: Constructs an object of class basic_regex; the object's internal finite state machine is
constructed from the regular expression contained in the null-terminated string p...

p is not a null-terminated string. It is a pointer. The analogous phrasing for basic_string is:
Effects: Constructs an object of class basic_string and determines its initial string value from the
array of charTof length traits::length(s) whose first element is designated by s ...

N1541 38

We need to maintain a similar level of formalism.

Resolution:
The LWG agrees the current wording is too imprecise. Leaving this open until we get the
formalized wording this issue calls for.

7.30 Incorrect usage of “undefined”
Submitter: Pete Becker (N1507)
Status: Voted into the TR

In several places in the document the term “undefined” should be replaced by “unspecified”:

“Otherwise matched is false, and members first and second contained undefined values.”

“If the function returns false, then the effect on parameter m is undefined, otherwise the effects
on parameter m are given in table RE18”

“If the function returns false, then the effect on parameter m is undefined, otherwise the effects
on parameter m are given in table RE19”

Resolution: As above

7.31 Incorrect usage of “implementation defined”
Submitter: Pete Becker (N1507)
Status: Voted into the TR

In several places in the document the term “implementation defined” should be replaced by
either “implementation specific” or “unspecified”:

“Type sentry performs implementation defined initialization of the traits class object, and
represents an opportunity for the traits class to cache data obtained from the locale object.”
“char_class_type lookup_classname(const string_type& name)
const;

Effects: returns an implementation defined value that represents the character classification
name”

“Returns: converts f into a value m of type ctype_base::mask in an implementation defined
manner”

“Effects: constructs an object result of type int. If first == last or if
is_class(*first,lookup_classname("d")) == false then sets result equal
to -1. Otherwise constructs a basic_istream<charT>object which uses an implementation
defined stream buffer type which represents the character sequence [first,last), and sets the
format flags on that object as appropriate for argument radix.”

Resolution: As above

N1541 39

7.32 Are sub_match objects all unique?
Submitter: Pete Becker (N1507)
Status: NAD

Are sub_match objects for non-matched capture groups required to be distinct? I can picture
amatch_type implementation that holds sub_match objects only for the capture groups that
matched, and returns a generic no-match object for others. Is this intended to be legal? (My
inclination is that it ought to be allowed, because I don't see any good reason not to allow it).

Resolution:
No, match objects are not guaranteed to be unique; the lack of a guarantee was intentional.
[Editorial issue: The editor should add a non-normative note pointing that out.]

7.33 How are Unicode escape sequences handled?
Submitter: Pete Becker (N1507)
Status: Open

ECMA-Script supports character escapes of the form "\uxxxx", where each 'x' is a hex digit.
Each such escape sequence represents the character whose code point is the value of 'xxxx'
translated to a number in the usual way. What do such character escapes mean when the
character type for basic_regex is too small to hold that value? Do we intend to require multi-byte
support here (I hope not)? Or is such a value invalid when the target character type is too small?

Resolution:
The general direction is that such a value should be invalid when the target character type is too
small. We need specific wording.

7.34 Meaning of the match_partial flag
Submitter: Pete Becker (N1507)
Status: Open

RE.3.1.2 says that the match_partial flag
Specifies that if no match can be found, then it is acceptable to return a match [from, last)
where from!=last, if there exists some sequence of characters [from,to) of which [from,last)
is a prefix, and which would result in a full match.

Taking this literally, if I have the expression "a(?=b)(?!b)" and try to match it against "a", the
partial match must fail, because the two assertions are contradictory. Is the matcher really
required to do this sort of analysis of the expression, and determine that there is no possible
continuation that could succeed?

From the name, I would think that partial_match would mean, roughly, that if you reach the end
of the search text but are only partway through the regular expression, that's okay. So in the
example above, the partial match would succeed. Is that what's intended here?

N1541 40

Comment from John Maddock, on use cases for this feature:
• Searching "infinite" texts: for example two real world use cases that Boost.regex has been

put to, are searching a multi-gigabyte server log, and filtering the data passing through a
socket. In these cases you can't possibly load all of the text into memory to search it, so
you load chunks into a buffer and search one chunk at a time. Then you need to know
whether a match could have straddled two chunk boundaries: and that's what a partial
match gives you, it tell you how much of the end of one chunk to hang onto before
reading the next section.

