
Document number: J16/03-0103 = WG21 N1520
Date: 19 September, 2003

Reply to: William M. Miller
The MathWorks, Inc.
wmm@world.std.com

Extended friend Declarations

I. The Problem

According to the current Standard, 11.4¶2,

An elaborated-type-specifier shall be used in a friend declaration for a class. [Footnote:
The class-key of the elaborated-type-specifier is required.]

Unfortunately, the requirements for elaborated-type-specifiers, as given in 7.1.5.3¶2, place
serious limits on the use of friend declarations:

If the identifier resolves to a typedef-name or a template type-parameter, the elaborated-
type-specifier is ill-formed. [Note: this implies that, within a class template with a
template type-parameter T, the declaration

friend class T;

is ill-formed.]

Complaints about this restriction surface periodically in public discussion forums. One example
of a use for this feature was posted by Hyman Rosen:

template <typename T>
class no_children {

no_children() { } // private
friend class T; // ill-formed but desired

};

class bachelor: virtual no_children<bachelor> {
/* … */

};

The no_children class template, if permitted, would provide an easy way of specifying that a
particular class is “final” and cannot be used as a base class.

Gabriel Dos Reis (in message c++std-ext-6132) mentioned that various programming idioms
such as the “visitor pattern” would benefit from this ability, and (in message c++std-ext-6141)
posted two additional illustrations of its utility. The first involves an attempt to grant friend
access to an allocator class:

Extended friend declarations J16/03-0103 = WG21 N1520

page 2 of 9

template <class Allocator>
class X {

friend class Allocator::template rebind<X>::other;
// …

};

Here, the issue is not a template parameter but a typedef, which also cannot be used in an
elaborated-type-specifier.

Dos Reis’ second example illustrates yet another problem that can be encountered with friend
declarations in template classes:

template <class T>
class Y {

friend class T::U;
};

This template can be instantiated with any class that has a nested class named U, but the
instantiation will fail if T::U is a union instead of a class: the class-key in the elaborated-type-
specifier will disagree with that of the type to which it refers (7.1.5.3¶3).

II. History

In message c++std-ext-6133, John Spicer reviewed the Committee’s deliberations that led to the
current rule for elaborated-type-specifiers:

Whether or not “friend class T” should be permitted was discussed in San Jose in
November of 1993, where it was agreed that this should be permitted. Then in Waterloo,
in July of 1994, we reopened the issue to address cases like this:

template <class T> void f(struct T t){}
template <class T> void f(union T t){}
template <class T> void f(enum T t){}

union U {};
struct S {};
class C {};
enum E {};

int main() {
U u;
S s;
C c;
E e;

f(u);
f(s);
f(c);
f(e);

}

Extended friend declarations J16/03-0103 = WG21 N1520

page 3 of 9

The issue being whether or not you can choose a function template based on the kind of
elaborated-type-specifier that is present (something actually supported by the EDG front
end back in those days). The committee decided against this, and as a result, a rule was
added prohibiting a template parameter from being used in an elaborated-type-specifier
in a function template declaration.

At the infamous Santa Cruz meeting in March of 1996 the issue was raised again. The
text below is from version 15 of my template issues paper and covers the discussion in
Santa Cruz.

3.28 Elaborated-type-specifiers in function template declarations revisited.

In Waterloo, we decided that an elaborated-type-specifier containing a template
parameter name could not be used in a function template declaration. Now that we
have the partial ordering rules for function templates, this issue should be checked
to see if it is still what we want. With the partial ordering rules, we can now select
one template over another based on one being “more specialized” than another. It
seems that these rules could be applied to elaborated type specifiers as well. If this
is permitted in the partial ordering of function templates, it should also be
permitted in the partial ordering used for class template partial specializations.

template <class T> class List {};
template <class T> void f(List<struct T> l){} // #1
template <class T> void f(List<union T> l){} // #2
template <class T> void f(List<enum T> l){} // #3
template <class T> void f(List<T> l){} // #4

union U {};
struct S {};
class C {};
enum E {};

int main() {
List<U> u;
List<S> s;
List<C> c;
List<E> e;
List<int> i;

f(u); // calls #2
f(s); // calls #1
f(c); // calls #1
f(e); // calls #3
f(i); // calls #4

}

Answer: Core-3 decided that the current rule banning use of template parameters
in elaborated-type-specifiers only in function template declarations was not
sufficient (because of things like partial specializations of classes), and that a
simple prohibition against the use of template parameters in elaborated-type-
specifiers was more desirable than a more complicated rule.

