
ISO/IEC PDTR 18015

Date: 2003-08-11

WG21 N1487=03-0070

Information Techno logy —
Programming langu ages, their environments and system software interfaces

Technical Report on C++ Performance

Executive Summary:

The aim of this report is:

• to give the reader a model of time and space overheads implied by use of
various C++ language and library features,

• to debunk widespread myths about performance problems,

• to present techniques for use of C++ in applications where performance
matters, and

• to present techniques for implementing C++ Standard language and library
facil ities to yield efficient code.

As far as run-time and space performance is concerned, if you can afford to use C for
an application, you can afford to use C++ in a style that uses C++’s facil ities
appropriately for that application.

This report first discusses areas where performance issues matter, such as various
forms of embedded systems programming and high-performance numerical
computation. After that, the main body of the report considers the basic cost of using
language and library facil ities, techniques for writing efficient code, and the special
needs of embedded systems programming.

Performance implications of object-oriented programming are presented. This
discussion rests on measurements of key language facilities supporting OOP, such as
classes, class member functions, class hierarchies, virtual functions, multiple
inheritance, and run-time type information (RTTI). It is demonstrated that, with the
exception of RTTI, current C++ implementations can match hand-written low-level
code for equivalent tasks. Similarly, the performance implications of generic
programming using templates are discussed. Here, however, the emphasis is on
techniques for effective use. Error handling using exceptions is discussed based on
another set of measurements. Both time and space overheads are discussed. In
addition, the predictabil ity of performance of a given operation is considered.

The performance implications of IOStreams and Locales are examined in some detail
and many generally useful techniques for time and space optimizations are discussed
here.

The special needs of embedded systems programming are presented, including
ROMabil ity and predictability. A separate chapter presents general C and C++
interfaces to the basic hardware facil ities of embedded systems.

Additional research is continuing into techniques for producing eff icient C++ libraries
and programs. Please see the WG21 web site at www.dkuug.dk/jtc1/sc22/wg21 for
example code from this technical report and pointers to other sites with relevant
information.

Technical Report on C++ Performance PDTR 18015

Version for PDTR approval ballot Page 3 of 189

Participants

The following people contributed work to this Technical Report:

Dave Abrahams

Mike Ball

Walter Banks

Greg Colvin

Embedded C++ Technical Committee
(Japan)

Hiroshi Fukutomi

Lois Goldthwaite

Yenjo Han

John Hauser

Seiji Hayashida

Howard Hinnant

Brendan Kehoe

Robert Klarer

Jan Kristofferson

Dietmar Kühl

Jens Maurer

Fusako Mitsuhashi

Hiroshi Monden

Nathan Myers

Masaya Obata

Martin O'Riordan

Tom Plum

Dan Saks

Martin Sebor

Bill Seymour

Bjarne Stroustrup

Detlef Vollmann

Wil lem Wakker

PDTR 18015 Technical Report on C++ Performance

Version for PDTR approval ballot Page 5 of 189

Contents:

1 INTRODUCTION ...9

1.1 Glossary...10
1.2 Typical Application Areas..14

1.2.1 Embedded Systems..14
1.2.2 Servers ..15

2 LANGUAGE FEATURES: OVERHEADS AND STRATEGIES.............17

2.1 Namespaces... 17
2.2 Type Conversion Operators..18
2.3 Classes and Inheritance..19

2.3.1 Representation Overheads..19
2.3.2 Basic Class Operations...21
2.3.3 Virtual Functions...21

2.3.3.1 Virtual functions of class templates..22
2.3.4 Inlining..23
2.3.5 Multiple Inheritance...23
2.3.6 Virtual Base Classes ..24
2.3.7 Type Information...25
2.3.8 Dynamic Cast ..26

2.4 Exception Handling..27
2.4.1 Exception Handling Implementation Issues and Techniques.......................................30

2.4.1.1 The "Code" Approach ...31
2.4.1.1.1 Space Overhead of the “Code” Approach..32
2.4.1.1.2 Time Overhead of the “Code” Approach...32

2.4.1.2 The "Table" Approach...33
2.4.1.2.1 Space Overhead of the “Table” Approach...33
2.4.1.2.2 Time Overhead of the “Table” Approach..34

2.4.2 Predictabilit y of Exception Handling Overhead..35
2.4.2.1 Prediction of throw/catch Performance..35
2.4.2.2 Exception Specifications ...35

2.5 Templates.. 36
2.5.1 Template Overheads..36
2.5.2 Templates vs. Inheritance...37

2.6 Programmer Directed Optimizations..40
2.6.1 General Considerations..40
2.6.2 Object Construction...42
2.6.3 Temporary Objects...44
2.6.4 Function Inlining...47
2.6.5 Object-Oriented Programming...48
2.6.6 Templates..51
2.6.7 Standard Library..55
2.6.8 Additional Suggestions..56
2.6.9 Compilation Suggestions..57

3 CREATING EFFICIENT L IBRARIES...61

3.1 The Standard IOStreams Library – Overview...61
3.1.1 Executable Size...61
3.1.2 Execution Speed ..61
3.1.3 Object Size..62
3.1.4 Compilation Time..62

Technical Report on C++ Performance PDTR 18015

Page 6 of 189 Version for PDTR approval ballot

3.2 Optimizing Libraries – Reference Example: "An Eff icient Implementation of
Locales and IOStreams"...62

3.2.1 Implementation Basics for Locales...63
3.2.2 Reducing Executable Size..65
3.2.3 Preprocessing for Facets...68
3.2.4 Compile-Time Decoupling...69
3.2.5 Smart Linking..70
3.2.6 Object Organization...72
3.2.7 Library Recompilation...74

4 USING C++ IN EMBEDDED SYSTEMS..75

4.1 ROMabil ity.. 75
4.1.1 ROMable Objects ..75

4.1.1.1 User-Defined Objects..76
4.1.1.2 Compiler-Generated Objects..77

4.1.2 Constructors and ROMable Objects..79
4.2 Hard Real-Time Considerations... 79

4.2.1 C++ Features for which Timing Analysis is Straightforward.......................................80
4.2.1.1 Templates ...80
4.2.1.2 Inheritance..80

4.2.1.2.1 Single Inheritance...80
4.2.1.2.2 Multiple Inheritance...80
4.2.1.2.3 Virtual Inheritance...80

4.2.1.3 Virtual functions ...80
4.2.2 C++ Features for Which Real-Time Analysis is More Complex80

4.2.2.1 Dynamic Casts..81
4.2.2.2 Dynamic Memory Allocation ..81
4.2.2.3 Exceptions..81

4.2.3 Testing Timing ..82

5 HARDWARE ADDRESSING INTERFACE ...83

5.1 Introduction to Hardware Addressing...84
5.1.1 Basic Standardization Objectives..85
5.1.2 Terminology..85
5.1.3 Overview and Principles..88
5.1.4 The Abstract Model ...88

5.1.4.1 The Module Set...89
5.1.5 Information Required by the Interface User ..92
5.1.6 Hardware Register Characteristics..92
5.1.7 Hardware Register Designators..92
5.1.8 Accesses to Individual Hardware Registers...93
5.1.9 Hardware Register Buffers...94
5.1.10 Hardware Groups...95
5.1.11 Direct and Indirect Designators..96
5.1.12 Operations on Hardware Groups..96

5.1.12.1 Acquiring Access to a Hardware Register in a Group...96
5.1.12.2 Mapping Indirect Designators...97

5.2 The <iohw.h> Interface for C and C++..99
5.2.1 I/O registers...100
5.2.2 I/O groups...101
5.2.3 I/O group functions..101

5.2.3.1 The iogroup_acquire and iogroup_release functions..........................101
5.2.3.2 The iogroup_map function..102

5.2.4 I/O register access functions...102

PDTR 18015 Technical Report on C++ Performance

Version for PDTR approval ballot Page 7 of 189

5.2.4.1 The iord functions..102
5.2.4.2 The iordbuf functions..103
5.2.4.3 The iowr functions..103
5.2.4.4 The iowrbuf functions ...103
5.2.4.5 The ioor , ioan d, and ioxor functions...104
5.2.4.6 The ioorbuf , ioandbu f , and ioxorbuf functions.......................................104

5.3 The <hardware> Interface for C++ ...105
5.3.1 The Class Template register_access ..106
5.3.2 The Class Template register_buffer ..108
5.3.3 Header "stdint.h" ...109
5.3.4 The struct hw_base ...109
5.3.5 Common Address Holder Types...110

5.3.5.1 The Class Template static_address ..111
5.3.5.2 The Class dynamic_address ...111

5.3.6 Basic Hardware Register Designator Traits Classes..112
5.3.6.1 Traits Class platform_traits ..112
5.3.6.2 Traits Class register_traits ..113

APPENDIX A: GUIDELINES ON USING THE <HARDWARE> INTERFACE 115

A.1 Usage Introduction..115
A.2 Using Hardware Register Designator Specifications....................................115

A.2.1 Using address_holder s ..116
A.2.2 Traits Specifications... 117

A.3 Hardware Access..118
A.3.1 Indexed Access..119
A.3.2 Initiali zation of register_access ...119

APPENDIX B: IMPLEMENTING THE IOHW INTERFACES......................121

B.1 General Implementation Considerations..121
B.1.1 Recommended Steps..121
B.1.2 Compiler Considerations..121

B.2 Overview of Hardware Device Connection Options....................................122
B.2.1 Multi-addressing and Device Register Endianness..122
B.2.2 Address Interleave...123
B.2.3 Device Connection Overview...124

B.2.3.1 Generic Buffer Index...124
B.3 Hardware Register Designators for Different Device Addressing Methods..125
B.4 Atomic Operation..126
B.5 Read-Modify-Write Operations and Multi-Addressing................................127
B.6 Initialization..127
B.7 Intrinsic Features for Hardware Register Access...130
B.8 Implementation Guidelines for the <hardware> Interface........................130

B.8.1 Annotated Sample Implementation...131
B.8.1.1 Common Definitions — struct hw_base ..131
B.8.1.2 Access Traits Classes ..132
B.8.1.3 The Interface register_access and register_buffer133
B.8.1.4 Actual Access Implementation ..138
B.8.1.5 Usage and Overhead..140

Technical Report on C++ Performance PDTR 18015

Page 8 of 189 Version for PDTR approval ballot

APPENDIX C: A <HARDWARE> IMPLEMENTATION FOR THE <IOHW.H>
INTERFACE ...144

C.1 Implementation of the Basic Access Functions..144
C.2 Buffer Functions...145
C.3 Group Functionality ..146
C.4 Remarks..149

APPENDIX D: TIMING CODE..151

D.1 Measuring the Overhead of Class Operations..151
D.2 Measuring Template Overheads..159
D.3 The Stepanov Abstraction Penalty Benchmark ..165
D.4 Comparing Function Objects to Function Pointers.......................................170
D.5 Measuring the Cost of Synchronized I/O...174

APPENDIX E: BIBLIOGRAPHY...177

PDTR 18015 Technical Report on C++ Performance

Version for PDTR approval ballot Page 9 of 189

1 Introduction
“Performance” has many aspects – execution speed, code size, data size, and memory
footprint at run-time, or time and space consumed by the edit/compile/link process. It
could even refer to the time necessary to find and fix code defects. Most people are
primarily concerned with execution speed, although program footprint and memory
usage can be critical for small embedded systems where the program is stored in
ROM, or where ROM and RAM are combined on a single chip.

Efficiency has been a major design goal for C++ from the beginning, also the
principle of “zero overhead” for any feature that is not used in a program. It has been
a guiding principle from the earliest days of C++ that “you don’t pay for what you
don’t use”.

Language features that are never used in a program should not have a cost in extra
code size, memory size, or run-time. If there are places where C++ cannot guarantee
zero overhead for unused features, this paper will attempt to document them. It will
also discuss ways in which compiler writers, library vendors, and programmers can
minimize or eliminate performance penalties, and will discuss the trade-offs among
different methods of implementation.

Programming for resource-constrained environments is another focus of this paper.
Typically, programs that run into resource limits of some kind are either very large or
very small. Very large programs, such as database servers, may run into limits of disk
space or virtual memory. At the other extreme, an embedded application may be
constrained to run in the ROM and RAM space provided by a single chip, perhaps a
total of 64K of memory, or even smaller.

Apart from the issues of resource limits, some programs must interface with system
hardware at a very low level. Historically the interfaces to hardware have been
implemented as proprietary extensions to the compiler (often as macros). This has led
to the situation that code has not been portable, even for programs written for a given
environment, because each compiler for that environment has implemented different
sets of extensions.

Mentions of “the Standard” or “IS” followed by a clause or paragraph number refer to
the C++ Standard – ISO/IEC 14882:1998 Programming Languages – C++ . Section
numbers not preceded by “IS” refer to locations within this document.

Technical Report on C++ Performance PDTR 18015

Page 10 of 189 Version for PDTR approval ballot

1.1 Glossary
ABC – commonly used shorthand for an Abstract Base Class – a base class (often a

virtual base class) which contains pure virtual member functions and thus cannot
be instantiated (§IS-10.4).

Access Method – refers to the way a memory cell or an I/O device is connected to the
processor system and the way in which it is addressed.

Addressing Range – a processor has one or more addressing ranges. Program
memory, data memory and I/O devices are all connected to a processor
addressing range. A processor may have special ranges which can only be
addressed with special processor instructions.

A processor's physical address and data bus may be shared among multiple
addressing ranges.

Address Inter leave – the gaps in the addressing range which may occur when a
device is connected to a processor data bus which has a bit width larger than the
device data bus.

Cache – a buffer of high-speed memory used to improve access times to medium-
speed main memory or to low-speed storage devices. If an item is found in
cache memory (a "cache hit"), access is faster than going to the underlying
device. If an item is not found (a "cache miss"), then it must be fetched from the
lower-speed device.

Code Bloat – the generation of excessive amounts of code instructions, for instance,
from unnecessary template instantiations.

Code Size – the portion of a program's memory image devoted to executable
instructions. Sometimes immutable data also is placed with the code.

Cross-Cast – a cast of an object from one base class subobject to another. This
requires RTTI and the use of the dynamic_cast<...> operator.

Data Size – the portion of a program's memory image devoted to data with static
storage duration.

Device, also I /O Device – this term is used to mean either a discrete I/O chip or an
I/O function block in a single chip processor system. The data bus bit width is
significant in the access method used for the I/O device.

Device Bus, also I /O Device Bus – the data bus of a device. The bit width of the
device bus may be less than the width of the processor data bus, in which case it
may influence the way the device is addressed.

Device Register, also I /O Device Register – a single logical register in a device. A
device may contain multiple registers located at different addresses.

Device Register Buffer – multiple contiguous registers in a device.

PDTR 18015 Technical Report on C++ Performance

Version for PDTR approval ballot Page 11 of 189

Device Register Endianness – the endianness for a logical register in a device. The
device register endianness may be different from the endianness used by the
compiler and processor.

Down-Cast – a cast of an object from a base class subobject, to a more derived class
subobject. Depending on the complexity of the object's type, this may require
RTTI and the use of the dynamic_cast<...> operator.

EEPROM – Electrically Erasable Programmable Read-Only Memory. EEPROM
retains its contents even when the power is turned off, but can be erased by
exposing it to an electrical charge. EEPROM is similar to flash memory
(sometimes called flash EEPROM). The principal difference is that EEPROM
requires data to be erased and written one byte at a time whereas flash memory
requires data to be erased in blocks and written one byte at a time.

Endianness – if the width of a data value is larger than the width of data bus of the
device where the value is stored the data value must be located at multiple
processor addresses.

Big-endian and litt le-endian refer to whether the most significant byte or the
least significant byte is located on the lowest (first) address.

Embedded System – a program which functions as part of a device. Often the
software is burned into firmware instead of loaded from a storage device. It is
usually a freestanding implementation rather than a hosted one with an operating
system (§IS-1.4¶7).

Flash Memory – a non-volatile memory device type which can be read like ROM.
Flash memory can be updated by the processor system. Erasing and writing
often require special handling. Flash memory is considered to be ROM in this
document.

Heap Size – the portion of a program's memory image devoted to data with dynamic
storage duration, associated with objects created with operator new .

Interleave – see address interleave.

I /O – Input/Output – in this paper, the term used for reading from and writing to
device registers (§5).

I /O Bus – special processor addressing range used for input and output operations on
hardware registers in a device.

I /O Device – synonym for device.

Locality of Reference – the heuristic that most programs tend to make most memory
and disk accesses to locations near those accessed in the recent past. Keeping
items accessed together in locations near each other increases cache hits and
decreases page faults.