• Data input validation: if the data in some field has to match some regex to be acceptable,
some users what to check this character by character as it's entered - the question then
becomes: “given some more input could we eventually match the expression,” again
that's what a partial match gives you.

This still doesn’t give us a specification of the feature, but at least it gives us the motivation.

Resolution:
The proposed resolution in N1507 is to add the non-normative note: “implementations are not
required to go to heroic efforts to determine whether a partial match is truly possible.” The
LWG does not believe this fixes the problem. First, the non-normative note is still vague about
what kind of analysis the matcher is supposed to do. Second, a non-normative note can’t be a fix
for insufficiently precise normative text. It may be that there’s no way to specify match_partial
precisely enough. If so, this feature should be removed; it may simply be a half-baked feature.
Do other regular expression systems have it, and, if so, how do they specify its behavior?

7.35 Name of regex_traits::is_class
Submitter: Pete Becker (N1507)
Status: Open

That name is confusing. I'd prefer inclass, or some variant. The function takes two arguments: a
character and a character class, and tells you whether the character belongs to the class. is_class
sounds too much like querying whether some object represents a character class.

Resolution: The LWG agrees this isn’t a good name. Someone needs to come up with a better
one.

7.36 Can traits::error_string be simplified?
Submitter: Pete Becker (N1507)
Status: Open

In the proposal, the template regex_traits has a member function error_string that takes an error
code that indicates what error occurred and returns a string corresponding to that error, which is
then used as the argument to the constructor for an exception object. Seems to me it would be
simpler to have regex_traits simply provide a function that throws the exception, called with the
error code. Is this string needed for anything else?

Resolution:

N1541 41

The sense of the LWG is that we should rethink the error reporting policy. A bad_expression
object should contain a flag that represents the error, not a string constructed from the flag. The
string returned by what() should be left unspecified, and the error_string interface should
probably be thrown away entirely. (Programmers who want to test exception objects to find out
the exact cause of the error find codes easier to work with than strings. Programmers who want
to print diagnostics for users can supply their own code-to-string mechanism.)

7.37 Can traits::translate be improved?
Submitter: Pete Becker (N1507)
Status: Open

The regex_traits member function 'translate' is used when comparing a character in the pattern
string with a character in the target string. It takes two arguments: the character to translate, and
a boolean flag that indicates whether the translation should be case sensitive. So two characters
are equal if

translate(pch, icase) == translate(tch, icase)

So with pattern text of "abcde", checking for a match would look something like this:
for (int i = 0; i < 5; ++i)
 if (translate(pch[i], icase) == translate(tch[i], icase))
 return false;
return true;

The implementation of regex_traits::translate in the library-supplied traits class is:
return (icase ? use_facet<ctype<charT> >(getloc()).tolower(ch)
: ch);

There's potential for a significant speedup, though, if case sensitive and case insensitive
comparisons go through two different functions. The obvious transformation of the preceding
loop would be:

if (icase)
 for (int i = 0; i < 5; ++i)
 if (translate_ic(pch[i]) == translate_ic(tch[i]))
 return false;
else
 for (int i = 0; i < 5; ++i)
 if (translate(pch[i]) == translate(tch[i]))
 return false;
return true;

For the default regex_traits class, the calls to translate in the second branch of the if statement
would be inline calls to a translate function that simply returns its argument, so the loop turns
into a sequence of direct comparisons, with no distractions from the possibility of case
insensitivity. Further, since case sensitivity is determined by a flag that's set at the time the
regular expression is compiled, one of the two branches of the outer if statement will always be
unnecessary.

N1541 42

I made up the names 'translate_ic' and 'translate' for this e-mail. I'm not suggesting that we use
them.

Resolution:
We think separating the case-insensitive match from the simple case-sensitive match is probably
a good idea. Pete will provide wording for a specific proposal.