Extended friend declarations J16/03-0103 = WG21 N1520

page 4 of 9

III. Proposed Resolution

The rationale for the restrictions on elaborated-type-specifiers (for template type parameters, at
least) still seems valid. As noted in the introduction above, however, it is the interaction of these
restrictions with the requirement that friend class declarations must use elaborated-type-
specifiers that causes the problem. This paper therefore proposes to eliminate the latter
requirement by permitting two additional syntactic non-terminals to be declared as friends.
The first is simple-type-specifier, whose definition is

simple-type-specifier:
::opt nested-name-specifieropt type-name
::opt nested-name-specifier template template-id
char
wchar_t
bool
short
int
long
signed
unsigned
float
double
void

type-name:
class-name
enum-name
typedef-name

The second non-terminal comes from the paper “Consolidated edits for core issues 245, 254, et
al.” (J16/02-0034 = WG21 N1376) by Clark Nelson, which was adopted as a defect report for
inclusion in the Working Paper in April, 2003:

typename-specifier:
typename ::opt nested-name-specifier identifier
typename ::opt nested-name-specifier templateopt template-id

With these additions, the problematic declarations described in the introduction could be
reformulated as follows:

template <typename T>
class no_children {

no_children () { }
friend T;

};

template <class Allocator>
class X {

friend typename Allocator::template rebind<X>::other;
};

Extended friend declarations J16/03-0103 = WG21 N1520

page 5 of 9

template <class T>
class Y {

friend typename T::U;
};

This change is a pure extension, in that it changes the meaning of no programs that are currently
well-formed. It has very limited interaction with the rest of the Standard, because the syntax is
already permitted – the syntax for a member-declaration is:

member-declaration:
decl-specifier-seqopt member-declarator-listopt ;
. . .

Thus a friend keyword followed by any kind of type-specifier is simply a member-declaration
with an omitted member-declarator-list. It is only explicit constraints in the text of the Standard
that cause the reformulated declarations above to be ill-formed.

IV. Non-class friends

There is no benefit to declaring a non-class type as a friend; no type other than a class can
utilize the increased access privileges such a declaration affords. This fact is implicit in the
current restriction requiring non-function friend declarations to use elaborated-type-
specifiers. (Although an enum can be named in an elaborated-type-specifier, such an
elaborated-type-specifier can only refer to a completely-defined enum; it cannot be used to
introduce an incomplete type. Thus a hypothetical friend enum declaration would come too
late: the enum would already have been defined and could not use any members of the class
containing the friend declaration.)

The syntax proposed herein, however, opens at least the theoretical possibility declaring non-
class types as friends. The question of what restrictions should apply, if any, to the types
named in friend declarations was vigorously discussed on the Evolution WG email reflector.

The first question to answer deals with friend declarations in class templates where the type
specifier names a dependent type (14.6.2.1). In such cases, it is only upon instantiation of the
template that the determination can be made whether the type in the friend declaration is a
class or not. In its simplest form, the question is whether

template <typename T> class X {
friend T;

};

X<int> xi;

is well-formed or ill-formed because of the attempt to declare int to be a friend of X<int>.

In considering this question, it is helpful to note that a friend declaration does not require
anything of the befriended type – it simply offers that type the opportunity to access private and

Extended friend declarations J16/03-0103 = WG21 N1520

page 6 of 9

protected members of the befriending class, and that grant of access need not be used. In this
light, it seems unreasonable that the instantiation of a class template should fail, simply because
the type offered this extra access is incapable of using it.

There was no disagreement on this point from any of the participants in the email discussion.
Differing opinions were expressed, however, regarding the other contexts in which a non-class
friend declaration might appear: non-template classes, and non-dependent types inside class
templates. There were three distinct positions taken by various participants:

1. There should be no restrictions on the types named in friend declarations.

2. Except for friend declarations instantiated from dependent types, only class types
(possibly cv-qualified) should be permitted as friends.

3. Fundamental types named by their built-in keywords (int, bool, etc.) should be
errors, but any type named by a user-declared name should be permitted.

The rationale for the first position is based on simplicity and consistency. Non-class friend
declarations are harmless, even if useless. Because such declarations must be accepted when
they arise via dependent types, the simplest and most consistent rule would be to accept them in
all contexts, rather than having a special case for template code.