Logical Register – refers to a device register treated as a single entity. A logical
register will consist of multiple physical device registers if the width of the
device bus is less than the width of the logical register.

Technical Report on C++ Performance PDTR 18015

Page 12 of 189 Version for PDTR approval ballot

Memory Bus – a processor addressing range used when addressing data memory
and/or program memory. Some processor architectures have separate data and
program memory buses.

Memory Device – chip or function block intended for holding program code and/or
data.

Memory Mapped I /O – I/O devices connected to the processor addressing range
which are also used by data memory.

MTBF – Mean-T ime Between Failures – the statistically determined average time a
device is expected to operate correctly without failing, used as a measure of a
hardware component's reliabil ity. The calculation takes into account the MTBF of all
devices in a system. The more devices in a system, the lower the system MTBF.

Non-Volatile Memory – a memory device that retains the data it stores, even when
electric power is removed.

Overlays – a technique for handling programs that are larger than available memory,
older than Virtual Memory Addressing. Different parts of the program are
arranged to share the same memory, with each overlay loaded on demand when
another part of the program calls into it. The use of overlays has largely been
succeeded by virtual memory addressing where it is available, but it may still be
used in memory-limited embedded environments or where precise programmer
or compiler control of memory usage improves performance.

Page – a collection of memory addresses treated as a unit for partitioning memory
between applications or swapping out to disk.

Page Fault – an interrupt triggered by an attempt to access a virtual memory address
not currently in physical memory, and thus the need to swap virtual memory
from disk to physical memory.

POD – shorthand for "Plain Old Data" – term used in the Standard (§IS-1.8¶5) to
describe a data type which is compatible with the equivalent data type in C in
layout, initialization, and its abil ity to be copied with memcpy.

PROM – Programmable Read Only Memory. It is equivalent to ROM in the context
of this document.

RAM – Random Access Memory. Memory device type for holding data or code. The
RAM content can be modified by the processor. Content in RAM can be
accessed more quickly than that in ROM, but is not persistent through a power
outage.

Real-Time – refers to a system in which average performance and throughput must
meet defined goals, but some variation in performance of individual operations
can be tolerated (also Soft Real-Time). Hard Real-Time means that every
operation must meet specified timing constraints.

ROM – Read Only Memory. A memory device type, normally used for holding
program code, but may contain data of static storage duration as well. Content
in ROM can not be modified by the processor.

PDTR 18015 Technical Report on C++ Performance

Version for PDTR approval ballot Page 13 of 189

ROMable – refers to entities that are appropriate for placement in ROM in order to
reduce usage of RAM or to enhance performance.

ROMability – refers to the process of placing entities into ROM so as to enhance the
performance of programs written in C++.

RTTI – Run-T ime Type Information. Information generated by the compiler which
makes it possible to determine at run-time if an object is of a specified type.

Stack Size – the portion of a program's memory image devoted to data with automatic
storage duration, also with certain bookkeeping information to manage the
code's flow of control when call ing and returning from functions. Sometimes the
data structures for exception handling are also stored on the stack (§2.4.1.1).

Swap –
Swapped Out –
Swapping – the process of moving part of a program’s code or data from fast RAM to

a slower form of storage such as a hard disk. See also Working Set and Virtual
Memory Addressing.

System-on-Chip (SoC) – a term referring to an embedded system where most of the
functionality of the system is implemented on a single chip, including the
processor(s), RAM and ROM.

Text Size – a common alternative name for Code Size.

UDC – commonly used shorthand for a User Defined Conversion, which refers to the
use, implicit or explicit, of a class member conversion operator.

Up-Cast – a cast of an object to one of its base class subobjects. This does not
require RTTI and can use the static_cast<...> operator.

VBC – commonly used shorthand for a Virtual Base Class (§IS-10.1¶4). A single
sub-object of the VBC is shared by every sub-object in an inheritance graph
which declares it as a virtual base.

Virtual Memory Addressing – a technique for enabling a program to address more
memory space than is physically available. Typically, portions of the memory
space not currently being addressed by the processor can be “swapped out" to
disk space. A mapping function, sometimes implemented in specialized
hardware, translates program addresses into physical hardware addresses. When
the processor needs to access an address not currently in physical memory, some
of the data in physical memory is written out to disk and some of the stored
memory is read from disk into physical memory. Since reading and writing to
disk is slower than accessing memory devices, minimizing swaps leads to faster
performance.

Working Set – the portion of a running program that at any given time is physically
in memory and not swapped out to disk or other form of storage device.

WPA – Whole Program Analysis. A term used to refer to the process of examining
the fully linked and resolved program for optimization possibil ities. Traditional
analysis is performed on a single translation unit (source file) at a time.

Technical Report on C++ Performance PDTR 18015

Page 14 of 189 Version for PDTR approval ballot

1.2 Typical Application Areas
Since no computer has infinite resources, all programs have some kind of limiting
constraints. However, many programs never encounter these limits in practice. Very
small and very large systems are those most likely to need effective management of
limited resources.

1.2.1 Embedded Systems
Embedded systems have many restrictions on memory-size and timing requirements
that are more significant than are typical for non-embedded systems. Embedded
systems are used in various application areas as follows1:

• Scale:
�

 Small

These systems typically use single chips containing both ROM and
RAM. Single-chip systems (System-on-Chip or SoC) in this category
typically hold approximately 32 KBytes for RAM and 32, 48 or 64
KBytes for ROM2.

Examples of applications in this category are:
� engine control for automobiles
� hard disk controllers
� consumer electronic appliances
� smart cards, also called Integrated Chip (IC) cards – about the

size of a credit card, they usually contain a processor system
with code and data embedded in a chip which is embedded (in
the literal meaning of the word) in a plastic card. A typical size
is 4 KBytes of RAM, 96 KBytes of ROM and 32 KBytes
EEPROM. An even more constrained smart card in use
contains 12 KBytes of ROM, 4 KBytes of flash memory and
only 600 Bytes of RAM data storage.

�
 Medium

These systems typically use separate ROM and RAM chips to execute
a fixed application, where size is limited. There are different kinds of
memory device, and systems in this category are typically composed of
several kinds to achieve different objectives for cost and speed.
Examples of applications in this category are:

� hand-held digital VCR
� printer
� copy machine
� digital still camera – one common model uses 32 MBytes of

flash memory to hold pictures, plus faster buffer memory for

1
 Typical systems during the year 2003.

2
 These numbers are derived from the popular C8051 chipset.

PDTR 18015 Technical Report on C++ Performance

Version for PDTR approval ballot Page 15 of 189

temporary image capture, and a processor for on-the-fly image
compression.

�
 Large

These systems typically use separate ROM and RAM devices, where
the application is flexible and the size is relatively unlimited.
Examples of applications in this category are:

� personal digital assistant (PDA) – equivalent to a personal
computer without a separate screen, keyboard, or hard disk

� digital television
� set-top box
� car navigation system
� central controllers for large production lines of manufacturing

machines

• Timing:

Of course, systems with soft real-time or hard real-time constraints are not
necessarily embedded systems; they may run on hosted environments.

�
 Critical (soft real-time and hard real-time systems)

Examples of applications in this category are:
� motor control
� nuclear power plant control
� hand-held digital VCR
� mobile phone
� CD or DVD player
� electronic musical instruments
� hard disk controllers
� digital television
� digital signal processing (DSP) applications

�
 Non-critical

Examples of applications in this category are:
� digital still camera
� copy machine
� printer
� car navigation system

1.2.2 Servers
For server applications, the performance-critical resources are typically speed
(e.g. transactions per second), and working-set size (which also impacts
throughput and speed). In such systems, memory and data storage are
measured in terms of megabytes, gigabytes or even terabytes.

Often there are soft real-time constraints bounded by the need to provide
service to many clients in a timely fashion. Some examples of such

Technical Report on C++ Performance PDTR 18015

Page 16 of 189 Version for PDTR approval ballot

applications include the central computer of a public lottery where transactions
are heavy, or large scale high-performance numerical applications, such as
weather forecasting, where the calculation must be completed within a certain
time.

These systems are often described in terms of dozens or even hundreds of
multiprocessors, and the prime limiting factor may be the Mean Time Between
Failure (MTBF) of the hardware (increasing the amount of hardware results in
a decrease of the MTBF – in such a case, high-efficiency code would result in
greater robustness).

PDTR 18015 Technical Report on C++ Performance

Version for PDTR approval ballot Page 17 of 189

2 Language Features:
Overheads and Strategies

Does the C++ language have inherent complexities and overheads which make it
unsuitable for performance-critical applications? For a program written in the C-
conforming subset of C++, will penalties in code size or execution speed result from
using a C++ compiler instead of a C compiler? Does C++ code necessarily result in
“unexpected” functions being called at run-time, or are certain language features, like
multiple inheritance or templates, just too expensive (in size or speed) to risk using?
Do these features impose overheads even if they are not explicitly used?

This Technical Report examines the major features of the C++ language that are
perceived to have an associated cost, whether real or not:

• Namespaces
• Type Conversion Operators
• Inheritance
• Run-Time Type Information (RTTI)
• Exception handling (EH)
• Templates
• The Standard IOStreams Library

2.1 Namespaces
Namespaces do not add any significant space or time overheads to code. They do,
however, add some complexity to the rules for name lookup. The principal advantage
of namespaces is that they provide a mechanism for partitioning names in large
projects in order to avoid name clashes.

Namespace qualifiers enable programmers to use shorter identifier names when
compared with alternative mechanisms. In the absence of namespaces, the
programmer has to explicitly alter the names to ensure that name clashes do not occur.
One common approach to this is to use a canonical prefix on each name:

st at i c c har * m yl i b_name = " My R eal l y U se fu l L i br ar y" ;
st at i c c har * m yl i b_copyr i ght = " June 1 5, 2 003" ;

st d: : cout < < " Name: " < < myl i b_name << s t d: : endl
 << " Copyr i ght : " < < myl i b_copyr i ght << s t d: : endl ;

Technical Report on C++ Performance PDTR 18015

Page 18 of 189 Version for PDTR approval ballot

Another common approach is to place the names inside a class and use them in their
qualified form:

cl ass T hi sLi bI nf o {
 st at i c c har * name;
 st at i c c har * copyr i ght ;
};

ch ar * T hi sLi bI nf o: : name = " Anot her U sefu l Li br ar y" ;
ch ar * T hi sLi bI nf o: : copyr i ght = " August 1 7, 20 03";

st d: : cout < < " Name: " < < T hi sLi bI nf o: :n ame << s t d: : endl
 << " Copyr i ght : " < < T hi sLi bI nf o: :c opyr i ght < < s t d: : endl;

With namespace s, the number of characters necessary is similar to the class

alternative, but unlike the class alternative, quali fication can be avoided with using

declarations which move the unqualified names into the current scope, thus allowing
the names to be referenced by their shorter form. This saves the programmer from
having to type those extra characters in the source program, for example:

namespace T hi sLi bI nf o {
 char * name = " Yet A not her U sef ul Li br ar y" ;
 char * copyr i ght = " December 1 8, 2 003";
};

us i ng T hi sLi bI nf o: : name;
us i ng T hi sLi bI nf o: : copyr i ght;

st d: : cout < < " Name: " < < n ame << std : : endl
 << " Copyr i ght : " < < c opyr i ght < < std : : endl ;

When referencing names from the same enclosing namespace, no using declaration
or namespace quali fication is necessary.

With all names, longer names take up more space in the program’s symbol table and
may add a negligible amount of time to dynamic linking. However, there are tools
which will strip the symbol table from the program image and reduce this impact.

2.2 Type Conversion Operators
C and C++ permit explicit type conversion using cast notation (§IS-5.4), for example:

in t i _pi = (i nt) 3. 14159;

Standard C++ adds four additional type conversion operators, using syntax that looks
like function templates, for example:

in t i = s t at i c_cast <i nt >(3. 14159) ;

The four syntactic forms are:

const_cast<Type>(expression) // §IS-5.2.11
static_cast<Type>(expression) // §IS-5.2.9
reinterpret_cast<Type>(expression) // §IS-5.2.10
dynamic_cast<Type>(expression) // §IS-5.2.7

PDTR 18015 Technical Report on C++ Performance

Version for PDTR approval ballot Page 19 of 189

The semantics of cast notation (which is still recognized) are the same as the type
conversion operators, but the latter distinguish between the different purposes for
which the cast is being used. The type conversion operator syntax is easier to identify
in source code, and thus contributes to writing programs that are more likely to be
correct3. It should be noted that as in C, a cast may create a temporary object of the
desired type, so casting can have run-time implications.

The first three forms of type conversion operator have no size or speed penalty versus
the equivalent cast notation. Indeed, it is typical for a compiler to transform cast
notation into one of the other type conversion operators when generating object code.
However, dynamic_cast<T> may incur some overhead at run-time if the required
conversion involves using RTTI mechanisms such as cross-casting (§2.3.8).

2.3 Classes and Inheritance
Programming in the object-oriented style often involves heavy use of class
hierarchies. This section examines the time and space overheads imposed by the
primitive operations using classes and class hierarchies. Often, the alternative to
using class hierarchies is to perform similar operations using lower-level facil ities.
For example, the obvious alternative to a virtual function call i s an indirect function
call . For this reason, the costs of primitive operations of classes and class hierarchies
are compared to those of similar functionality implemented without classes. See
“Inside the C++ Object Model” [BIBREF-17] for further information.

Most comments about run-time costs are based on a set of simple measurements
performed on three different machine architectures using six different compilers run
with a variety of optimization options. Each test was run multiple times to ensure that
the results were repeatable. The code is presented in Appendix D:. The aim of these
measurements is neither to get a precise statement of optimal performance of C++ on
a given machine nor to provide a comparison between compilers or machine
architectures. Rather, the aim is to give developers a view of relative costs of
common language constructs using current compilers, and also to show what is
possible (what is achieved in one compiler is in principle possible for all). We know
– from specialized compilers not in this study and reports from people using
unreleased beta versions of popular compilers – that better results are possible.

In general, the statements about implementation techniques and performance are
believed to be true for the vast majority of current implementations, but are not meant
to cover experimental implementation techniques, which might produce better – or
just different – results.

2.3.1 Representation Overheads
A class without a virtual function requires exactly as much space to represent as a
struct with the same data members. That is, no space overhead is introduced from
using a class compared to a C struc t . A class object does not contain any data

3
 I f the compiler does not provide the type conversion operators natively, it is possible to implement them using function

templates. Indeed, prototype implementations of the type conversion operators were often implemented this way.

Technical Report on C++ Performance PDTR 18015

Page 20 of 189 Version for PDTR approval ballot

that the programmer does not explicitly request (apart from possible padding to
achieve appropriate alignment, which may also be present in C struct s). In
particular, a non-virtual function does not take up any space in an object of its class ,
and neither does a static data or function member of the class .

A polymorphic class (a class that has one or more virtual functions) incurs a per-
object space overhead of one pointer, plus a per-class space overhead of a “virtual
function table” consisting of one or two words per virtual function. In addition, a per-
class space overhead of a “type information object” (also called “run-time type
information” or RTTI) is typically about 40 bytes per class, consisting of a name
string, a couple of words of other information and another couple of words for each
base class. Whole program analysis (WPA) can be used to eliminate unused virtual
function tables and RTTI data. Such analysis is particularly suitable for relatively
small programs that do not use dynamic linking, and which have to operate in a
resource-constrained environment such as an embedded system.

Some current C++ implementations share data structures between RTTI support and
exception handling support, thereby avoiding representation overhead specifically for
RTTI.

Aggregating data items into a small class or struct can impose a run-time overhead
if the compiler does not use registers effectively, or in other ways fails to take
advantage of possible optimizations when class objects are used. The overheads
incurred through the failure to optimize in such cases are referred to as “the
abstraction penalty” and are usually measured by a benchmark produced by Alex
Stepanov (D.3). For example, if accessing a value through a trivial smart pointer is
significantly slower than accessing it through an ordinary pointer, the compiler is
inefficiently handling the abstraction. In the past, most compilers had significant
abstraction penalties and several current compilers still do. However, at least two
compilers4 have been reported to have abstraction penalties below 1% and another a
penalty of 3%, so eliminating this kind of overhead is well within the state of the art.