7.38 Improving on traits::toi
Submitter: Pete Becker (N1507)
Status: Open

It says, in part:
If first == last or if is_class(*first, lookup_classname("d")) == false then sets result equal to -
1.

And "d" by default is the digits 0-9. Since the radix for the conversion can be 8, 10, or 16, the
condition involving "d" isn't right. For a hex value it precludes the value 'a0'. For an octal value it
allows '90', but the ensuing conversion will fail. We need to find a different way to express this.
The idea is to return -1 on a failed conversion, and the appropriate unsigned value on success.

And further: I'm starting to think that toi is too high level an interface. Regular expression
grammars go character bycharcter. For example, the value of a HexEscapeSequence (\xhh) is
"(16 times the MV of the first hex digit) plus the MV of the second HexDigit". toi
(hypertechnically) doesn't require that. In order to implement the specification literally, the regex
parser needs to translate individual characters, not groups of characters, into values, and
accumulate those values as appropriate. Thus, regex_traits ought to provide int value(charT
ch),which returns -1 if isxdigit(ch) is false, otherwise the numeric value represented by the
character.

And: I've just implemented it. Here are the changes I made:
• I removed escape_type_backref and escape_type_decimal
• I added escape_type_numeric (0-9)
• I added int regex_traits::value(charT ch, int base)

The first two aren't technically necessary for this change, but escape_type_backref is a bit
misleading. ECMAScriptdoesn't restrict the number of capture groups, so \10 can be a valid back
reference. This means thatescape_type_backref alone isn't sufficient. So I figured it's enough to
know that you're starting a numeric constant (i.e.escape_type_numeric), and then you can use
value() == -1 to determine when you've reached the end of a constant.

The second argument to value is needed in order to decide whether the character is a valid digit
for the base. valuereturns -1 for an invalid digit, and the (unsigned) numeric value for a valid
digit.

Resolution:
Discussed at Kona. Probably a good idea; the LWG will wait until Pete provides wording.

N1541 43

7.39 Improving on traits::lookup_classname
Submitter: Pete Becker (N1507)
Status: Duplicate

I think this needs a change in specification. It returns a value that identifies the named character
class identified by its string argument. The cases I'm concerned about are the ones with names
like [:alnum:]. When the code encounters the opening [: it has to scan ahead for the matching :,
pick up the characters in between, stuff them into a string, and call lookup_classname. This is a
lot of wheel spinning. In particular, creating the string is expensive. If lookup_classname took
two iterators instead of a string it could simply look at the characters without the intervening
string object.

Resolution:
This is a subset of something the LWG already agreed on in principle: using an iterator interface
instead of a string interface. There’s no need to discuss this subpart by itself.

7.40 match_results element access functions have incorrect
parameter types

Submitter: Robert Klarer
Status: New
Section: 7.9.3 [tr.re.results.acc]

The subscripting operator for match_results is declared as follows:
 const_reference operator[](int n) const;

This declaration is inconsistent with std::vector<...>::operator[], and introduces the possibility
that the function may be called incorrectly (using a negative argument).

A similar problem exists for the length(...), position(...), and str(...) members of match_results.

Proposed resolution:

change the declaraction of the subscripting operator for match_results from
 const_reference operator[](int n) const;
to
 const_reference operator[](size_type n) const;

change the declaration of the match_results member function length(...) from
 difference_type length(int sub = 0) const;
to
 difference_type length(size_type sub = 0) const;

change the declaration of the match_results member function position(...) from
 difference_type position(unsigned int sub = 0) const;
to
 difference_type position(size_type sub = 0) const;

N1541 44

change the declaration of the match_results member function str(...) from
 string_type str(int sub = 0) const;
to
 string_type str(size_type sub = 0) const;

7.41 Regex names should be reviewed
Submitter: Matt Austern
Status: New

This is an outgrowth of the Kona discussion of issue 7.13. Names throughout the regex section
are rather verbose; this is partly, but not entirely, a result of the regex_ prefix that appears in so
many places. We may want to consider a systematic renaming.