Supporters of the second position observe that, in the non-template and non-dependent cases, the
programmer explicitly names the type and thus knows (or should know) what the type is.
Because a non-class friend is useless, declaring one can only be the result of a mistake on the
programmer’s part – either he/she thought it did have an effect, or he/she specified a different
name from the one intended – and we should require that it be diagnosed.

The third position is intermediate between the first two. There is never a reason for a
programmer to declare a fundamental type to be a friend using its built-in keyword, so any
such attempt should be diagnosed as an error. On the other hand, specifying a user-declared
name as the type is less clearly an error. For instance, one could conceive of a situation where a
given type was originally a smart pointer but in the course of program evolution it was replaced
by a built-in pointer. It is unclear that such a change should cause a preexisting friend
declaration to become an error.

Although the author of this paper favors the second position, he acknowledges that the
arguments in favor of the other possibilities have some merit. As a result, the next section
presents three possibilities for wording changes to the Standard and makes no recommendation
as to the ultimate outcome.

V. Suggested Wording

As noted above, the syntax presented in this proposal is already accepted by the current
grammar; the constraints that require an elaborated-type-specifier occur in only two locations in
the Standard. The first of these is found in 9.2¶7:

Extended friend declarations J16/03-0103 = WG21 N1520

page 7 of 9

The member-declarator-list can be omitted only after a class-specifier, an enum-specifier,
or a decl-specifier-seq of the form friend elaborated-type-specifier.

Rather than expanding the description of the acceptable syntax of friend declarations to
include the additional productions, it would be better to have that specification at a single point
in the Standard:

The member-declarator-list can be omitted only after a class-specifier or an enum-
specifier or in a friend declaration (11.4).

The second constraint occurs in 11.4¶2:

An elaborated-type-specifier shall be used in a friend declaration for a class. [Footnote:
The class-key of the elaborated-type-specifier is required.]

This wording should be deleted, and the following should be added as a new paragraph following
11.4¶2:

A friend declaration that does not declare a function shall have one of the following
forms:

friend elaborated-type-specifier ;
friend simple-type-specifier ;
friend typename-specifier ;

[Insert wording here describing handling of non-class type specifiers: see below]
[Example:

class C;
typedef C Ct;

class X1 {
friend C; // OK: class C is a friend

};

class X2 {
friend Ct; // OK: class C is a friend
friend D; //error: no type-name D in scope

};

template <typename T> class R {
friend T;

};

R<C> rc; // class C is a friend of R<C>
R<int> ri; // OK: “friend int;” is ignored

—end example]

Extended friend declarations J16/03-0103 = WG21 N1520

page 8 of 9

As noted earlier, this paper takes no position on which, if any, non-class types should be allowed
in non-dependent friend declarations. The following wording (to be inserted at the location
indicated above) implements the respective option:

Option 1:

A friend declaration whose type specifier designates a non-class type is ignored.

Option 2:

The type specifier in a friend declaration shall either designate a (possibly cv-
qualified) class type or be a dependent type (14.6.2.1). If a class template is instantiated
such that a dependent type results in a friend declaration that designates a non-class
type, the friend declaration is ignored.

Option 3:

In a declaration of the form friend simple-type-specifier, the simple-type-specifier shall
specify a previously-declared user-defined type or typedef-name (7.1.5.2). A friend
declaration whose type specifier designates a non-class type is ignored.

VI. An Alternative Formulation

The suggested wording changes in the preceding section were intended to be compatible with all
three positions regarding the treatment of non-dependent type specifiers, and they leave the
current grammar intact. If a consensus develops around the third option, there is an alternative
set of changes that might be simpler and more attractive.

The suggested wording for Option 3 verbally excludes the fundamental type keywords that are
part of the simple-type-specifier nonterminal (7.1.5.2¶1). Another possibility would be to
refactor that nonterminal into user-declared and built-in types, as follows:

simple-type-specifier:
user-type-specifier
type-key

user-type-specifier:
::opt nested-name-specifieropt type-name
::opt nested-name-specifier template template-id

type-key:
char
wchar_t
bool
short
int
long
signed
unsigned

Extended friend declarations J16/03-0103 = WG21 N1520

page 9 of 9

float
double
void

With this refactorization, the suggested wording to implement Option 3 becomes:

A friend declaration that does not declare a function shall have one of the following
forms:

friend elaborated-type-specifier ;
friend user-type-specifier ;
friend typename-specifier ;

A friend declaration whose type specifier designates a non-class type is ignored.
[Example:

. . .