4
 These are production compilers, not just experimental ones.

PDTR 18015 Technical Report on C++ Performance

Version for PDTR approval ballot Page 21 of 189

2.3.2 Basic Class Operations
Calling a non-virtual, non-static, non-inline member function of a class costs as much
as calling a freestanding function with one extra pointer argument indicating the data
on which the function should operate. Consider a set of simple runs of the test
program described in Appendix D:

Table 2.3-1 #1 #2 #3 #4 #5

Non- vi r t ual : px- >f (1) 0.019 0.002 0.016 0.085 0

 g(ps, 1) 0.020 0.002 0.016 0.067 0

Non- vi r t ual : x . g(1) 0.019 0.002 0.016 0.085 0

 g(&s, 1) 0.019 0 0.016 0.067 0.001

St at i c m ember : X: : h(1) 0.014 0 0.013 0.069 0

 h(1) 0.014 0 0.013 0.071 0.001

The compiler/machine combinations #1 and #2 match traditional “common sense”
expectations exactly, by having calls of a member function exactly match calls of a
non-member function with an extra pointer argument. As expected, the two last calls
(the X::h(1) call of a static member function and the h(1) call of a global function)
are faster because they don’t pass a pointer argument. Implementations #3 and #5
demonstrate that a clever optimizer can take advantage of implicit inlining and
(probably) caching to produce results for repeated calls that are 10 times (or more)
faster than if a function call is generated. Implementation #4 shows a small (<15%)
advantage to non-member function calls over member function calls, which
(curiously) is reversed when no pointer argument is passed. Implementations #1, #2,
and #3 were run on one system, while #4 and #5 were run on another.

The main lesson drawn from this table is that any differences that there may be
between non-virtual function calls and non-member function calls are minor and far
less important than differences between compilers/optimizers.

2.3.3 Virtual Functions
Calling a virtual function is roughly equivalent to calli ng a function through a pointer
stored in an array:

Table 2.3-2 #1 #2 #3 #4 #5

Vi r t ual : px- >f (1) 0.025 0.012 0.019 0.078 0.059

Pt r - t o- f ct : p[1] (ps, 1) 0.020 0.002 0.016 0.055 0.052

Vi r t ual : x . f (1) 0.020 0.002 0.016 0.071 0

Pt r - t o- f ct : p[1] (&s, 1) 0.017 0.013 0.018 0.055 0.048

Technical Report on C++ Performance PDTR 18015

Page 22 of 189 Version for PDTR approval ballot

When averaged over a few runs, the minor differences seen above smooth out,
il lustrating that the cost of virtual function and pointer-to-function calls is identical.
Here it is the compiler/machine combination #3 that most closely matches the naïve
model of what is going on. For x.f(1) implementations #2 and #5 recognize that the
virtual function table need not be used because the exact type of the object is known
and a non-virtual call can be used. Implementations #4 and #5 appear to have
systematic overheads for virtual function calls (caused by treating single-inheritannce
and multiple inheritance equivalently, and thus missing an optimization). However,
this overhead is on the order of 20% and 12% – far less than the variabil ity between
compilers.

Comparing Table 2.3-1 and Table 2.3-2, we see that implementations #1, #2, #3, and
#5 confirm the obvious assumption that virtual calls (and indirect calls) are more
expensive than non-virtual calls (and direct calls). Interestingly, the overhead is in the
range 20% to 25% where one would expect it to be, based on a simple count of
operations performed. However, implementations #2 and #5 demonstrate how
(implicit) inlining can yield much larger gains for non-virtual calls. Implementation
#4 counter-intuitively shows virtual calls to be faster than non-virtual ones. If nothing
else, this shows the danger of measurement artifacts. It may also show the effect of
additional effort in hardware and optimizers to improve the performance of indirect
function calls.

2.3.3.1 Vir tual functions of class templates
Virtual functions of a class template can incur overhead. If a class template has
virtual member functions, then each time the class template is specialized it will have
to generate new specializations of the member functions and their associated support
structures such as the virtual function table.

A straight-forward library implementation could produce hundreds of KBytes in this
case, much of which is pure replication at the instruction level of the program. The
problem is a library modularity issue. Putting code into the template, when it does
not depend on template-parameters and could be separate code, may cause each
instantiation to contain potentially large and redundant code sequences. One
optimization available to the programmer is to use non-template helper functions, and
to describe the template implementation in terms of these helper functions. For
example, many implementations of the std::map class store data in a red-black tree
structure. Because the red-black tree is not a class template, its code need not be
duplicated with each instantiation of std::map .

A similar technique places non-parametric functionality that doesn’t need to be in a
template into a non-template base class. This technique is used in several places in
the standard library. For example, the std::ios_base class (§IS-27.4.2) contains
static data members which are shared by all instantiations of input and output streams.
Finally, it should be noted that the use of templates and the use of virtual functions are
often complementary techniques. A class template with many virtual functions could
be indicative of a design error, and should be carefully re-examined.

PDTR 18015 Technical Report on C++ Performance

Version for PDTR approval ballot Page 23 of 189

2.3.4 Inlining
The discussion above considers the cost of a function call to be a simple fact of life (it
does not consider it to be overhead). However, many function calls can be eliminated
through inlining. C++ allows explicit inlining to be requested, and popular
introductory texts on the language seem to encourage this for small time-critical
functions. Basically, C++’s inline is meant to be used as a replacement for C’s
function-style macros. To get an idea of the effectiveness of inline , compare calls of
an inline member of a class to a non-inline member and to a macro.

Table 2.3-3 #1 #2 #3 #4 #5

Non- i nl i ne: px- >g(1) 0.019 0.002 0.016 0.085 0

Non- i nl i ne: x . g(1) 0.019 0.002 0.016 0.085 0

In l i ne: ps- >k(1) 0.007 0.002 0.006 0.005 0

Macr o: K(ps, 1) 0.005 0.003 0.005 0.006 0

In l i ne: x . k(1) 0.005 0.002 0.005 0.006 0

Macr o: K(&s, 1) 0.005 0 0.005 0.005 0.001

The first observation here is that inlining provides a significant gain over a function
call (the body of these functions is a simple expression, so this is the kind of function
where one would expect the greatest advantage from inlining). The exceptions are
implementations #2 and #5, which already have achieved significant optimizations
through implicit inlining. However, implicit inlining cannot (yet) be relied upon for
consistent high performance. For other implementations, the advantage of explicit
inlining is significant (factors of 2.7, 2.7, and 17).

2.3.5 Multiple Inheritance
When implementing multiple inheritance, there exists a wider array of implementation
techniques than for single inheritance. The fundamental problem is that each call has
to ensure that the this pointer passed to the called function points to the correct sub-
object. This can cause time and/or space overhead. The this pointer adjustment is
usually done in one of two ways:

• The caller retrieves a suitable offset from the virtual function table and adds it
to the pointer to the called object, or

• a “thunk” is used to perform this adjustment. A thunk is a simple fragment of
code that is called instead of the actual function, and which performs a
constant adjustment to the object pointer before transferring control to the
intended function.

Technical Report on C++ Performance PDTR 18015

Page 24 of 189 Version for PDTR approval ballot

Table 2.3-4 #1 #2 #3 #4 #5

SI , n on- vi r t ual : px- >g(1) 0.019 0.002 0.016 0.085 0

Base1, n on- v i r t ual : pc- >g(i) 0.007 0.003 0.016 0.007 0.004

Base2, n on- v i r t ual : pc- >gg(i) 0.007 0.004 0.017 0.007 0.028

SI , v i r t ual : px- >f (1) 0.025 0.013 0.019 0.078 0.059

Base1, v i r t ual : pa- >f (i) 0.026 0.012 0.019 0.082 0.059

Base2, v i r t ual : pb- >f f (i) 0.025 0.012 0.024 0.085 0.082

Here, implementations #1 and #4 managed to inline the non-virtual calls in the
multiple inheritance case, where they had not bothered to do so in the single
inheritance case. This demonstrates the effectiveness of optimization and also that we
cannot simply assume that multiple inheritance imposes overheads.

It appears that implementations #1 and #2 do not incur extra overheads from multiple
inheritance compared to single inheritance. This could be caused by imposing
multiple inheritance overheads redundantly even in the single inheritance case.
However, the comparison between (single inheritance) virtual function calls and
indirect function calls in Table 2.3-2 shows this not to be the case.

Implementations #3 and #5 show overhead when using the second branch of the
inheritance tree, as one would expect to arise from a need to adjust a this pointer. As
expected, that overhead is minor (25% and 20%) except where implementation #5
misses the opportunity to inline the call to the non-virtual function on the second
branch. Again, differences between optimizers dominate differences between
different kinds of calls.

2.3.6 Virtual Base Classes
A virtual base class adds additional overhead compared to a non-virtual (ordinary)
base class. The adjustment for the branch in a multiply-inheriting class can be
determined statically by the implementation, so it becomes a simple add of a constant
when needed. With virtual base classes, the position of the base class subobject with
respect to the complete object is dynamic and requires more evaluation – typically
with indirection through a pointer – than for the non-virtual MI adjustment.

Table 2.3-5 #1 #2 #3 #4 #5

SI , n on- vi r t ual : px- >g(1) 0.019 0.002 0.016 0.085 0

VBC, n on- v i r t ual : pd- >gg(i) 0.010 0.010 0.021 0.030 0.027

SI , v i r t ual : px- >f (1) 0.025 0.013 0.019 0.078 0.059

VBC, v i r t ual : pa- >f (i) 0.028 0.015 0.025 0.081 0.074

PDTR 18015 Technical Report on C++ Performance

Version for PDTR approval ballot Page 25 of 189

For non-virtual function calls, implementation #3 appears closest to the naïve
expectation of a slight overhead. For implementations #2 and #5 that slight overhead
becomes significant because the indirection implied by the virtual base class causes
them to miss an opportunity for optimization. There doesn’t appear to be a
fundamental problem with inlining in this case, but it is most likely not common
enough for the implementers to have bothered with – so far. Implementations #1 and
#4 again appear to be missing a significant optimization opportunity for “ordinary”
virtual function calls. Counter intuitively, using a virtual base produces faster code!

The overhead implied by using a virtual base in a virtual call appears small.
Implementations #1 and #2 keep it under 15%, implementation #4 gets that overhead
to 3% but (from looking at implementation #5) that is done by missing optimization
opportunities in the case of a “normal” single inheritance virtual function call.

As always, simulating the effect of this language feature through other language
features also carries a cost. If a programmer decides not to use a virtual base class,
yet requires a class that can be passed around as the interface to a variety of classes,
an indirection is needed in the access to that interface and some mechanism for
finding the proper class to be invoked by a call through that interface must be
provided. This mechanism would be at least as complex as the implementation for a
virtual base class, much harder to use, and less likely to attract the attention of
optimizers.

2.3.7 Type Information
Given an object of a polymorphic class (a class with at least one virtual function), a
type_info object can be obtained through the use of the typeid operator. In
principle, this is a simple operation which involves finding the virtual function table,
through that finding the most-derived class object of which the object is part, and then
extracting a pointer to the type_info object from that object’s virtual function table
(or equivalent). To provide a scale, the first row of the table shows the cost of a call
of a global function taking one argument:

Table 2.3-6 #1 #2 #3 #4 #5

Gl obal : h(1) 0.014 0 0.013 0.071 0.001

On b ase: t ypei d(pa) 0.079 0.047 0.218 0.365 0.059

On d er i ved: t ypei d(pc) 0.079 0.047 0.105 0.381 0.055

On VBC: t ypei d(pa) 0.078 0.046 0.217 0.379 0.049

VBC o n d er i ved: t ypei d(pd) 0.081 0.046 0.113 0.382 0.048

There is no reason for the speed of typeid to differ depending on whether a base is
virtual or not, and the implementations reflect this. Conversely, one could imagine a
difference between typeid for a base class and typeid on an object of the most
derived class. Implementation #3 demonstrates this. In general, typeid seems very
slow compared to a function call and the small amount of work required. It is likely

Technical Report on C++ Performance PDTR 18015

Page 26 of 189 Version for PDTR approval ballot

that this high cost is caused primarily by typeid being an infrequently used operation
which has not yet attracted the attention of optimizer writers.

2.3.8 Dynamic Cast
Given a pointer to an object of a polymorphic class, a cast to a pointer to another base
subobject of the same derived class object can be done using a dynamic_cast . In
principle, this operation involves finding the virtual function table, through that
finding the most-derived class object of which the object is part, and then using type
information associated with that object to determine if the conversion (cast) is
allowed, and finally performing any required adjustments of the this pointer. In
principle, this checking involves the traversal of a data structure describing the base
classes of the most derived class. Thus, the run-time cost of a dynamic_cast may
depend on the relative positions in the class hierarchy of the two classes involved.

Table 2.3-7 #1 #2 #3 #4 #5

Vi r t ual c al l : px- >f (1) 0.025 0.013 0.019 0.078 0.059

Up- cast t o b ase1: cast (pa, pc) 0.007 0 0.003 0.006 0

Up- cast t o b ase2: cast (pb, pc) 0.008 0 0.004 0.007 0.001

Down- cast f r om base1: cast (pc, pa) 0.116 0.148 0.066 0.640 0.063

Down- cast f r om base2: cast (pc, pb) 0.117 0.209 0.065 0.632 0.070

Cr oss- cast : cast (pb, pa) 0.305 0.356 0.768 1.332 0.367
2- l evel u p- cast t o b ase1:
 cast (pa, pcc) 0.005 0 0.005 0.006 0.001
2- l evel u p- cast t o b ase2:
 cast (pb, pcc) 0.007 0 0.006 0.006 0.001
2- l evel d own- cast f r om base1:
 cast (pcc, pa) 0.116 0.148 0.066 0.641 0.063
2- l evel d own- cast f r om base2:
 cast (pcc, pb) 0.117 0.203 0.065 0.634 0.077

2- l evel c r oss- cast : cast (pa, pb) 0.300 0.363 0.768 1.341 0.377

2- l evel c r oss- cast : cast (pb, pa) 0.308 0.306 0.775 1.343 0.288

As with typeid , we see the immaturity of optimizer technology. However,
dynamic_cast is a more promising target for effort than is typeid . While
dynamic_cast is not an operation likely to occur in a performance critical loop of a
well-written program, it does have the potential to be used frequently enough to
warrant optimization:

• An up-cast (cast from derived class to base class) can be compiled into a
simple this pointer adjustment, as done by implementations #2 and #5.

• A down-cast (from base class to derived class) can be quite complicated (and
therefore quite expensive in terms of run-time overhead), but many cases are

PDTR 18015 Technical Report on C++ Performance

Version for PDTR approval ballot Page 27 of 189

simple. Implementation #5 shows that a down-cast can be optimized to the
equivalent of a virtual function call, which examines a data structure to
determine the necessary adjustment of the this pointer (if any). The other
implementations use simpler strategies involving several function calls (about
4, 10, 3, and 10 calls, respectively).

• Cross-casts (casts from one branch of a multiple inheritance hierarchy to
another) are inherently more complicated than down-casts. However, a cross-
cast could in principle be implemented as a down-cast followed by an up-cast,
so one should expect the cost of a cross-cast to converge on the cost of a
down-cast as optimizer technology matures. Clearly these implementations
have a long way to go.

2.4 Exception Handling
Exception handling provides a systematic and robust approach to coping with errors
that cannot be recovered from locally at the point where they are detected.

The traditional alternatives to exception handling (in C, C++, and other languages)
include:

• Returning error codes
• Setting error state indicators (e.g. errn o)
• Calling error handling functions
• Escaping from a context into error handling code using longjmp

• Passing along a pointer to a state object with each call

When considering exception handling, it must be contrasted to alternative ways of
dealing with errors. Plausible areas of comparison include:

• Programming style
• Robustness and completeness of error handling code
• Run-time system (memory size) overheads
• Overheads from handling an individual error

Consider a trivial example:

doubl e f 1(i nt a) { r et ur n 1 . 0 / a ; }
doubl e f 2(i nt a) { r et ur n 2 . 0 / a ; }
doubl e f 3(i nt a) { r et ur n 3 . 0 / a ; }

doubl e g (i nt x , i nt y , i nt z)
{
 r et ur n f 1(x) + f 2(y) + f 3(z);
}

This code contains no error handling code. There are several techniques to detect and
report errors which predate C++ exception handling:

vo i d e r r or (const c har * e)
{
 / / h andl e e r r or
}

Technical Report on C++ Performance PDTR 18015

Page 28 of 189 Version for PDTR approval ballot

doubl e f 1(i nt a)
{
 i f (a < = 0) {
 er r or (" bad i nput v al ue f or f 1() ") ;
 r et ur n 0;
 }
 el se
 r et ur n 1 . 0 / a;
}

in t e r r or _st at e = 0 ;

doubl e f 2(i nt a)
{
 i f (a < = 0) {
 er r or _st at e = 7 ;
 r et ur n 0;
 }
 el se
 r et ur n 2 . 0 / a;
}

doubl e f 3(i nt a , i nt * e r r)
{
 i f (a < = 0) {
 * er r = 7;
 r et ur n 0;
 }
 el se
 r et ur n 3 . 0 / a;
}

in t g (i nt x , i nt y , i nt z)
{
 doubl e x x = f 1(x) ;
 doubl e y y = f 2(y) ;

 i f (er r or _st at e) {
 / / h andl e e r r or
 }

 i nt s t at e = 0 ;
 doubl e z z = f 3(z, &st at e);

 i f (st at e) {
 / / h andl e e r r or
 }
 r et ur n x x + y y + z z;
}

Ideally a real program would use a consistent error handling style, but such
consistency is often hard to achieve in a large program. Note that the error_state

technique is not thread safe unless the implementation provides support for thread
unique static data, and branching with if(error_state) may interfere with pipeline
optimizations in the processor. Note also that it is hard to use the error() function
technique effectively in programs where error() may not terminate the program.
However, the key point here is that any way of dealing with errors that cannot be
handled locally implies space and time overheads. It also complicates the structure of
the program.