8 Fixed-size array issues
8.1 Is “array” the right name?
Submitter: Robert Klarer
Status: New

The name array may be confusing, since array<T> is not in fact an array; the is_array
type trait, for example, will return false for array<T>. (As it should.) Perhaps another name
would make this less surprising.

9 Iterator concept and adapter issues
9.1 iterator_access overspecified?
Submitter: Pete Becker
Status: New

The proposal includes:
enum iterator_access { readable_iterator = 1, writable_iterator = 2, swappable_iterator = 4,
lvalue_iterator = 8 };

In general, the standard specifies thing like this as a bitmask type with a list of defined names,
and specifies neither the exact type nor the specific values. Is there a reason for iterator_access to
be more specific?

9.2 operators of iterator_facade overspecified
Submitter: Pete Becker
Status: New

In general, we've provided operational semantics for things like operator++. That is, we've said
that ++iter must work, without requiring either a member function or a non-member function.
iterator_facade specifies most operators as member functions. There's no inherent reason for
these to be members, so we should remove this requirement. Similarly, some operations are

N1541 45

specified as non-member functions but could be implemented as members. Again, the standard
doesn't make either of these choices, and TR1 shouldn't, either. So: operator*(), operator++(),
operator++(int), operator--(), operator--(int), operator+=, operator-=, operator-(difference_type),
operator-(iterator_facade instance), and operator+ should be specified with operational semantics
and not explicitly required to be members or non-members.

9.3 enable_if_interoperable needs standardese
Submitter: Pete Becker
Status: New

The only discussion of what this means is in a note, so is non-normative. Further, the note seems
to be incorrect. It says that enable_if_interoperable only works for types that "are
interoperable, by which we mean they are convertible to each other." This requirement is too
strong: it should be that one of the types is convertible to the other.

Proposed resolution:
Remove the enable_if_interoperable stuff, and just write all the comparisons to return bool. Then
add a blanket statement that the behavior of these functions is undefined if the two types aren't
interoperable.

9.4 enable_if_convertible unspecified, conflicts with requires
Submitter: Pete Becker
Status: New

In every place where enable_if_convertible is used it's used like this (simplified):
template<class T>
struct C
{
 template<class T1>
 C(T1, enable_if_convertible<T1, T>::type* = 0);
};

The idea being that this constructor won't compile if T1 isn't convertible to T. As a result, the
constructor won't be considered as a possible overload when constructing from an object x where
the type of x isn't convertible to T. In addition, however, each of these constructors has a requires
clause that requires convertibility, so the behavior of a program that attempts such a construction
is undefined. Seems like the enable_if_convertible part is irrelevant, and should be removed.

There are two problems. First, enable_if_convertible is never specified, so we don’t
know what this is supposed to do. Second: we could reasonably say that this overload should be
disabled in certain cases or we could reasonably say that behavior is undefined, but we can’t say
both.

Thomas Witt writes that the goal of putting in enable_if_convertible here is to make
sure that a specific overload doesn’t interfere with the generic case except when that overload
makes sense. He agrees that what we currently have is deficient.

Dave Abrahams writes that there is no conflict with the requires cause “because the requires

N1541 46

clause only takes effect when the function is actually called. The presence of the constructor
signature
can/will be detected by is_convertible without violating the requires clause, and thus it makes a
difference to disable those constructor instantiations that would be disabled by
enable_if_convertible even if calling them invokes undefined behavior.”

There was more discussion on the reflector: c++std-lib-12312, c++std-lib-12325, c++std-lib-
12330, c++std-lib-12334, c++std-lib-12335, c++std-lib-12336, c++std-lib-12338, c++std-lib-
12362.

Proposed resolution:
Specify enable_if_convertible to be as-if:
 template <bool> enable_if_convertible_impl
 {};

 template <> enable_if_convertible_impl<true>
 { struct type; };

 template<typename From, typename To>
 struct enable_if_convertible
 : enable_if_convertible_impl<
 is_convertible<From, To>::value
 {};

9.5 iterator_adaptor has an extraneous 'bool' at the start of the
template definition

Submitter: Pete Becker
Status: New

The title says it all; this is probably just a typo.

