
 Doc No: SC22/WG21/N1493
 J16/03-0076
 Date: 09/18/2003
 Project: JTC1.22.32
 Reply to: Daniel F. Gutson
 danielgutson@hotmail.com

Braces Initialization Overloading

1. The Problem
A goal of C++ is to simulate with classes the same behaviors and
capabilities of PODs.
This is possible through operator overloading.
However, it is not possible to provide the initialization abilities of a
C-array to a class: the braces initialization.
Also, it is neither possible to initialize (construct) a non-aggregate class
with braces, as a simple struct allows.
This paper proposes a mechanism to do both things, by overloading the braces
initialization.
This problem specially applies to container classes in libraries -such as
the std::vector, which would permit to treat it as an ordinary C-array -.
By no addressing this issue, "manual" (or explicit) initialization must be
coded, loosing the simplicity of the wide-used C´s braces initialization.

This proposal may fit in the following categories:
* improve support for systems programming
* improve support for library building
* improve compatibility with C

2. The Proposal
A) Problem partitioning.
This paper considers the following scenarios:
 A.1) braces initialization for a fixed number of elements of known types:
this is the case of initializing a non-aggregate as an ordinary struct
 struct S
 {
 int a, b;
 char* p;
 };
 S s = { 1, 2, "hello" };

 A.2) braces initialization for a NON-fixed number (known at compile time)
of elements. This is sub-partitioned in two:
 A.2.1) homogeneous elements: a non-fixed number of elements of the
same type. This is the case of a C-array:
 int x[] = {1,2,3,4,100};

 A.2.2) heterogeneous elements: a non-fixed number of elements, not
necessarily of the same type.

B) The proposal.
This paper distinguishes three constructor types, as primitive semantic
units for achieving the problem scenarios.
 1-the "fixed brace constructor"
 2-the "brace initiator constructor"
 3-the "brace element constructor" (or “brace individual constructor”)

The "fixed brace constructor" covers the A.1 scenario; the "brace initiator"
and the "brace element" constructors are combined together for covering
A.2.1 as well as A.2.2.

Characteristics and semantics:
1. The "fixed brace constructor" is defined in the class with a specific
signature, telling the compiler that whenever the class is initialized with
the form
 classname instance = { v1, v2, ..., vn };
will try to match the signature with the v1..vn value types, and invoke it,
each vi being a parameter.
This constructor type is multiple-overloadable, and mimics the
initialization of an aggregate using braces for assigning a value to each
member.

2. The "brace initiator constructor" can be defined once in the class with
the unique signature of receiving one ´size_t´-like parameter.
The "brace element" accepts only one parameter, and is
multiple-overloadable, with an arbitrary parameter type.

When a class is initialized with the form
 classname instance = { v1, v2, ..., vn };
if no "fixed brace constructor" is defined, or no one matches the signature
with the n elements, then the compiler invokes the "brace initiator
constructor" once passing n as the parameter, and then invokes n times the
"brace element" constructor (one per each vi). The restriction is that every
type of the vi has a type-compatible "brace element" available.

If the "brace initiator constructor" is defined, then at least one "brace
element" constructor must be defined.
A class having "brace element" constructors, without the "brace initiator"
constructor defined, is ill-formed and a compiler error should be thrown.
By providing many "brace element" constructors to a class, the heterogeneous
scenario (A.2.2) is covered.
By providing only one "brace element" constructor, the homogeneous scenario
(A.2.1) is covered.
For example, if the class is intended to be constructed with a braces
initialization like a C-array of type int[], the "brace initiator"
constructor must be defined, and one "brace element" receiving an int
parameter must be also defined.

The three constructor types are either called by the compiler, or
´transparently´ by a subclass in the initializer list (´transparently´ means
that the {} initialization should be used in the initializer list, and then
the compiler will either invoke the "fixed braces constructor" or the
"braces initiator" + "brace element" constructors).

2.1 Basic Cases
Before entering in the examples, the syntax and alternatives are proposed now.
First, a set of candidates are exposed, and then assigned (arbitrary) to the
constructor types for developing the examples only. Syntax is not the aim of
this paper.

Syntax candidates, and their usage in the examples below:
 classname {} (signature); // used for “braces initiator constructor”
 classname ={} (signature); // used for “fixed brace constructor”
 classname {*} (signature); // used for “brace element constructor”
 classname {...} (signature); // just proposed; not used here
 classname []{} (signature); // just proposed; not used here

The first example covers scenario A.1, exposing the “fixed brace constructor”:

class Packet
{
public:
 Packet = {} (char parity, const char* data, size_t len);
 ~Packet();

 int getHeader() const;
 char getParity() const ;
 const char* getData() const;
 size_t getLength() const;
 size_t getCRC() const;

private:
 char _parity;
 char* _data;
 size_t _len;
 size_t _crc;

 void _calcCRC();
};

void sendInitialPacket()
{

Packet p = { ‘o’, “INIT”, 5 };
sendPacket(p);

 }

Packet::Packet ={} (char parity, const char* data, size_t len)
 : _parity(parity), _len(len)
{
 _data = new char[len];
 memcpy(_data, data, len);
 _calcCRC();
}

In the example above, the Packet class behaves as a C structure having a char,
char*, and a size_t element. The “fixed brace constructor”, however, hides the
default constructor, assigns the private attributes, copies the data for owning
it, and then calculates the CRC. (The destructor would delete [] the data).