PDTR 18015 Technical Report on C++ Performance

Version for PDTR approval ballot Page 29 of 189

Using exceptions the example could be written like this:

st r uct E r r or {
 i nt e r r or _number;
 Er r or (i nt n) : e r r or _number (n) { }
};

doubl e f 1(i nt a)
{
 i f (a < = 0)
 t hr ow Er r or (1);
 r et ur n 1 . 0 / a;
}

doubl e f 2(i nt a)
{
 i f (a < = 0)
 t hr ow Er r or (2);
 r et ur n 2 . 0 / a;
}

doubl e f 3(i nt a)
{
 i f (a < = 0)
 t hr ow Er r or (3);
 r et ur n 3 . 0 / a;
}

in t g (i nt x , i nt y , i nt z) {
 t r y {
 r et ur n f 1(x) + f 2(y) + f 3(z);
 } c at ch (Er r or & e r r) {
 / / h andl e e r r or
 }
}

When considering the overheads of exception handling, we must remember to take
into account the cost of alternative error handling techniques.

The use of exceptions isolates the error handling code from the normal flow of
program execution, and unlike the error code approach, it cannot be ignored or
forgotten. Also, automatic destruction of stack objects when an exception is thrown
renders a program less likely to leak memory or other resources. With exceptions,
once a problem is identified, it cannot be ignored – failure to catch and handle an
exception results in program termination5. For a discussion of techniques for using
exceptions, see Appendix E of “The C++ Programming Language” [BIBREF-30].

Early implementations of exception handling resulted in significant increases in code
size and/or some run-time overhead. This led some programmers to avoid it and
compiler vendors to provide switches to suppress the use of exceptions. In some
embedded and resource-constrained environments, use of exceptions was deliberately
excluded either because of fear of overheads or because available exception
implementations could not meet a project’s requirements for predictability.

5
 Many programs catch all exceptions in main() to ensure graceful exit from totally unexpected errors. However, this does not

catch unhandled exceptions that may occur during the construction or destruction of static objects (§IS-15.3¶13).

Technical Report on C++ Performance PDTR 18015

Page 30 of 189 Version for PDTR approval ballot

We can distinguish three sources of overhead:

• try-blocks Data and code associated with each try-block or catch clause.

• regular functions Data and code associated with the normal execution of
functions that would not be needed had exceptions not existed, such as missed
optimization opportunities.

• throw-expressions Data and code associated with throwing an exception.

Each source of overhead has a corresponding overhead when handling an error using
traditional techniques.

2.4.1 Exception Handling Implementation Issues and Techniques
The implementation of exception handling must address several issues:

• try-block Establishes the context for associated catch clauses.

• catch clause The EH implementation must provide some run-time type-
identification mechanism for finding catch clauses when an exception is
thrown.

There is some overlapping – but not identical – information needed by both
RTTI and EH features. However, the EH type-information mechanism must
be able to match derived classes to base classes even for types without virtual
functions, and to identify built-in types such as int . On the other hand, the
EH type-information does not need support for down-casting or cross-casting.

Because of this overlap, some implementations require that RTTI be enabled
when EH is enabled.

• Cleanup of handled exceptions Exceptions which are not re-thrown must
be destroyed upon exit of the catch clause. The memory for the exception
object must be managed by the EH implementation.

• Automatic and temporary objects with non-trivial destructors Destructors
must be called if an exception occurs after construction of an object and before
its lifetime ends (§IS-3.8), even if no try/catch is present. The EH
implementation is required to keep track of all such objects.

• Construction of objects with non-trivial destructors If an exception
occurs during construction, all completely constructed base classes and sub-
objects must be destroyed. This means that the EH implementation must track
the current state of construction of an object.

• throw-expression A copy of the exception object being thrown must be
allocated in memory provided by the EH implementation. The closest
matching catch clause must then be found using the EH type-information.
Finally, the destructors for automatic, temporary, and partially constructed
objects must be executed before control is transferred to the catch clause.

PDTR 18015 Technical Report on C++ Performance

Version for PDTR approval ballot Page 31 of 189

• Enforcing exception specifications Conformance of the thrown types to the
list of types permitted in the exception-specification must be checked. If a
mismatch is detected, the unexpected-handler must be called.

• operator new If an exception is thrown during construction of an
object with dynamic storage duration (§IS-3.7.3), after calling the destructors
for the partially constructed object the corresponding operator delete must
be called to deallocate memory.

Again, a similar mechanism to the one implementing try/catch can be used.

Implementations vary in how costs are allocated across these elements.

The two main strategies are:

• The “code” approach, where code is associated with each try-block, and
• The “table” approach, which uses compiler-generated static tables.

There are also various hybrid approaches. This paper only discusses the two principal
implementation approaches.

2.4.1.1 The " Code" Approach
Implementations using this approach have to dynamically maintain auxil iary data-
structures to manage the capture and transfer of the execution contexts, plus other
dynamic data-structures involved in tracking the objects that need to be unwound in
the event of an exception. Early implementations of this approach used
setjmp /longjmp to return to a previous context. However, better performance can be
obtained using special-purpose code. It is also possible to implement this model
through the systematic use of (compiler generated) return codes. Typical ways in
which the code approach deals with the issues identified in 2.4.1 are as follows:

• try-block Save the execution environment and push a reference to catch
code on EH stack at try-block entry.

• Automatic and temporary objects with non-trivial destructors Register each
constructed object together with its destructor in preparation for later
destruction. Typical implementations use a linked list structure on the stack.
If an exception is thrown, this list is used to determine which objects need to
be destroyed.

• Construction of objects with non-trivial destructors One well-known
implementation increments a counter for each base class and subobject as they
are constructed. If an exception is thrown during construction, the counter is
used to determine which parts need to be destroyed.

• throw-expression After the catch clause has been found, invoke the
destructors for all constructed objects in the region of the stack between the
throw-expression and the associated catch clause. Restore the execution
environment associated with the catch clause.

Technical Report on C++ Performance PDTR 18015

Page 32 of 189 Version for PDTR approval ballot

2.4.1.1.1 Space Overhead of the “ Code” Approach

• No exception handling cost is associated with an individual object, so object
size is unaffected.

• Exception handling implies a form of RTTI, which may require some increase
to code size, data size or both.

• Exception handling code is inserted into the object code for each try/catch.
• Code registering the need for destruction is inserted into the object code for

each stack object of a type with a non-trivial destructor.
• A cost is associated with checking the throw-specifications of the functions

that are called.

2.4.1.1.2 Time Overhead of the “ Code” Approach

• On entry to each try-block
�

 Commit changes to variables enclosing the try-block
�

 Stack the execution context
�

 Stack the associated catch clauses
• On exit from each try-block

�
 Remove the associated catch clauses

�
 Remove the stacked execution context

• When call ing regular functions
�

 If a function has an exception-specification, register it for checking
• As local and temporary objects are created

�
 Register each one with the current exception context as it is created

• On throw or re-throw
�

 Locate the corresponding catch clause (if any) – this involves some
run-time check (possibly resembling RTTI checks)
If found, then:

� destroy the registered local objects
� check the exception-specifications of the functions called in-

between
� use the associated execution context of the catch clause

Otherwise:
� call the terminate_handler 6

• On entry to each catch clause
�

 Remove the associated catch clauses
• On exit from each catch clause

�
 Retire the current exception object (destroy if necessary)

The “code” model distributes the code and associated data structures throughout the
program. This means that no separate run-time support system is needed. Such an
implementation can be portable and compatible with implementations that translate
C++ to C or another language.

6
 When the terminate_handle r is called because no matching exception handler was found, it is implementation-defined

whether the stack is unwound and local objects are destroyed (§IS-15.5.1).

PDTR 18015 Technical Report on C++ Performance

Version for PDTR approval ballot Page 33 of 189

There are two primary disadvantages of the “code” model:

• The associated stack and run-time costs can be high for try-block entry.
• Even when no exceptions are thrown, the bookkeeping of the exception

handling stack must be performed for automatic, temporary and partially
constructed objects.

 That is, code unrelated to error handling is slowed down by the mere possibil ity of
exceptions being used. This is similar to error-handling strategies that consistently
check error state or return values.

The cost of this (in this model, unavoidable) bookkeeping varies dramatically from
implementation to implementation. However, one vendor reports speed impact of
about 6% for a C++ to ISO C translator. This is generally considered a very good
result.

2.4.1.2 The " Table" Approach
Typical implementations using this approach will generate read-only tables for
determining the current execution context, locating catch clauses and tracking objects
needing destruction. Typical ways in which the table approach deals with the issues
identified in 2.4.1 are as follows:

• try-block This method incurs no run-time cost. All bookkeeping is pre-
computed as a mapping between program counter and code to be executed in
the event of an exception. Tables increase program image size but may be
moved away from working set to improve locality of reference. Tables can be
placed in ROM or, on hosted systems with virtual memory, can remain
swapped out until an exception is actually thrown.

• Automatic and temporary objects with non-trivial destructors No run-
time costs are associated with normal execution. Only in the event of an
exception is it necessary to intrude on normal execution.

• throw-expression The statically generated tables are used to locate
matching handlers and intervening objects needing destruction. Again, no
run-time costs are associated with normal execution.

2.4.1.2.1 Space Overhead of the “ Table” Approach

• No exception handling cost is associated with an object, so object size is
unaffected.

• Exception handling implies a form of RTTI, implying some increase in code
and data size.

• This model uses statically allocated tables and some library run-time support.
• A run-time cost is associated with checking the throw-specifications of the

functions that are called.

Technical Report on C++ Performance PDTR 18015

Page 34 of 189 Version for PDTR approval ballot

2.4.1.2.2 Time Overhead of the “ Table” Approach

• On entry to each try-block
�

 Some implementations commit changes in execution state to variables
in the scopes enclosing the try-block – other implementations use a
more sophisticated state table7

• On exit from each try-block
�

 No overhead
• When call ing regular functions

�
 No overhead

• As each local and temporary object is created
�

 No overhead
• On throw or re-throw

�
 Using the tables, determine if there is an appropriate catch clause

If there is, then:
� destroy all local, temporary and partially constructed objects

that occur between the throw-expression and the catch clause
� check that the exception honors the exception-specifications of

functions between the throw and the handler
� transfer control to the catch clause

Otherwise:
� call the terminate_handler 8

• On entry to each catch clause
�

 No overhead
• On exit from each catch clause

�
 No overhead

The primary advantage of this method is that no stack or run-time costs are associated
with managing the try/catch or object bookkeeping. Unless an exception is thrown,
no run-time overhead is incurred.

Disadvantages are that implementation is more complicated, and does not lend itself
well to implementations that translate to another high-level language, such as C. The
static tables can be quite large. This may not be a burden on systems with virtual
memory, but the cost can be significant for some embedded systems. All associated
run-time costs occur only when an exception is thrown. However, because of the
need to examine potentially large and/or complex state tables, the time it takes to
respond to an exception may be large, variable, and dependent on program size and
complexity. This needs to be factored into the probable frequency of exceptions. The
extreme case is a system optimized for infrequent exceptions where the first throw of
an exception may cause disk accesses.

7
 In such implementations, this effectively makes the variables partially volatile and may prejudice other optimizations as a

result.
8
 When the terminate_handle r is called because no matching exception handler was found, it is implementation-defined

whether the stack is unwound and local objects are destroyed (§IS-15.5.1).

PDTR 18015 Technical Report on C++ Performance

Version for PDTR approval ballot Page 35 of 189

One vendor reported a code and data space impact of about 15% for the generated
tables. It is possible to do better, as this vendor had no need to optimize for space.

2.4.2 Predictabili ty of Exception Handling Overhead

2.4.2.1 Prediction of throw/catch Per for mance
For some programs, difficulty in predicting the time needed to pass control from a
throw-expression to an appropriate catch clause is a problem. This uncertainty comes
from the need to destroy automatic objects and – in the “table” model – from the need
to consult the table. In some systems, especially those with real-time requirements, it
is important to be able to predict accurately how long operations wil l take.

For this reason current exception handling implementations may be unsuitable for
some applications. However, if the call tree can be statically determined, and the
table method of EH implementation is used, it is possible to statically analyze the
sequence of events necessary to transfer control from a given throw-expression to the
corresponding catch clause. Each of the events could then be statically analyzed to
determine their contribution to the cost, and the whole sequence of events aggregated
into a single cost domain (worst-case and best-case, unbounded, indeterminate). Such
analysis does not differ in principle from current time estimating methods used for
non-exception code.

One of the reservations expressed about EH is the unpredictable time that may elapse
after a throw-expression and before control passes to the catch clause while automatic
objects are being destroyed. It should be possible to determine accurately the costs of
the EH mechanism itself, and the cost of any destructors invoked would need to be
determined in the same way as the cost of any other function is determined.

Given such analysis, the term “unpredictable” is inappropriate. The cost may be quite
predictable, with a well-determined upper and lower bound. In some cases (recursive
contexts, or conditional call trees), the cost may not be determined statically. For
real-time applications, it is generally most important to have a determinate time
domain, with a small deviation between the upper and lower bound. The actual speed
of execution is often less important.

2.4.2.2 Exception Specifications
In general, an exception-specification must be checked at run-time. For example:

vo i d f (i nt x) t hr ow (A, B)
{
 / / w hat ever
}

Technical Report on C++ Performance PDTR 18015

Page 36 of 189 Version for PDTR approval ballot

will in a straightforward implementation generate code roughly equivalent to:

vo i d f (i nt x)
{
 t r y {
 / / w hat ever
 } c at ch (A&) {
 t hr ow;
 } c at ch (B&) {
 t hr ow;
 } c at ch (. . .) {
 unexpect ed();
 }
}

In principle, static analysis (especially whole program analysis) can be used to
eliminate such tests. This may be especially relevant for applications that do not
support dynamic linking, which are not so large or complex as to defeat analysis, and
do not change so frequently as to make analysis expensive. Dependent on the
implementation, empty exception-specifications can be especially helpful for
optimization.

The use of an empty exception-specification should reduce overheads. The caller of a
function with an empty exception-specification can perform optimizations based on
the knowledge that a called function will never throw any exception. In particular,
objects with destructors in a block where no exception can be thrown need not be
protected against exceptions. That is, in the “code” model no registration is needed,
and in the “table” model no table entry needs to be made for that object. For example:

in t f (i nt a) t hr ow () ;

ch ar g (const s t d: : st r i ng& s)
{
 st d: : s t r i ng s 2 = s;
 i nt m axi mum = s t at i c_cast <i nt >(s. s i ze());
 i nt x = f (maxi mum);
 i f (x < 0 | | m axi mum <= x)
 x = 0 ;
 r et ur n s 2[x];
}

Here the compiler need not protect against the possibil ity of an exception
being thrown after the construction of s2 .

There is of course no requirement that a compiler performs this optimization.
However, a compiler intended for high-performance use is likely to perform it.

2.5 Templates

2.5.1 Template Overheads
A class template or function template will generate a new instantiation of code each
time it is specialized with different template-parameters. This can lead to an
unexpectedly large amount of code and data9. A typical way to ill ustrate this problem

9
 Virtual function tables, EH state tables, etc.

PDTR 18015 Technical Report on C++ Performance

Version for PDTR approval ballot Page 37 of 189

is to create a large number of Standard Library containers to hold pointers of various
types. Each type can result in an extra set of code and data being generated.

In one experiment, a program instantiating 100 instances of a single specialization of
std::list<T*>, for some type T, was compared with a second program instantiating
a single instance of std::list<T*> for 100 different types T. (See Appendix D.2 for
sample code.) These programs were compiled with a number of different compilers
and a variety of different compiler options. The results varied widely, with one
compiler producing code for the second program that was over 19 times as large as
the first program; and another compiler producing code for the first program that was
nearly 3 times as large as the second.