9.6 Name of private member shouldn’t be normative
Submitter: Pete Becker
Status: New

iterator_adaptor has a private member named m_iterator. Presumably this is for exposition only,
since it's an implementation detail. It needs to be marked as such.

9.7 iterator_adaptor operations specifications are a bit inconsistent
Submitter: Pete Becker
Status: New

iterator_adpator() has a Requires clause, that Base must be default constructible.
iterator_adaptor(Base) has no Requires clause, although the Returns clause says that the Base
member is copy construced from the argument (this may actually be an oversight in N1550,
which doesn't require iterators to be copy constructible or assignable).

N1541 47

9.8 Specialized adaptors text should be normative
Submitter: Pete Becker
Status: New

similar to 9.3, "Specialized Adaptors" has a note describing enable_if_convertible. This should
be normative text.

9.9 Reverse_iterator text is too informal
Submitter: Pete Becker
Status: New

reverse iterator "flips the direction of the base iterator's motion". This needs to be more formal,
as in the current standard. Something like: "iterates through the controlled sequence in the
opposite direction"

9.10 “prior” is undefined
Submitter: Pete Becker
Status: New

reverse_iterator::dereference is specified as calling a function named 'prior' which has no
specification.

9.11 “In other words” is bad wording
Submitter: Pete Becker
Status: New

Transform iterator has a two-part specification: it does this, in other words, it does that. "In other
words" always means "I didn't say it right, so I'll try again." We need to say it once.

9.12 Transform_iterator shouldn’t mandate private member
Submitter: Pete Becker
Status: New

transform_iterator has a private member named 'm_f' which should be marked "exposition only."

9.13 Unclear description of counting iterator
Submitter: Pete Becker
Status: New

The description of Counting iterator is unclear. "The counting iterator adaptor implements
dereference by returning a reference to the base object. The other operations are implemented by
the base m_iterator, as per the inheritance from iterator_adaptor."

9.14 Counting_iterator’s difference type
Submitter: Pete Becker
Status: New

N1541 48

Counting iterator has the following note:
[Note: implementers are encouraged to provide an implementation of distance_to and a
difference_type that avoids overflows in the cases when the Incrementable type is a numeric
type.]

I'm not sure what this means. The user provides a template argument named Difference, but
there's no difference_type. I assume this is just a glitch in the wording. But if implementors are
encouraged to ignore this argument if it won't work right, why is it there?

9.15 How to detect lvalueness?
Submitter: Dave Abrahams
Status: New

Shortly after N1550 was accepted, we discovered that an iterator's lvalueness can be determined
knowing only itsvalue_type. This predicate can be calculated even for old-style iterators (on
whose reference type the standard places few requirements). A trait in the Boost iterator library
does it by relying on the compiler's unwillingness to bind an rvalue to a T& function template
parameter. Similarly, it is possible to detect an iterator's readability knowing only itsvalue_type.
Thus, any interface which asks the user to explicitly describe an iterator's lvalue-ness or
readability seems to introduce needless complexity.

9.16 is_writable_iterator returns false positives
Submitter: Dave Abrahams
Status: New

is_writable_iterator returns false positives for forward iterators whose value_type has a private
assignment operator, or whose reference type is not a reference (currently legal).

9.17 is_swappable_iterator returns false positives
Submitter: Dave Abrahams
Status: New

is_swappable_iterator has the same problems as is_writable_iterator. In addition, if we allow
users to write their own iter_swap functions it's easy to imagine old-style iterators for which
is_swappable returns false negatives.

9.18 Are is_readable, is_writable, and is_swappable useful?
Submitter: Dave Abrahams
Status: New

I am concerned that there is little use for any of is_readable, is_writable, or is_swappable, and
that not only do they unduly constrain iterator implementors but they add overhead to
iterator_facade and iterator_adaptor in the form of a template parameter which would otherwise
be unneeded. Since we can't implement two of them accurately for old-style iterators, I am
having a hard time justifying their impact on the rest of the proposal(s).