The second example covers scenario A.2.1, simulating an array of integers.
class IntArray
{
public:
 IntArray {} (size_t count);
 IntArray {*} (int element, size_t position); //see 3.1
 ~IntArray();

 int operator [] (size_t index) const
 {
 assert(index < _len);
 return _array[index];
 }

 int& operator [] (size_t index)
 {
 assert(index < _len);
 return _array[index];
 }
private:
 int* const _array;
 const int _len;
};

void f()
{
 IntArray arr = { 1,2,3,4,5,6 };
 int x = arr[1];
 arr[x] = 200;
}

IntArray::IntArray {} (size_t count)
 : _array(new int[count]), len(count)
{}

IntArray::IntArray {*} (int element, size_t position)
{
 _array[position] = element;
}

IntArray::~IntArray()
{
 delete [] _array;
}

This example shows the usage of the “brace initiator” and the “brace element”
constructors. The first allocates the memory and assigns the length. The second
assigns the position-th element to the private allocated array. (please see
section 3.1 for information about the second parameter of the “brace element
constructor”).
The IntArray class cannot be initiated with a list of elements of a type not
casteable to int, as far as the “brace element constructor” is not available for
other types.

In function ‘f’, the compiler will invoke the “brace initiator” passing 6 as the
parameter, and will invoke the “brace element” six times immediately, passing
the incremental number in the ‘position’ argument (0..5).

This example just exposes the usage of the two constructors proposed in this
paper. The usage for a template class is considered a trivial application and is
not exposed.

The third example covers the scenario A.2.2, where the class can be initialized
with a list of two classes types derived from a base class.

struct Base { … };
struct Der1 : Base { … };
struct Der2 : Base { … };

class BArray
{
public:
 BArray {} (size_t count);
 BArray {*} (Der1 element, size_t position);
 BArray {*} (Der2 element, size_t position);
 …
};

void f()
{
 Der1 d1;
 Der2 d2;
 BArray arr = { d1, d1, d2, d1, d2 };
 …
}

This example is similar to the second, but differs in the fact that BArray is an
‘heterogeneous’ container, having two types of elements (Der1 and/or Der2).
Implementation is left for the imagination of the reader.

2.2 Advanced Cases
The example here will combine the first and second examples of the previous
section, by using a nested braces initialization: an array of packets.
The Packet definition is the same as the defined in the first example.

class PacketArray
{
public:
 PacketArray {} (size_t count);
 PacketArray {*} (const Packet& pkt, size_t position);
 …
};

void sendSequence1()
{
 PacketArray seq = {

{ ‘o’, “INIT”, 5 },
{ ‘e’, “DATA1”, 6 },
{ ‘n’, “END”, 4 }

};

 sendPacketArray(seq);
}

In this example, the compiler will construct three temporary packets by invoking
the Packet::Packet ={}, then invoke the PacketArray’s initiator, then three
times the PacketArray’s brace element, and finally destroy the temporary
packets.
(Let’s assume that the packets will be copied in private memory spaces by the
PacketArray implementation).

3. Interactions and Implementability
3.1 Interactions
The A.2 scenarios could be covered by the "fixed braces constructor" by
receiving one container and overloading the comma operator, but providing
the "brace initiator constructor" / "brace element constructor" complex
provides simplicity and efficiency (the number of elements is known at
compile time, so no re-allocation must be carried out while appending the
elements).

Optionally, the "brace element constructor" might accept an alternative
syntax, receiving the element position as the second parameter (of a
´size_t´-like type).

Initializer list can only be defined in the "fixed brace" constructors and
the "brace initiator" constructor; the "brace element constructor" behaves as
a ´sub-constructor´ of the initiator, meaning that the per-element call is
not a constructor call itself, but a subsequent call sequence of the
initiator.

The ‘operator =’, if defined, will be invoked neither in A.1 nor A.2 scenarios,
considering that the ‘=’ is syntactically required.

The place (private, public or protected) where the “brace element constructor”
is defined is insignificant, as far as the “brace initiator constructor”’s
accessibility is considered.

Name hiding rules for constructors is normally applicable. Many constructors can
be provided, and ambiguities between the “fixed brace” and the “brace
initiator”/”brace element” constructors shall be clarified by prioritizing the
fixed brace constructor. (see section 3.2)

This proposal is compatible with the existing syntax, as far as the proposed
constructs are currently invalid.

3.2 Implementability
The compiler must prioritize the "fixed brace constructor" signature matching
first.
If no one matches (or there is no one defined at all), then the "brace
initiator"/"brace element" complex look up should take place.
In this case, all the element types listed within the braces should have a
compatible "brace element constructor" defined.