The optimization here is for the compiler to recognize that while there may be many
specializations with different types, at the level of machine code-generation, the
specializations may actually be identical (the type system is not relevant to machine
code).

While it is possible for the compiler or linker to perform this optimization
automatically, the optimization can also be performed by the Standard Library
implementation or by the application programmer.

If the compiler supports partial specialization and member function templates, the
library implementer can provide partial specializations of containers of pointers to a
single underlying implementation that uses void* . This technique is described in The
C++ Programming Language 3rd edition [BIBREF-30].

In the absence of compiler or library support, the same optimization technique can be
employed by the programmer by writing a class template called, perhaps, plist<T> ,
that is implemented using std::list<void*> to which all operations of plist<T>

are delegated.

Source code must then refer to plist<T > rather than std::list<T*> , so the
technique is not transparent, but it is a workable solution in the absence of tool or
library support. Variations of this technique can be used with other templates.

2.5.2 Templates vs. Inheritance
Any non-trivial program needs to deal with data structures and algorithms. Because
data structures and algorithms are so fundamental, it is important that their use be as
simple and error-free as possible.

The template containers in the Standard C++ Library are based on principles of
generic programming, rather than the inheritance approach used in other languages
such as Smalltalk. An early set of foundation classes for C++, called the National
Institutes of Health Class Library (NIHCL), was based on a class hierarchy following
the Smalltalk tradition.

Of course, this was before templates had been added to the C++ language, but it is
useful in il lustrating how inheritance compares to templates in the implementation of
programming idioms such as containers.

Technical Report on C++ Performance PDTR 18015

Page 38 of 189 Version for PDTR approval ballot

In the NIH Class Library, all classes in the tree inherited from a root class Object ,
which defined interfaces for identifying the real class of an object, comparing objects,
and printing objects10. Most of the functions were declared virtual, and so had to be
overridden by derived classes11. The hierarchy also included a class Class that
provided a library implementation of RTTI (which was also not yet part of the C++
language). The Collection classes, themselves derived from Object , could hold
only other objects derived from Object which implemented the necessary virtual
functions.

But the NIHCL had several disadvantages due to its use of inheritance versus
templates for the implementation of container classes. The following is a portion of
the NIHCL hierarchy (taken from the README file):

NIHCL - L i br ar y S t at i c M ember V ar i abl es a nd Funct i ons
 Object - R oot o f t he N I H Cl ass L i br ar y In her i t ance T r ee
 Bitset - S et o f S mal l I nt eger s (l i ke Pascal ' s t ype S ET)
 Class - C l ass D escr i pt or
 Collection - A bst r act C l ass f or C ol le ct i ons
 Arraychar - B yt e A r r ay
 ArrayOb - A r r ay o f O bj ect P oi nt ers
 Bag - U nor der ed C ol l ect i on o f O bj ec ts
 SeqCltn - A bst r act C l ass f or O r dere d, I ndexed C ol l ect i ons
 Heap - M i n- Max H eap o f O bj ect Poi nt er s
 LinkedList - S i ngl y- Li nked Li st
 OrderedCltn - O r der ed C ol l ect io n o f O bj ect P oi nt ers
 SortedCltn - S or t ed C ol le ct i on
 KeySortCltn - K eyed Sor t ed C ol l ect i on
 Stack - S t ack o f O bj ect P oi nt er s
 Set - U nor der ed C ol l ect i on o f N on- Dupl i cat e O bj ects
 Dictionary - S et o f A ssoci ati ons
 IdentDict - D i ct i onar y Ke yed b y O bj ect A ddr ess
 IdentSet - S et K eyed b y O bj ec t Addr ess
 Float - F l oat i ng P oi nt N umber
 Fraction - R at i onal A r i t hmet i c
 Integer - I nt eger N umber O bj ect
 Iterator - C ol l ect i on I t er at or
 Link - A bst r act C l ass f or L i nkedLi st Li nks
 LinkOb - L i nk C ont ai ni ng O bj ect Poi nt er
 LookupKey - A bst r act C l ass f or D i ct io nar y A ssoci at i ons
 Assoc - A ssoci at i on o f O bj ect P oi nt er s
 AssocInt - A ssoci at i on o f O bj ect Poi nt er w i t h I nt eger
 Nil - T he N i l O bj ect
 Vector - A bst r act C l ass f or V ect ors
 BitVec - B i t V ect or
 ByteVec - B yt e V ect or
 ShortVec - S hor t I nt eger V ect or
 IntVec - I nt eger V ect or
 LongVec - L ong I nt eger V ect or
 FloatVec - F l oat i ng P oi nt V ect or
 DoubleVec - D oubl e- Pr eci si on F l oati ng P oi nt V ect or

10

 The Objec t class itself inherited from class NIHCL , which encapsulated some static data members used by all classes.
11

 Presumably, had the NIHCL been written today, these would have been pure virtual functions.

PDTR 18015 Technical Report on C++ Performance

Version for PDTR approval ballot Page 39 of 189

Thus the class KeySortCltn (roughly equivalent to std::map), is seven layers deep
in the hierarchy:

NIHCL
 Object
 Collection
 SeqCltn
 OrderedCltn
 SortedCltn
 KeySortCltn

Because a linker cannot know which virtual functions will be called at run-time, it
typically includes the functions from all the preceding levels of the hierarchy for each
class in the executable program. This can lead to code bloat without templates.

There are other performance disadvantages to inheritance-based collection classes:

• Primitive types cannot be inserted into the collections. Instead, these must be
replaced with classes in the Object hierarchy, which are programmed to have
similar behavior to primitive arithmetic types, such as Integer and Float .
This circumvents processor optimizations for arithmetic operations on
primitive types. In addition, it is diff icult to duplicate exactly the behavior of
primitive types through class member functions and operators.

• Because C++ has compile-time type checking, providing type-safe containers
for different contained data types requires code to be duplicated for each type.
Type safety is the reason that template containers are instantiated multiple
times. To avoid this duplication of code, the NIHCL collections hold pointers
to a generic type – the base Object class. However, this is not type-safe and
requires run-time checks to ensure objects are type-compatible with the
contents of the collections. It also leads to many more dynamic memory
allocations, which can hinder performance. Because classes used with the
NIHCL must inherit from Object and are required to implement a number of
virtual functions, this solution is intrusive on the design of classes from the
problem domain. For this reason alone, the obligation to inherit from
class Object often means that the use of multiple inheritance also becomes
necessary, since domain specific classes may have their own hierarchical
organization. The C++ Standard Library containers do not impose such
requirements on their contents12.

• The C++ Standard Library establishes a set of principles for combining data
structures and algorithms from different sources. Inheritance-based libraries
from different vendors – where the algorithms are implemented as member
functions of the containers – can be difficult to integrate and difficult to
extend.

12

 A class used in a standard container must be Assignable and CopyConstructible ; often it additionally needs to have
a default constructor and implement operator == and operator <.

Technical Report on C++ Performance PDTR 18015

Page 40 of 189 Version for PDTR approval ballot

2.6 Programmer Directed Optimizations

2.6.1 General Considerations
There are many factors that influence the performance of a computer program. At one
end of the scale is the high-level design and architecture of the overall system, at the
other is the raw speed of the hardware and operating system software on which the
program runs. Assuming that the applications programmer has no control over these
factors of the system, what can be done at the level of writing code to achieve better
performance?

Compilers typically use a heuristic process in optimizing code that may be different
for small and large programs. Therefore, it is difficult to recommend any techniques
that are guaranteed to improve performance in all environments. It is vitally
important to measure a performance-critical application in the target environment and
concentrate on improving performance where bottlenecks are discovered. Because so
many factors are involved, measuring actual performance can be diff icult but remains
an essential part of the performance tuning process.

The best way to optimize a program is to use space- and time-efficient data structures
and algorithms. For example, changing a sequential search routine to a binary search
will reduce the average number of comparisons required to search a sorted N-element
table from about N/2 to just log2N; for N=1000, this is a reduction from 500
comparisons to 10. For N=1,000,000, the average number of comparisons is 20.

Another example is that std::vector is a more compact data structure than
std::list . A typical std::vector<int> implementation will use about three words
plus one word per element, whereas a typical std::list<int> implementation will
use about two words plus three words per element. That is, assuming
sizeof(int)==4 , a standard vector of 1,000 int s will occupy approximately 4,000
bytes, whereas a list of 1,000 int s will occupy approximately 12,000 bytes. Thanks
to cache and pipeline effects, traversing such a vector will be much faster than
traversing the equivalent list. Typically, the compactness of the vector will also
assure that moderate amounts of insertion or erasure will be faster than for the
equivalent list. There are good reasons for std::vector being recommended as the
default standard library container13.

The C++ Standard Library provides several different kinds of containers, and
guarantees how they compare at performing common tasks. For example, inserting an
element at the end of an std::vector takes constant time (unless the insertion forces
a memory reallocation), but inserting one at the beginning or in the middle takes
linear time increasing with the number of elements that have to be moved to make
space for the new element. With an std::list on the other hand, insertion of an
element takes constant time at any point in the collection, but that constant time is
somewhat slower than adding one to the end of a vector. Finding the Nth element in
an std::vector involves a simple constant-time arithmetic operation on a random-

13

 The recommendation comes from Bjarne Stroustrup in [BIBREF-30] and from Alex Stepanov in private correspondence with
him.

PDTR 18015 Technical Report on C++ Performance

Version for PDTR approval ballot Page 41 of 189

access iterator accessing contiguous storage, whereas an std::list would have to be
traversed one element at a time, so access time grows linearly with the number of
elements. A typical implementation of std::map maintains the elements in sorted
order in a red-black tree structure, so access to any element takes logarithmic time.
Though not a part of the C++ Standard Library (at the time this is written), a
hash_map is capable of faster lookups than an std::map , but is dependent on a well-
chosen hash function and bucket size. Poor choices can degrade performance
significantly.

Always measure before attempting to optimize – it is very common for even
experienced programmers to guess incorrectly about performance implications of
choosing one kind of container over another. Often performance depends critically on
the machine architecture and the quality of optimizer used.

The C++ Standard Library also provides a large number of algorithms with
documented complexity guarantees. These are functions that apply operations to a
sequence of elements. Achieving good performance, as well as correctness, is a major
design factor in these algorithms. These can be used with the Standard containers,
with native arrays, or with newly written containers, provided they conform to the
Standard interfaces.

If profil ing reveals a bottleneck, small local code optimizations may be effective. But
it is very important always to measure first. Transforming code to reduce run-time or
space consumption can often decrease program readabil ity, maintainability,
modularity, portability, and robustness as a side effect. Such optimizations often
sacrifice important abstractions in favor of improving performance, but while the
performance cost may be reduced, the effect on program structure and maintainabil ity
needs to be factored into the decision to rewrite code to achieve other optimization
goals.

An old rule of thumb is that there is a trade-off between program size and execution
speed – that techniques such as declaring code inline can make the program larger
but faster. But now that processors make extensive use of on-board cache and
instruction pipelines, the smallest code is often the fastest as well. Compilers are free
to ignore inline directives and to make their own decisions about which functions to
inline, but adding the hint is often useful as a portable performance enhancement.
With small one- or two-line functions, where the implementation code generates
fewer instructions than a function preamble, the resulting code may well be both
smaller and faster.

Technical Report on C++ Performance PDTR 18015

Page 42 of 189 Version for PDTR approval ballot

Programmers are sometimes surprised when their programs call functions they have
not explicitly specified, maybe have not even written. Just as a single innocuous-
looking line of C code may be a macro that expands to dozens of lines of code,
possibly involving system calls which trap to the kernel with resulting performance
implications, a single line of C++ code may also result in a sequence of function calls
which is not obvious without knowledge of the full program. Simply declaring a
variable of user-defined type such as:

X v1; / / l ooks i nnocent
X v2 = 7 ; / / o bvi ousl y i ni t i al i zed

can result in hidden code being executed. In this case, the declaration of v1 implicitly
invokes the class X’s default constructor to initialize the object v1 . The purpose of
constructors and destructors is to make it impossible to forget mandatory processing
at the beginning and end of an object's lifetime. Depending on the class design, proper
initialization may involve memory allocations or system calls to acquire resources

Although declaring a user-defined variable in C does not implicitly invoke a
constructor, it is important to remember that the object must still be initialized and
that code would have to be explicitly called by the programmer. Resources would
also have to be explicitly released at the appropriate time. The initialization and
release code is more visible to the C programmer, but possibly less robust because the
language does not support it automatically.

Understanding what a C++ program is doing is important for optimization. If you
know what functions C++ silently writes and calls, careful programming can keep the
"unexpected" code to a minimum. Some of the works cited in the bibliography
(Appendix E:) provide more extensive guidance (e.g. [BIBREF-17]), but the
following sections provide some suggestions for writing more efficient code.

2.6.2 Object Construction
The construction of objects, though sometimes invisible, can be more expensive than
expected. Therefore some considerations about implementation can improve
application performance.

• In constructors, prefer initialization of data members to assignment. If a
member has a default constructor, that constructor will be called to initialize
the member before any assignment takes place. Therefore, an assignment to a
member within the constructor body can mean that the member is initialized as
well as assigned to, effectively doubling the amount of work done.

• As a general principle, do not define a variable before you are ready to
initialize it. Defining it early results in a constructor call (initialization)
followed by an assignment of the value needed, as opposed to simply
constructing it with the value needed. Apart from performance issues, there is
then no chance that the variable can be used before it has received its proper
initial value.

• Passing arguments to a function by value [e.g. void f (T x)] is cheap for
built-in types, but potentially expensive for class types since they may have a

PDTR 18015 Technical Report on C++ Performance

Version for PDTR approval ballot Page 43 of 189

non-trivial copy constructor. Passing by address [e.g. void f (T const* x)]
is light-weight, but changes the way the function is called. Passing by
reference-to-const [e.g. void f(T const& x)] combines the safety of
passing by value with the eff iciency of passing by address14.

• Calling a function with a type that differs from the function’s declared
argument type implies a conversion. Note that such a conversion can require
work to be done at run-time. For example:

vo i d f 1(doubl e) ;
f1 (7. 0) ; / / n o c onver si on (pass b y v al ue i mpl i es c opy)
f1 (7) ; / / c onver s i on: f1(double(7))

vo i d f 2(const d oubl e&);
f2 (7. 0) ; / / n o c onver si on
f2 (7) ; / / m eans: const double tmp = 7; f(tmp);

vo i d f 3(st d: : s t r i ng);
st d: : s t r i ng s = " MES" ;
f3 (s) ; / / n o c onver si on (pass b y v al ue i mpl i es c opy)
f3 (" NES") ; / / c onver s i on: f3(std::string("NES"));

vo i d f 4(const s t d: : s t r i ng&) ;
f4 (s) ; / / n o c onver si on (pass b y r ef er ence , n o c opy)
f4 (" AS") ; / / m eans: const std::string tmp("AS"); f4(tmp);

If a function is called several times with the same value, it can be worthwhile
to put the value in a variable of the appropriate type (such as s in the example
above) and pass that. That way, the conversion will be done once only.

• Unless you need automatic type conversions, declare all one-argument
constructors15 explicit . This will prevent them from being called
accidentally. Conversions can still be done when necessary by explicitly
stating them in the code, thus avoiding the penalty of hidden and unexpected
conversions.

• An empty body in a class constructor, or an unwritten default constructor, can
invoke an amount of code which may be surprising at first glance. This is
because all member subobjects and base subobjects with constructors must be
initialized as part of the class construction. Compiler-generated default
constructors are inline member functions, as are function definitions written
within the body of the class definition. Therefore an innocent-looking {} can
not be assumed to produce trivial machine code:

cl ass X
{
 A a;
 B b;
 v i r t ual v oi d f () ;
};

14

 Of course if the argument type and the expression type differ, a temporary variable may be created by the compiler.
15

 This refers to any constructor that may be called with a single argument. Multiple-parameter constructors with default
arguments can be called as one-argument constructors.

Technical Report on C++ Performance PDTR 18015

Page 44 of 189 Version for PDTR approval ballot

cl ass Y : p ubl i c X
{
 C c;
 D d;
};

cl ass Z : p ubl i c Y
{
 E e;
 F f;
publ i c:
 Z() { }
};
Z z;

The constructor for Z, itself only empty brackets, causes the compiler to
generate code to initialize all of the base classes and all data members, thus
invoking defined or compiler-generated constructors for classes A, B, X, C, D,
Y, E, and F. If all of these are inline and non-trivial, a substantial block of
machine code can be inserted at this point in the program. It will also initialize
the virtual table. Therefore it is important to know what functions will be
called when an object is initialized and to make active decisions on whether
that code should be placed inline. Empty-bracket functions are often used for
destructors as well , but a similar analysis of the costs should be performed
before making them inline.