N1541 49

9.19 Non-Uniformity of the "lvalue_iterator Bit"
Submitter: Dave Abrahams
Status: New

The proposed iterator_tag class template accepts an "access bits" parameter which includes a bit
to indicate the iterator's lvalueness (whether its dereference operator returns a reference to its
value_type. The relevant part of N1550 says:

The purpose of the lvalue_iterator part of the iterator_access enum is to communicate to
iterator_tagwhether the reference type is an lvalue so that the appropriate old category can be
chosen for the base class. The lvalue_iterator bit is not recorded in the iterator_tag::access
data member.

The lvalue_iterator bit is not recorded because N1550 aims to improve orthogonality of the
iterator concepts, and a new-style iterator's lvalueness is detectable by examining its reference
type. This inside/outside difference is awkward and confusing.

9.20 Traversal Concepts and Tags
Submitter: Dave Abrahams
Status: New

Howard Hinnant pointed out some inconsistencies with the naming of these tag types:
incrementable_iterator_tag // ++r, r++
single_pass_iterator_tag // adds a == b, a != b
forward_traversal_iterator_tag // adds multi-pass
bidirectional_traversal_iterator_tag // adds --r, r--
random_access_traversal_iterator_tag // adds r+n,n+r,etc.

Howard thought that it might be better if all tag names contained the word "traversal".

It's not clear that would result in the best possible names, though. For example, incrementable
iterators can only make a single pass over their input. What really distinguishes single pass
iterators from incrementable iterators is not that they can make a single pass, but that they are
equality comparable. Forward traversal iterators really distinguish themselves by introducing
multi-pass capability. Without entering a "Parkinson's Bicycle Shed" type of discussion, it might
be worth giving the names of these tags (and the associated concepts) some extra attention.

9.21 iterator_facade Derived template argument underspecified
Submitter: Pete Becker
Status: New

The first template argument to iterator_facade is named Derived, and the proposal says:

The Derived template parameter must be a class derived from iterator_facade.

First, iterator_facade is a template, so cannot be derived from. Rather, the class must be derived
from a specialization of iterator_facade. More important, isn't Derived required to be the class

N1541 50

that is being defined? That is, if I understand it right, the definition of D here this is not valid:

class C : public iterator_facade<C, ... > { ... };

class D : public iterator_facade<C, ...> { ... };

In the definition of D, the Derived argument to iterator_facade is a class derived from a
specialization of iterator_facade, so the requirement is met. Shouldn't the requirement be more
like "when using iterator_facade to define an iterator class Iter, the class Iter must be derived
from a specialization of iterator_facade whose first template argument is Iter." That's a bit
awkward, but at the moment I don't see a better way of phrasing it.

9.22 return type of Iterator difference for iterator facade
Submitter: Pete Becker
Status: New

The proposal says:

template <class Dr1, class V1, class AC1, class TC1, class R1, class D1,
 class Dr2, class V2, class AC2, class TC2, class R2, class D2>
typename enable_if_interoperable<Dr1, Dr2, bool>::type
operator -(iterator_facade<Dr1, V1, AC1, TC1, R1, D1> const& lhs,
 iterator_facade<Dr2, V2, AC2, TC2, R2, D2> const& rhs);

Shouldn't the return type be one of the two iterator types? Which one? The idea is that if one of
the iterator types can be converted to the other type, then the subtraction is okay. Seems like the
return type should then be the type that was converted to. Is that right?

9.23 Iterator_facade: minor wording Issue
Submitter: Pete Becker
Status: New

In the table that lists the required (sort of) member functions of iterator types that are based on
iterator_facade, the entry for c.equal(y) says:

true iff c and y refer to the same position. Implements c == y and c != y.

The second sentence is inside out. c.equal(y) does not implement either of these operations. It is
used to implement them. Same thing in the description of c.distance_to(z).

9.24 Use of undefined name in iterator_facade table
Submitter: Pete Becker
Status: New

Several of the descriptions use the name X without defining it. This seems to be a carryover from
the table immediately above this section, but the text preceding that table says "In the table
below, X is the derived iterator type." Looks like the X:: qualifiers aren't really needed;

N1541 51

X::reference can simply be reference, since that's defined by the iterator_facade specialization
itself.