2.6.3 Temporary Objects
When the compiler creates a temporary object of a user-defined type which has a
constructor, the same initialization takes place as if it were a declared variable. But
with careful programming the construction of temporary objects can sometimes be
avoided.

• Understand how and when the compiler generates temporary objects. Often
small changes in coding style can prevent the creation of temporaries, with
consequent benefits for run-time speed and memory footprint. Temporary
objects may be generated when initializing objects, passing parameters to
functions, or returning values from functions.

• Rewriting expressions can reduce or eliminate the need for temporary objects.
For example, if a, b, and c are objects of class Matrix :

Mat r i x a ; / / inefficient: don' t c r eat e an obj ect b ef ore
 / / i t i s r eal l y n eeded; d ef ault i ni t i al i zat i on
 / / c an b e e xpensi ve
a = b + c ; / / inefficient: (b + c) c r eat es a t empor ary
 / / o bj ect a nd t hen a ssi gns i t t o a
Mat r i x a = b ; / / better: no d ef aul t i nit ia l i zat i on
a += c ; / / better: no t empor ar y ob je ct s c r eat ed

Better yet, use a library that eliminates need for the rewrite using +=. Such
libraries, which are common in the numeric C++ community, usually use

PDTR 18015 Technical Report on C++ Performance

Version for PDTR approval ballot Page 45 of 189

function objects and expression templates to yield uncompromisingly fast code
from conventional-looking source.

• Use the return value optimization to give the compiler a hint that temporary
objects can be eliminated. This technique enables the compiler to use the
memory for a function's return value to hold a local object of the same type
that would otherwise have to be copied into the return value location, thus
saving the cost of the copy. This is usually signalled by inserting constructor
arguments into the return statement:

co nst R at i onal o per at or * (Rat i onal c onst & l hs ,
 Rat i onal c onst & r hs)
{
 r et ur n R at i onal (l hs. numer at or () * r hs. numer at or () ,
 l hs. denomi nat or () * r hs. denominat or ()) ;
}

Less carefully written code might create a local Rational variable to hold the
result of the calculation, use the assignment operator to copy it to a temporary
variable holding the return value, then copy that into a variable in the call ing
function.

// n ot t hi s w ay . ..
co nst R at i onal o per at or * (Rat i onal c onst & l hs ,
 Rat i onal c onst & r hs)
{
 Rat i onal t mp; / / c al l s t he d ef aul t c ons tr uct or (i f a ny)
 t mp. my_numer at or = l hs. numer at or () * rh s. numer at or ();
 t mp. my_denomi nat or = l hs. denomi nat or () * rh s. denomi nat or ();

 r et ur n t mp; / / c opi es tmp t o t he r etu rn v al ue, w hi ch is
// t hen c opi ed i nt o t he r ecei vi ng v ar i able

}

However, with recent improvements in compiler technology, modern
compilers may optimize this code in a similar manner.

• Prefer the prefix versus the postfix forms for increment and decrement
operators.

Postfix operators like i++ copy the existing value to a temporary object,
increment the internal value, and then return the temporary. Prefix operators
like ++i increment the actual value first and return a reference to it. With
objects such as iterator s, which may be structures containing pointers to
nodes, creating temporary copies may be expensive when compared to built-in
int s.

fo r (l i s t <X>: : i t er at or i t = m yl i st . begi n();
 i t ! = myl i s t . end() ;
 ++i t) / / N OTE: r at her t han it++
{
 / / . . .
}

• Sometimes it is helpful to “widen” the interface for a class with functions that
take different data types to prevent automatic conversions (such as adding an

Technical Report on C++ Performance PDTR 18015

Page 46 of 189 Version for PDTR approval ballot

overload on char * to a function which takes an std::string parameter).
The numerous overloads for operators +, ==, != , and < in the <string> header
are an example of such a "fat" interface16. If the only supported parameters
were std::string s, then characters and pointers to character arrays would
have to be converted to full std::string objects before the operator was
applied.

• A function with one or more default arguments can be called without
specifying its full argument list, relying on the compiler to insert the default
values. This necessarily requires the constructor to create a temporary object
for each default value. If the construction of that temporary is expensive and
if the function is called several times, it can be worth while to construct the
default argument value somewhere and use that value in each call. For
example:

cl ass C
{
publ i c:
 C(i nt i) { . . . } // p ossi bl y e xpensi ve
 i nt m f () c onst;
 / / . . .
};

in t f (const C & x = C (0)) { / / c onst r uct a new C(0) f or e ach
 / / c al l t o f ()
 r et ur n x . mf () ;
}

in t g () {
 st at i c c onst C x (0) ; / / c onst r uct x i n t he f i r st c all
 r et ur n x . mf () ;
}

co nst C c 0(0) ; / / c onst r uct c 0 f or u se i n cal l s o f h ()
in t h (const C & x = c 0) {
 r et ur n x . mf () ;
}

16

 It is also worth noting that even if a conversion is needed, it is sometimes better to have the conversion performed in one
place, where an overloaded “ wrapper” function calls the one that really performs the work. This can help to reduce program size,
where each caller would otherwise perform the conversion.

PDTR 18015 Technical Report on C++ Performance

Version for PDTR approval ballot Page 47 of 189

2.6.4 Function Inlining
• Object-oriented programming often leads to a number of small functions per

class, often with trivial implementation. For example:

cl ass X
{
pr i vat e:
 i nt val ue_;
 doubl e* a r r ay_; / / p oi nt er t o a r r ay o f [si ze_] d oubl es
 si ze_t si ze_;
publ i c:
 i nt val ue() { r et ur n v al ue_; }
 si ze_t si ze() { r et ur n s i ze_; }
 / / . . .
};

Small forwarding functions can usually be inlined to advantage, especially if
they occupy less code space than preparing the stack frame for a function call .
As a rule of thumb, functions consisting of only one or two lines are generally
good candidates for inlining.

• When processors read ahead to maintain a pipeline of instructions, too many
function calls can slow down performance because of branching or cache
misses. Optimizers work best when they have stretches of sequential code to
analyze, because it gives them more opportunity to use register allocation,
code-movement, and common sub-expression elimination optimizations. This
is why inline functions can help performance, as inlining exposes more
sequential code to the optimizer. Manual techniques, such as avoiding
conditional code and unrolling short loops, also help the optimizer do a better
job.

• The use of dynamic binding and virtual functions has some overhead in both
memory footprint and run-time performance. This overhead is minor,
especially when compared with alternative ways of achieving run-time
polymorphism (§2.3.3). A bigger factor is that virtual functions may interfere
with compiler optimizations and inlining.

Note that virtual functions should be used only when run-time polymorphic
behavior is desired. Not every function needs to be virtual and not every class
should be designed to be a base class.

• Use function objects17 with the Standard Library algorithms rather than
function pointers. Function pointers defeat the data flow analyzers of many
optimizers, but function objects are passed by value and optimizers can easily
handle inline functions used on objects.

17

 Objects of a class type that has been designed to behave like a function, because it defines operator () as a member
function. Often all the member functions of such a type are defined inline for efficiency.

Technical Report on C++ Performance PDTR 18015

Page 48 of 189 Version for PDTR approval ballot

2.6.5 Object-Oriented Programming
• Many programs written in some conventional object-oriented styles are very

slow to compile, because the compiler must examine hundreds of header files
and tens of thousands of lines of code. However, code can be structured to
minimize re-compilation after changes. This typically produces better and
more maintainable designs, because they exhibit better separation of concerns.

Consider a classical example of an object-oriented program:

cl ass S hape {
publ i c : / / i nt er f ace t o u ser s o f S hapes
 vi r t ual v oi d d r aw() c onst ;
 vi r t ual v oi d r ot at e(i nt d egr ees);
 / / . . .
pr ot ect ed: / / c ommon d at a (f or i mpl ement ers of S hapes)
 Poi nt c ent er;
 Col or c ol ;
 / / . . .
};

cl ass C i r c l e : p ubl i c S hape {
publ i c:
 voi d dr aw() c onst;
 voi d r ot at e(i nt) { }
 / / . . .
pr ot ect ed:
 i nt r adi us;
 / / . . .
};

cl ass T r i angl e : p ubl i c S hape {
publ i c:
 voi d dr aw() c onst;
 voi d r ot at e(i nt) ;
 / / . . .
pr ot ect ed:
 Poi nt a ;
 Poi nt b ;
 Poi nt c ;
 / / . . .
};

The idea is that users manipulate shapes through Shape 's public interface, and
that implementers of derived classes (such as Circle and Triangle) share
aspects of the implementation represented by the protected members.

It is not easy to define shared aspects of the implementation that are helpful to
all derived classes. For that reason, the set of protected members is likely to
need changes far more often than the public interface. For example, even
though a center is arguably a valid concept for all Shapes, it is a nuisance to
have to maintain a Point for the center of a Triangle ; it makes more sense to
calculate the center if and only if someone expresses interest in it.

The protected members are likely to depend on implementation details that the
clients of Shape would rather not have to depend on. For example, much code
using a Shape will be logically independent of the definition of Color , yet the
presence of Color in the definition of Shape makes all of that code dependent

PDTR 18015 Technical Report on C++ Performance

Version for PDTR approval ballot Page 49 of 189

on the header files defining the operating system's notion of color, often
requiring that the client code is recompiled whenever such header files are
changed.

When something in the protected part changes, client code using Shape has to
be recompiled, even though only implementers of derived classes have access
to the protected members. Thus, the presence of "information helpful to
implementers" in the base class – which also acts as the interface to users – is
the source of several problems:

�
 Instabil ity in the implementation,

�
 Spurious recompilation of client code (when implementation

information changes), and
�

 Excess inclusion of header files into client code (because the
"information helpful to implementers" needs those headers).

This is sometimes known as the "brittle base class problem".

The obvious solution is to omit the "information helpful to implementers" for
classes that are used as interfaces to users. In other words, interface classes
should represent “pure” interfaces and therefore take the form of abstract
classes, for example:

cl ass S hape {
publ i c : / / i nt er f ace t o u ser s o f S hapes
 vi r t ual v oi d d r aw() c onst = 0 ;
 vi r t ual v oi d r ot at e(i nt d egr ees) = 0;
 vi r t ual P oi nt c ent er () c onst = 0;
 / / . . .
 / / n o d at a
};

cl ass C i r c l e : p ubl i c S hape {
publ i c:
 voi d dr aw() c onst;
 voi d r ot at e(i nt) { }
 Poi nt c ent er () c onst { r et ur n c ent ; }
 / / . . .
pr ot ect ed:
 Poi nt c ent;
 Col or c ol ;
 i nt r adi us;
 / / . . .
};

Technical Report on C++ Performance PDTR 18015

Page 50 of 189 Version for PDTR approval ballot

cl ass T r i angl e : p ubl i c S hape {
publ i c:
 voi d dr aw() c onst;
 voi d r ot at e(i nt) ;
 Poi nt c ent er () c onst;
 / / . . .
pr ot ect ed:
 Col or c ol ;
 Poi nt a ;
 Poi nt b ;
 Poi nt c ;
 / / . . .
};

The users are now insulated from changes to implementations of derived
classes. This technique has been known to decrease build times by orders of
magnitude.

But what if there really is some information that is common to all derived
classes (or even to several derived classes)? Simply place that information in a
class and derive the implementation classes from that:

cl ass S hape {
publ i c : / / i nt er f ace t o u ser s o f S hapes
 vi r t ual v oi d d r aw() c onst = 0 ;
 vi r t ual v oi d r ot at e(i nt d egr ees) = 0;
 vi r t ual P oi nt c ent er () c onst = 0;
 / / . . .
 / / n o d at a
};

st r uct C ommon {
 Col or c ol ;
 / / . . .
};

cl ass C i r c l e : p ubl i c S hape, p r ot ect ed C ommon {
publ i c:
 voi d dr aw() c onst;
 voi d r ot at e(i nt) { }
 Poi nt c ent er () c onst { r et ur n c ent ; }
 / / . . .
pr ot ect ed:
 Poi nt c ent;
 i nt r adi us;
};

cl ass T r i angl e : p ubl i c S hape, p r ot ect ed C ommon {
publ i c:
 voi d dr aw() c onst;
 voi d r ot at e(i nt) ;
 Poi nt c ent er () c onst;
 / / . . .
pr ot ect ed:
 Poi nt a ;
 Poi nt b ;
 Poi nt c ;
};

• Another technique for ensuring better separation between parts of a program
involves an interface object holding a single pointer to an implementation

PDTR 18015 Technical Report on C++ Performance

Version for PDTR approval ballot Page 51 of 189

object. This is often called “the PIMPL” (Pointer to IMPLementation18)
idiom. For example:

// I nt er f ace h eader :
cl ass V i si bl e {
 cl ass H i dden;
 . ..
 Hi dden* p I mpl ;
publ i c:
 voi d f cn1() ;
 . ..
};

// I mpl ement at i on s our ce:
cl ass V i si bl e: : Hi dden {
 . ..
publ i c:
 voi d f cn1_i mpl ();
 . ..
};

vo i d V i s i bl e: : f cn1() { p I mpl - >f cn1_i mpl () ; }

2.6.6 Templates
• Whenever possible, compute values and catch errors at translation time rather

than run-time. With sophisticated use of templates, a complicated block of
code can be compiled to a single constant in the executable, therefore having
zero run-time overhead. This might be described as code implosion (the
opposite of code explosion). For example:

te mpl at e < i nt N >
 cl ass F act or i al {
 publ i c:
 st at i c c onst i nt v al ue = N * F act or ia l< N- 1>: : val ue;
 } ;

cl ass F act or i al <1> {
publ i c:
 st at i c c onst i nt v al ue = 1;
};

Using this class template19, the value N! is accessible at compile-time as
Factorial<N>::value .

As another example, the following class and function templates can be used to
generate inline code to calculate the dot product of two arrays of numbers:

18

 Also known as the "Cheshire Cat” idiom.
19

 Within limitations, remember that if an int is 32-bits, the maximum N can be is just 12.

Technical Report on C++ Performance PDTR 18015

Page 52 of 189 Version for PDTR approval ballot

// G i ven a f or war d d ecl ar at i on:
te mpl at e < i nt D i m, c l ass T>
 st r uct d ot _cl ass;

// a s peci al i zed b ase c ase f or r ecur si on:
te mpl at e < cl ass T >
 st r uct d ot _cl ass<1, T> {
 st at i c i nl i ne T d ot (const T * a , c onst T * b)
 { r et ur n * a * * b; }
 } ;

// t he r ecur si ve t empl at e:
te mpl at e < i nt D i m, c l ass T>
 st r uct d ot _cl ass {
 st at i c i nl i ne T d ot (const T * a , c onst T * b)
 { r et ur n d ot _cl ass<Di m- 1, T>: : dot (a+1, b+1) +
 * a * * b; }
 } ;

// . . . a nd s ome s ynt act i c s ugar :
te mpl at e < i nt D i m, c l ass T>
 i nl i ne T d ot (const T * a , c onst T * b)
 { r et ur n d ot _cl ass<Di m, T>: : dot (a, b) ; }

// T hen
in t p r oduct = d ot <3>(a, b);

// r esul t s i n t he s ame (near -) opt i mal c ode as
in t p r oduct = a [0] * b[0] + a [1] * b[1] + a [2] * b[2] ;

Template meta-programming and expression templates are not techniques for
novice programmers, but an advanced practitioner can use them to good effect.

• Templates provide compile-time polymorphism, wherein type selection does
not incur any run-time penalty. If appropriate to the design, consider using
class templates as interfaces instead of abstract base classes. For some designs
it may be appropriate to use templates which can provide compile-time
polymorphism, while virtual functions which provide run-time polymorphism
may be more appropriate for others.

Templates have several useful properties: they impose no space or code
overhead on the class used as a template argument, and they can be attached to
the class for limited times and purposes. If the class does not provide the
needed functionality, it can be defined externally through template
specialization. If certain functions in the template interface are never used for
a given class, they need not be defined because they will not be instantiated.