9.25 Iterator_facade: wrong return type
Submitter: Pete Becker
Status: New

Several of the member functions return a Derived object or a Derived&. Their Effects clauses
end with:
 return *this;

This should be
 return *static_cast<Derived*>(this);

9.26 Iterator_facade: unclear returns clause for operator[]
Submitter: Pete Becker
Status: New

The returns clause for operator[](difference_type n) const says:

Returns: an object convertible to X::reference and holding a copy p of a+n such that, for a
constant object v of type X::value_type, X::reference(a[n] = v) is equivalent to p = v.

This needs to define 'a', but assuming it's supposed to be *this (or maybe *(Derived*)this), it still
isn't clear what this says. Presumably, the idea is that you can index off of an iterator and assign
to the result. But why the requirement that it hold a copy of a+n? Granted, that's probably how
it's implemented, but it seems over-constrained. And the last phrase seems wrong. p is an
iterator; there's no requirement that you can assign a value_type object to it. Should that be *p =
v? But why the cast in reference(a[n] = v)?

9.27 Iterator_facade: redundant clause
Submitter: Pete Becker
Status: New

operator- has both an effects clause and a returns clause. Looks like the returns clause should be
removed.

9.28 indirect_iterator: incorrect specification of default constructor
Submitter: Pete Becker
Status: New

The default constructor returns "An instance of indirect_iterator with a default constructed base
object", but the constructor that takes an Iterator object returns "An instance of indirect_iterator
with the iterator_adaptor subobject copy constructed from x." The latter is the correct form, since
it does not reach inside the base class for its semantics. So the default constructor shoudl return

N1541 52

"An instance of indirect_iterator with a default-constructed iterator_adaptor subobject."

9.29 indirect_iterator: unclear specification of template constructor
Submitter: Pete Becker
Status: New

The templated constructor that takes an indirect_iterator with a different set of template
arguments says that it returns "An instance of indirect_iterator that is a copy of [the argument]".
But the type of the argument is different from the type of the object being constructed, and there
is no description of what a "copy" means. The Iterator template parameter for the argument must
be convertible to the Iterator template parameter for the type being constructed, which suggests
that the argument's contained Iterator object should be converted to the target type's Iterator type.
Is that what's meant here?

(Pete later writes: In fact, this problem is present in all of the specialized adaptors that have a
constructor like this: the constructor returns "a copy" of the argument without saying what a
copy is.)

9.30 transform_iterator argument irregularity
Submitter: Pete Becker
Status: New

The specialized adaptors that take both a Value and a Reference template argument all take them
in that order, i.e. Value precedes Reference in the template argument list, with the exception of
transform_iterator, where Reference precedes Value. This seems like a possible source of
confusion. Is there a reason why this order is preferable?

9.31 function_output_iterator overconstrained
Submitter: Pete Becker
Status: New

function_output_iterator requirements says: "The UnaryFunction must be Assignable, Copy
Constructible, and the expression f(x) must be valid, where f is an object of type UnaryFunction
and x is an object of a type accepted by f."

Everything starting with "and," somewhat reworded, is actually a constraint on
output_proxy::operator=. All that's needed to create a function_output_iterator object is that the
UnaryFunction type be Assignable and CopyConstructible. That's also sufficient to dereference
and to increment such an object. It's only when you try to assign through a dereferenced iterator
that f(x) has to work, and then only for the particular function object that the iterator holds and
for the particular value that is being assigned.

9.32 Should output_proxy really be a named type?
Submitter: Pete Becker
Status: New

This means someone can store an output_proxy object for later use, whatever that means. It also

N1541 53

constrains output_proxy to hold a copy of the function object, rather than a pointer to the iterator
object. Is all this mechanism really necessary?

9.33 istreambuf_iterator isn't a Readable Iterator
Submitter: Pete Becker
Status: New

c++std-lib-12333:
N1550 requires that for a Readable Iterator a of type X, *a returns an object of type
iterator_traits<X>::reference. istreambuf_iterator::operator* returns charT, but
istreambuf_iterator::reference is charT&. So am I overlooking something, or is
istreambuf_iterator not Readable?