In the example below, the talk_in_German() function in the "interface" is
only defined for class CuckooClock , because that is the only object for
which it is needed. Invoking talk_in_German() on an object of a different
type results in a compiler diagnostic:

#i ncl ude < i ost r eam>
us i ng s t d: : cout ;
us i ng s t d: : endl ;

PDTR 18015 Technical Report on C++ Performance

Version for PDTR approval ballot Page 53 of 189

// s ome d omai n o bj ect s
cl ass D og {
publ i c:
 voi d t al k() c onst { c out < < " woof w oof " << endl ; }
};

cl ass C uckooCl ock {
publ i c:
 voi d t al k() c onst { c out < < " cuckoo c ucko o" < < e ndl ; }
 voi d t al k_i n_Ger man() c onst { c out < < " wachet a uf ! " < <
endl ; }
};

cl ass B i gBenCl ock {
publ i c:
 voi d t al k() c onst { c out < < " t ake a t ea-b re ak" << e ndl ; }
 voi d p l ayBongs() c onst { c out < < " bi ng bo ng bi ng b ong" < <
endl ; }
};

cl ass S i l ent Cl ock {
 / / d oesn' t t alk
};

// g ener i c t empl at e t o p r ovi de n on- i nher i t anc e- based
// p ol ymor phi sm
te mpl at e < cl ass T >
cl ass T al kat i ve {
 T& t;
publ i c:
 Tal kat i ve(T& o bj) : t (obj) { }
 voi d t al k() c onst { t . t al k() ; }
 voi d t al k_i n_Ger man() c onst { t . t al k_i n_Ger man() ; }
};

// s peci al i zat i on t o a dapt f unct i onal i t y
te mpl at e <>
cl ass T al kat i ve<Bi gBenCl ock> {
 Bi gBenCl ock& t;
publ i c:
 Tal kat i ve(Bi gBenCl ock& o bj)
 : t (obj) { }
 voi d t al k() c onst { t . pl ayBongs() ; }
};

// s peci al i zat i on t o a dd m i ssi ng f unct i onal ity
te mpl at e <>
cl ass T al kat i ve<Si l ent Cl ock> {
 Si l ent Cl ock& t;
publ i c:
 Tal kat i ve(Si l ent Cl ock& o bj)
 : t (obj) { }
 voi d t al k() c onst { c out < < " t i ck t ock" << endl ; }
};

// a dapt er f unct i on t o s i mpl i f y s ynt ax i n u sa ge
te mpl at e < cl ass T >
Tal kat i ve<T> makeTal kat i ve(T& o bj) {
 r et ur n T al kat i ve<T>(obj);
}

Technical Report on C++ Performance PDTR 18015

Page 54 of 189 Version for PDTR approval ballot

// f unct i on t o u se a n o bj ect w hi ch i mpl ements t he
// Talkative t empl at e- i nt er f ace
te mpl at e < cl ass T >
vo i d makeI t Tal k(Tal kat i ve<T> t)
{
 t . t al k();
}

in t m ai n()
{
 Dog aDog;
 CuckooCl ock a CuckooCl ock;
 Bi gBenCl ock a Bi gBenCl ock;
 Si l ent Cl ock a Si l ent Cl ock;

 / / u se o bj ect s i n c ont ext s w hi ch d o n ot r equi r e t al k i ng
 / / . . .
 Tal kat i ve<Dog> t d(aDog) ;
 t d. t al k() ; / / w oof w oof

 Tal kat i ve<CuckooCl ock> t cc(aCuckooCl ock);
 t cc. t al k() ; // cuckoo c uckoo

 makeTal kat i ve(aDog) . t al k() ; / / w oof w oof
 makeTal kat i ve(aCuckooCl ock) . t al k_i n_Ger man() ; // w achet
 / / auf !

 makeI t Tal k(makeTal kat i ve(aBi gBenCl ock)) ; / / b i ng b ong
 / / b i ng b ong
 makeI t Tal k(makeTal kat i ve(aSi l ent Cl ock)) ; / / t i ck t ock

 r et ur n 0;
}

• Controlling the instantiation of class templates and function templates can help
to reduce the footprint of a program. Some compilers instantiate a template
only once into a separate "repository"; others instantiate every template into
every translation unit where it is used. In the latter case, the linker typically
eliminates duplicates. If it does not, the executable can suffer significant
memory overheads.

• Explicit instantiation of a class template specialization causes instantiation of
all of its members into the translation unit containing the explicit instantiation
directive. In addition to instantiating a class template as a whole, explicit
instantiation can also be used for a member function, member class, or static
data member of a class template, or a function template or member template
specialization.

For example (from §IS-14.7.2¶2):
te mpl at e<cl ass T > c l ass A r r ay { v oi d m f () ; };
te mpl at e c l ass A r r ay<char >;
te mpl at e v oi d A r r ay<i nt >: : mf ();

te mpl at e<cl ass T > v oi d s or t (Ar r ay<T>& v) { /* . . . * / }
te mpl at e v oi d s or t (Ar r ay<char >&) ;

PDTR 18015 Technical Report on C++ Performance

Version for PDTR approval ballot Page 55 of 189

namespace N {
 t empl at e<cl ass T > v oi d f (T&) {}
}
te mpl at e v oi d N : : f <i nt >(i nt &) ;

Explicitly instantiating template code into a library can save space in every
translation unit which links to it. For example, in their run-time libraries,
some library vendors provide instantiations of std::basic_string<char>

and std::basic_string<wchar_t> . Some compilers also have command-
line options to force complete template instantiation or to suppress it as
needed.

2.6.7 Standard L ibrary
• The Standard class std::string is not a lightweight component. Because it

has a lot of functionality, it comes with a certain amount of overhead. And
because the constructors of the Standard Library exception classes described
in Clause 19 of IS 14882 (although not their base class std::exception)
require an argument of type std::string , this overhead may be included in a
program inadvertently. In many applications, strings are created, stored, and
referenced, but never changed. As an extension, or as an optimization, it
might be useful to create a lighter-weight, unchangeable string class.

• Some implementations of std::list<T>::size() have linear complexity
rather than constant complexity. This latitude is allowed by the Standard
container requirements specified in §IS-23.1. Calling such a function inside a
loop would result in quadratic behavior. For the same reason it is better to use
constructs such as if(myList.empty()) rather than if(MyList.size()==0) .

• Input/output can be a performance bottleneck in C++ programs. By default,
the standard iostreams (cin , cout , cerr , clog , and their wide-character
counterparts) are synchronized with the C stdio streams (stdin , stdout ,
stderr), so that reads from cin and stdin , or writes to cout and stdout , can
be freely intermixed. However, this coupling has a performance cost, because
of the buffering in both kinds of streams. In the pre-standard "classic"
iostreams library, unsynchronized mode was the default.

If there is no need for a program to make calls to both standard C streams and
C++ iostreams, synchronization can be turned off with this line of code:

st d: : i os_base: : sync_wi t h_st di o(f al se) ;

If any input or output operation has occurred using the standard streams prior
to the call , the effect is implementation-defined. Otherwise, called with a false
argument, it allows the standard streams to operate independently of the
standard C streams (§IS-27.4.2.4).

Technical Report on C++ Performance PDTR 18015

Page 56 of 189 Version for PDTR approval ballot

Another standard default is to flush all output to cout before reading from
cin , for the purpose of displaying interactive prompts to the application user.
If this synchronized flushing is not needed, some additional performance can
be gained by disabling it:

st d: : c i n. t i e(0) ;

2.6.8 Additional Sugg estions
• Shift expensive computations from the most time-critical parts of a program to

the least time-critical parts (often, but not always, program start-up).
Techniques include lazy evaluation and caching of pre-computed values. Of
course, these strategies apply to programming in any language, not just C++.

• Dynamic memory allocation and deallocation can be a bottleneck. Consider
writing class-specific operator new() and operator delete() functions,
optimized for objects of a specific size or type. It may be possible to recycle
blocks of memory instead of releasing them back to the heap whenever an
object is deleted.

• Reference counting is a widely used optimization technique. In a single-
threaded application, it can prevent making unnecessary copies of objects.
However, in multi-threaded applications, the overhead of locking the shared
data representation may add unnecessary overheads, negating the performance
advantage of reference counting20.

• Pre-compute values that won't change. To avoid repeated function calls inside
a loop, rather than writing:

whi l e (myLi st I t er at or ! = myLi st . end()) . . .

fo r (s i ze_t n = 0 ; n < m yVect or . si ze() , + +n) .. .

instead call myList.end() or myVector.size() exactly once before the loop,
storing the result in a variable which can be used in the repeated comparison,
for example:

st d: : l i s t <myT>: : i t er at or m yEnd = m yLi st . end();
whi l e (myLi st I t er at or ! = myEnd) . ..

On the other hand, if a function such as myList.end() is so simple that it can
be inlined, the rewrite may not yield any performance advantage over the
original code when translated by a good compiler.

• When programming "close to the metal", such as for accessing low-level
hardware devices, some use of assembly code may be unavoidable. The C++
asm declaration (§IS-7.4) enables the use of assembly code to be minimized.

20

 Of course, if optimization for space is more important than optimization for time, reference counting may stil l be the best
choice.

PDTR 18015 Technical Report on C++ Performance

Version for PDTR approval ballot Page 57 of 189

The advantage of using short assembler functions can be lost if they have to be
placed in separate source files where the efficiency gained is over-shadowed
by the overhead of call ing and returning a function, plus attendant effects on
the instruction pipeline and register management. The asm declaration can be
used to insert small amounts of assembly code inline where they provide the
most benefit.

However, a compiler is typically unaware of the semantics of inlined assembly
instructions. Thus, use of inlined assembly instructions can defeat other
important optimizations such as common sub-expression elimination and
register allocation. Consequently, inline assembly code should be used only
for operations that are not otherwise accessible using C++.

2.6.9 Compilation Sugg estions
In addition to these portable coding techniques, programming tools offer additional
platform-specific help for optimizing programs. Some of the techniques available
include the following:

• Compiler options are usually extra arguments or switches, which pass
instructions to the compiler. Some of these instructions are related to
performance, and control how to:

�
 Generate executable code optimized for a particular hardware

architecture.
�

 Optimize the translated code for size or speed. Often there are sub-
options to exercise finer control of optimization techniques and how
aggressively they should be applied.

�
 Suppress the generation of debugging information, which can add to

code and data size.
�

 Instrument the output code for run-time profiling, as an aid to
measuring performance and to refine the optimization strategies used
in subsequent builds.

�
 Disable exception handling overhead in code which does not use

exceptions at all.
�

 Control the instantiation of templates.

• #pragma directives allow compilers to add features specific to machines and
operating systems, within the framework of Standard C++. Some of the
optimization-related uses of #pragma directives are to:

�
 Specify function calling conventions (a C++ linkage-specification can

also be used for this purpose).
�

 Influence the inline expansion of code.
�

 Specify optimization strategies on a function-by-function basis.

Technical Report on C++ Performance PDTR 18015

Page 58 of 189 Version for PDTR approval ballot

�
 Control the placement of code or data into memory areas (to achieve

better locality of reference at run-time).
�

 Affect the layout of class members (through alignment or packing
constraints, or by suppressing compiler-generated data members).

Note that #pragma s are not standardized and are not portable.

• Linking to static libraries or shared libraries, as appropriate. Linker options
can also be used to control the amount of extra information included in a
program (e.g., symbol tables, debugging formats).

• Utilities for efficiently allocating small blocks of memory. These may take the
form of system calls, #pragma s, compiler options, or libraries.

• Additional programs:
�

 Many systems have a utility program21 to remove the symbol table and
line number information from an object file, once debugging is
complete, or this can often be done at link-time using a linker specific
option. The purpose is to reduce file storage and, in some cases,
memory overhead.

�
 Some systems have utilities22 and tools to interpret profiling data and

identify run-time bottlenecks.

• Sometimes, minimizing compile-time is important. When code is being
created and debugged, suppressing optimization may enable the compiler to
run faster.

The most effective technique for reducing compile-time relies on reducing the
amount of code to be compiled. The key is to reduce coupling between
different parts of a program so as to minimize the size and number of header
files needed in most translation units. Some techniques for accomplishing this
include the use of abstract base classes as interfaces and the PIMPL idiom, as
discussed above.

Also, suppressing automatic template instantiation in a given translation unit
may reduce compile-time.

• Reading and parsing header code takes time. Years ago, the common practice
was to #includ e as few headers as possible, so that only necessary symbols
were declared. But with technology to pre-compile headers, build time may be
reduced by using a single header in each translation unit which #include s
everything needed for the program.

Well-designed headers will usually protect their contents against multiple
inclusion by following this pattern:

21

 For instance the strip util ity, which is part of the Software Development Util i ties option in the IEEE Posix/Open Group
Unix /ISO/IEC 9945:2002 specifications.
22

 For instance the prof util ity, which is not part of the Posix/Unix Standard, but is available on many systems.

PDTR 18015 Technical Report on C++ Performance

Version for PDTR approval ballot Page 59 of 189

#i f ! def i ned T HI S_HEADER_H
#def i ne T HI S_HEADER_H
 / / h er e a r e t he c ont ent s o f t he h eader
#endi f / * T HI S_HEADER_H * /

The header is said to be “idempotent” because, regardless of how many times
it is #include d, it has the effect of being #include d only once. If the
compiler provides the “idempotent guard” optimization, it will record in an
internal table the fact that this header is guarded by a macro. If this header is
subsequently #include d again, and the macro THIS_HEADER_H stil l remains
defined, then the compiler can avoid accessing the header contents.

If the compiler does not perform this optimization, the check can be
implemented by the programmer:

#i f ! def i ned MY_HEADER_H
#i ncl ude " my_header . h"
#endi f

This has the disadvantage of coupling the header’s guard macro to the source
files which #include that header.

As always, local measurements in specific circumstances should govern the
decision.

PDTR 18015 Technical Report on C++ Performance

Version for PDTR approval ballot Page 61 of 189

3 Creating Eff icient L ibrar ies
This section discusses techniques which can be used in creating any library. These
techniques are discussed in the context of an implementation of part of the C++
Standard Library.

3.1 The Standard IOStreams Library – Overview
The Standard IOStreams library (§IS-27) has a well-earned reputation of being
inefficient. Most of this reputation is, however, due to misinformation and naïve
implementation of this library component. Rather than tackling the whole library, this
report addresses eff iciency considerations related to a particular aspect used
throughout the IOStreams library, namely those aspects relating to the use of the
Locales (§IS-22). An implementation approach for removing most, if not all,
eff iciency problems related to locales is discussed in §3.2.

The efficiency problems come in several forms:

3.1.1 Executable Size
Typically, using anything from the IOStreams library drags in a huge amount of
library code, much of which is not actually used. The principal reason for this is the
use of std::locale in all base classes of the IOStreams library (e.g. std::ios_base

and std::basic_streambuf). In the worst case, the code for all required facets from
the Locales library (§IS-22.1.1.1.1¶4) is included in the executable. A milder form of
this problem merely includes code of unused functions from any facet from which one
or more functions are used. This is discussed in §3.2.2.

3.1.2 Execution Speed
Since certain aspects of IOStreams processing are distributed over multiple facets, it
appears that the Standard mandates an ineff icient implementation. But this is not the
case — by using some form of preprocessing, much of the work can be avoided.
With a slightly smarter linker than is typically used, it is possible to remove some of
these inefficiencies. This is discussed in §3.2.3 and §3.2.5.

Technical Report on C++ Performance PDTR 18015

Page 62 of 189 Version for PDTR approval ballot

3.1.3 Object Size
The Standard seems to mandate an std::locale object being embedded in each
std::ios_base and std::basic_streambuf object, in addition to several options
used for formatting and error reporting. This makes for fairly large stream objects.
Using a more advanced organization for stream objects can shift the costs to those
applications actually using the corresponding features. Depending on the exact
approach taken, the costs are shifted to one or more of:

• Compilation time
• Higher memory usage when actually using the corresponding features
• Execution speed

This is discussed in §3.2.6.

3.1.4 Compilation Time
A widespread approach for coping with the ubiquitous lack of support for exported
templates is to include the template implementations in the headers. This can result in
very long compile and link times if, for example, the IOStreams headers are included,
and especially if optimizations are enabled. With an improved approach using pre-
instantiation and consequent decoupling techniques, the compile-time can be reduced
significantly. This is discussed in §3.2.4.

3.2 Optimizing Libraries – Reference Example:
"An Efficient Implementation of Locales and IOStreams"

The definition of Locales in the C++ Standard (§IS-22) seems to imply a pretty
inefficient implementation. However, this is not true. It is possible to create eff icient
implementations of the Locales library, both in terms of run-time efficiency and
executable size. This does take some thought and this report discusses some of the
possibilities that can be used to improve the efficiency of std::locale

implementations with a special focus on the functionality as used by the IOStreams
library.

The approaches discussed in this report are primarily applicable to statically bound
executables as are typically found in, for example, embedded systems. If shared or
dynamically loaded libraries are used, different optimization goals have precedence,
and some of the approaches described here could be counterproductive. Clever
organization of the shared libraries might deal with some efficiency problems too;
however, this is not discussed in this report.

Nothing described in this report involves magic or really new techniques. It just
discusses how well known techniques may be employed to the benefit of the library
user. It does, however, involve additional work compared to a trivial implementation,
for the library implementer as well as for the library tester, and in some cases for the
compiler implementer. Some of the techniques focus on just one efficiency aspect
and thus not all techniques will be applicable in all situations (e.g. certain
performance improvements can result in additional code space). Depending on the

PDTR 18015 Technical Report on C++ Performance

Version for PDTR approval ballot Page 63 of 189

requirements, the library writer, or possibly even the library user, has to choose which
optimizations are most appropriate.

3.2.1 Implementation Basics for Locales
Before going into the details of the various optimizations, it is worth introducing the
implementation of Locales, describing features implicit to the Standard definition.
Although some of the material presented in this section is not strictly required and
there are other implementation alternatives, this section should provide the necessary
details to understand where the optimizations should be directed.

An std::locale object is an immutable collection of immutable objects, or more
precisely, of immutable facets. This immutabil ity trait is important in multi-threaded
environments, because it removes the need to synchronize most accesses to locales
and their facets. The only operations needing multi-threading synchronization are
copying, assigning, and destroying std::locale objects and the creation of modified
locales.

Instead of modifying a locale object to augment the object with a new facet or to
replace an existing one, std::locale constructors or member functions are used,
creating new locale objects with the modifications applied. As a consequence,
multiple locale objects can share their internal representation and multiple internal
representations can (in fact, have to) share their facets. When a modified locale object
is created, the existing facets are copied from the original and then the modification is
applied, possibly replacing some facets. For correct maintenance of the facets, the
Standard mandates the necessary interfaces, allowing reference counting or some
equivalent technique for sharing facets. The corresponding functionality is
implemented in the class std::locale::facet , the base class for all facets.

Copying, assigning, and destroying std::locale objects reduces to simple pointer
and reference count operations. When copying a locale object, the reference count is
incremented and the pointer to the internal representation is assigned. When
destroying a locale object, the reference count is decremented and when it drops to 0,
the internal representation is released. Assignment is an appropriate combination of
these two. What remains is the default construction of an std::locale which is just
the same as a copy of the current global locale object. Thus, the basic lifetime
operations of std::locale objects are reasonably fast.

Individual facets are identified using an ID, more precisely an object of type
std::locale::id, which is available as a static data member in all base classes
defining a facet. A facet is a class derived from std::locale::facet which has a
publicly accessible static member called id of type std::locale::id (§IS-
22.1.1.1.2¶1). Although explicit use of a locale's facets seems to use a type as an
index (referred to here as F), the Locales library internally uses F::id . The
std::locale::id simply stores an index into an array identifying the location of a
pointer to the corresponding facet or 0 if a locale object does not store the
corresponding facet.

Technical Report on C++ Performance PDTR 18015

Page 64 of 189 Version for PDTR approval ballot

In summary, a locale object is basically a reference counted pointer to an internal
representation consisting of an array of pointers to reference counted facets. In a
multi-threaded environment, the internal representation and the facets might store a
mutex (or some similar synchronization facil ity), thus protecting the reference count.
A corresponding excerpt of the declarations might look something like this (with
namespace std and other qualifications or elaborations of names omitted):

cl ass l ocal e {
publ i c:
 cl ass f acet {
 / / . . .
 pr i vat e:
 si ze_t r ef s;
 mut ex l ock; / / o pt i onal
 } ;

 cl ass i d {
 / / . . .
 pr i vat e:
 si ze_t i ndex;
 } ;

 / / . . .
pr i vat e:
 st r uct i nt er nal {
 / / . . .
 si ze_t r ef s;
 mut ex l ock; / / o pt i onal
 f acet * m ember s;
 } ;
 i nt er nal * r ep;
};

These declarations are not really required and there are some interesting variations:

• Rather than using a double indirection with an internal struct , a pointer to an
array of unions can be used. The union would contain members suitable as
reference count and possible mutex lock, as well as pointers to facets. The
index 0 could, for example, be used as “reference count” and index 1 as
“mutex” , with the remaining array members being pointers to facets.

• Instead of protecting each facet object with its own mutex lock, it is possible
to share the locks between multiple objects. For example, there may be just
one global mutex lock, because the need to lock facets is relatively rare (only
when a modified locale object is necessary is there a need for locking) and it is
unlikely that this global lock remains held for extended periods of time. If this
is too coarse grained, it is possible to place a mutex lock into the static id

object, such that an individual mutex lock exists for each facet type.

• If atomic increment and decrement are available, the reference count alone is
sufficient, because the only operations needing multi-threading protection are
incrementing and decrementing of the reference count.

• The locale objects only need a representation if there are modified locale
objects. If such an object is never created, it is possible to use an empty

PDTR 18015 Technical Report on C++ Performance

Version for PDTR approval ballot Page 65 of 189

std::locale object. Whether or not this is the case can be determined using
some form of "whole program optimization" (§3.2.5).

• Whether an array or some other data structure is used internally does not really
matter. What is important is that there is a data structure indexed by
std::locale::id .

• A trivial implementation could use a null pointer to indicate that a facet is
absent in a given locale object. If a pointer to a dummy facet is used instead,
std::use_facet() can simply use a dynamic_cast<>() to produce the
corresponding std::bad_cast exception.

In any case, as stated earlier, it is reasonable to envision a locale object as being a
reference counted pointer to some internal representation containing an array of
reference counted facets. Whether this is actually implemented so as to reduce run-
time costs by avoiding a double indirection, and whether there are mutex locks and
where these are, does not really matter to the remainder of this discussion. It is,
however, assumed that the implementer chooses an efficient implementation of the
std::locale .

It is worth noting that the standard definition of std::use_facet() and
std::has_facet() differ from earlier Committee Draft (CD) versions quite
significantly. If a facet is not found in a locale object, it is not available for this
locale. In earlier CDs, if a facet was not found in a given locale, then the global locale
object was searched. The definition chosen for the standard was made so that the
standard could be more efficiently implemented – to determine whether a facet is
available for a given locale object, a simple array lookup is sufficient. Therefore, the
functions std::use_facet() and std::has_facet() could be implemented
something like this:

ex t er n s t d: : l ocal e: : f acet d ummy;
te mpl at e < t ypename F>
bool h as_f acet (st d: : l ocal e c onst & l oc) {
 r et ur n l oc. r ep- >f acet s[F: : i d: : i ndex] ! = &dummy;
}
te mpl at e < t ypename F>
F const & u se_f acet (st d: : l ocal e c onst & l oc) {
 r et ur n d ynami c_cast <F c onst &>(* l oc. r ep- >f acet s[Facet : : i d: : i ndex]) ;
}

These versions of the functions are tuned for speed. A simple array lookup, together
with the necessary dynamic_cast<>(), is used to obtain a facet. Since this implies
that there is a slot in the array for each facet possibly used by the program, it may be
somewhat wasteful with respect to memory. Other techniques might check the size of
the array first or store id/facet pairs. In extreme cases, it is possible to locate the
correct facet using dynamic_cast<>() and store only those facets that are actually
available in the given locale.

3.2.2 Reducing Executable Size
Linking unused code into an executable can have a significant impact on the
executable size. Thus, it is best to avoid having unused code in the executable

Technical Report on C++ Performance PDTR 18015

Page 66 of 189 Version for PDTR approval ballot

program. One source of unused code results from trivial implementations. The
default facet std::locale::classic() includes a certain set of facets as described
in §IS-22.1.1.1.1¶2. It is tempting to implement the creation of the corresponding
locale with a straightforward approach, namely explicitly registering the listed facets:

st d: : l ocal e c onst & s t d: : l ocal e: : cl assi c() {
 st at i c s t d: : l ocal e o bj ect ;
 st at i c b ool u ni ni t i al i zed = t r ue;

 i f (uni ni t i al i zed) {
 obj ect . i nt er n_r egi st er (new c ol l at e<ch ar >) ;
 obj ect . i nt er n_r egi st er (new c ol l at e<wchar _t >);
 / / . . .
 }
 r et ur n o bj ect ;
}

However, this approach can result in a very large executable, as it drags in all facets
listed in the table. The advantage of this approach is that a relatively simple
implementation of the various locale operations is possible. An alternative one,
producing smaller code, is to include only those facets that are really used, perhaps by
providing specialized versions of use_facet() and has_facet(). For example:

te mpl at e < t ypename F > s t r uct f acet _aux {
 st at i c F c onst & u se_f acet (l ocal e c onst & l) {
 r et ur n d ynami c_cast <F c onst &>(* l . r ep
 - >f acet s[Facet : : i d: : i ndex]) ;
 }
 st at i c b ool h as_f acet (l ocal e c onst & l) {
 r et ur n l . r ep- >f acet s[F: : i d: : i ndex] != &dummy;
 }
};
te mpl at e < > s t r uct f acet _aux<ct ype<char > > {
 st at i c c t ype<char > c onst & u se_f acet (l ocal e const & l) {
 t r y {
 r et ur n d ynami c_cast <ct ype<char > const &>(* l . r ep
 - >f acet s[Facet : : i d: : i ndex]) ;
 } c at ch (bad_cast c onst &) {
 l ocal e: : f acet * f = l . i nt er n_r egis te r (new c t ype<char >) ;
 r et ur n d ynami c_cast <ct ype<char >&>(* f) ;
 }
 }
 st at i c b ool h as_f acet (l ocal e c onst &) { re tu r n t r ue; }
};
// s i mi l ar l y f or t he o t her f acets

te mpl at e < t ypename F>
F const & u se_f acet (l ocal e c onst & l) {
 r et ur n f acet _aux<F>: : use_f acet (l) ;
}
te mpl at e < t ypename F>
bool h as_f acet (l ocal e c onst & l) {
 r et ur n f acet _aux<F>: : has_f acet (l) ;
}

This is just one example of many possible implementations for a recurring theme. A
facet is created only if it is indeed referenced from the program. This particular
approach is suitable in implementations where exceptions cause a run-time overhead
only if they are thrown, because, like the normal execution path, if the lookup of the

PDTR 18015 Technical Report on C++ Performance

Version for PDTR approval ballot Page 67 of 189

facet is successful it is not burdened by the extra code used to initialize the facet.
Although the above code seems to imply that struct f acet_aux has to be
specialized for all required facets individually, this need not be the case. By using an
additional template argument, it is possible to use partial specialization together with
some tagging mechanism to determine whether the facet should be created on the fly
if it is not yet present.

Different implementations of the lazy facet initialization include the use of static
initializers to register used facets. In this case, the specialized versions of the function
use_facet() would be placed into individual object files together with an object
whose static initialization registers the corresponding facet. This approach implies,
however, that the function use_facet() is implemented out-of-line, possibly causing
unnecessary overhead both in terms of run-time and executable size.

The next source of unused code is the combination of several related aspects in just
one facet due to the use of virtual functions. Normally, instantiation of a class
containing virtual functions requires that the code for all virtual functions be present,
even if they are unused. This can be relatively expensive as in, for example, the case
of the facet dealing with numeric formatting. Even if only the integer formatting
functions are used, the typically larger code for floating point formatting gets dragged
in just to resolve the symbols referenced from the virtual function table.

A better approach to avoid linking in unused virtual functions would be to change the
compiler so that it generates appropriate symbols which enable the linker to determine
whether a virtual function is really called. If it is, the reference from the virtual
function table is resolved; otherwise, there is no need to resolve it, because it will
never be called anyway.

For the Standard facets however, there is a “poor man's” alternative that comes close
to having the same effect. The idea is to provide a non-virtual stub implementation
for the virtual functions, which is placed in the library such that it is searched fairly
late. The real implementation is placed before the stub implementation in the same
object file along with the implementation of the forwarding function. Since use of the
virtual function has to go through the forwarding function, this symbol is also un-
referenced, and resolving it brings in the correct implementation of the virtual
function.

Unfortunately, it is not totally true that the virtual function can only be called through
the forwarding function. A class deriving from the facet can directly call the virtual
function because these are protected rather than private . Thus, it is still necessary
to drag in the whole implementation if there is a derived facet. To avoid this, another
implementation can be placed in the same object file as the constructors of the facet,
which can be called using a hidden constructor for the automatic instantiation.
Although it is possible to get these approaches to work with typical linkers, a
modified compiler and linker provide a much-preferred solution, unfortunately one
which is often outside the scope of library implementers.

In many cases, most of the normally visible code bloat can be removed using the two
techniques discussed above, i.e. by including only used facets and avoiding the
inclusion of unused virtual functions. Some of the approaches described in the other

Technical Report on C++ Performance PDTR 18015

Page 68 of 189 Version for PDTR approval ballot

sections can also result in a reduction of executable size, but the focus of those
optimizations is on a different aspect of the problem. Also, the reduction in code size
for the other approaches is not as significant.

3.2.3 Preprocess ing for Facets
Once the executable size is reduced, the next observation is that the operations tend to
be slow. Take numeric formatting as an example: to produce the formatted output of
a number, three different facets are involved:

• num_put, which does the actual formatting, i.e. determining which digits and
symbols are there, doing padding when necessary, etc.

• numpunct, which provides details about local conventions, such as the need to
put in thousands separators, which character to use as a decimal point, etc.

• ctype, which transforms the characters produced internally by num_put into
the appropriate "wide" characters.

Each of the ctype or numpunct functions called is essentially a virtual function. A
virtual function call can be an expensive way to determine whether a certain character
is a decimal point, or to transform a character between a narrow and wide
representation. Thus, it is necessary to avoid these calls wherever possible for
maximum eff iciency.

At first examination there does not appear to be much room for improvement.
However, on closer inspection, it turns out that the Standard does not mandate calls to
numpunct or ctyp e for each piece of information. If the num_put facet has widened a
character already, or knows which decimal point to use, it is not required to call the
corresponding functions. This can be taken a step further. When creating a locale
object, certain data can be cached using, for example, an auxiliary hidden facet.
Rather than going through virtual functions over and over again, the required data are
simply cached in an appropriate data structure.

For example, the cache for the numeric formatting might consist of a character
translation table resulting from widening all digit and symbol characters during the
initial locale setup. This translation table might also contain the decimal point and
thousands separator – combining data obtained from two different facets into just one
table. Taking it another step further, the cache might be set up to use two different
functions depending on whether thousands separators are used according to the
numpunct facet or not. Some preprocessing might also improve the performance of
parsing strings like the Boolean values if the std::ios_base::boolalpha flag is set.

Although there are many details to be handled, such as distinguishing between normal
and cache facets when creating a new locale object, the effect of using a cache can be
fairly significant. It is important that the cache facets are not generally shared
between locale representations. To share the cache, it has to be verified that all facets
contributing to the cached data are identical in each of the corresponding locales.
Also, certain approaches, like the use of two different functions for formatting with or
without thousands separators, only work if the default facet is used.

PDTR 18015 Technical Report on C++ Performance

Version for PDTR approval ballot Page 69 of 189

3.2.4 Compile-Time Decoup ling
It may appear strange to talk about improving compile-time when discussing the
eff iciency of Locales, but there are good reasons for this. First of all , compile-time is
just another concern for performance efficiency, and it should be minimized where
possible. More important to this technical report however, is that some of the
techniques presented below rely on certain aspects that are related to the compilation
process.

The first technique that improves compile-time is the liberal use of forward
declarations, avoiding definitions wherever possible. A standard header may be
required to include other headers that provide a needed definition (§IS-17.4.4.1¶1);
however, this does not apply to declarations. As a consequence, a header need not be
included just because it defines a type which is used only as a return or argument type
in a function declaration. Likewise, a forward declaration is sufficient if only a
pointer to a class type is used as a class member (see the discussion of the PIMPL
idiom in §2.6).

Looking at the members imbue() and getloc() of the class std::ios_base , it
would seem that the <ios> header is required to include <locale> simply for the
definition of std::locale , because apparently an std::ios_base object stores a
locale object in a member variable. This is not required! Instead, std::ios_base

could store a pointer to the locale's internal representation and construct an
std::locale object on the fly. Thus, there is no necessity for the header <ios> to
include the header <locale> . The header <locale> will be used elsewhere with the
implementation of the std::ios_base class, but that is a completely different issue.

Why does it matter? Current compilers, lacking support for the export keyword,
require the implementation of the template members of the stream classes in the
headers anyway and the implementation of these classes will need the definitions
from <locale> – won't they? It is true that some definitions of the template members
will indeed require definitions from the header <locale> . However, this does not
imply that the implementation of the template members is required to reside in the
header files – a simple alternative is to explicitly instantiate the corresponding
templates in suitable object files.

Technical Report on C++ Performance PDTR 18015

Page 70 of 189 Version for PDTR approval ballot

Explicit instantiation obviously works for the template arguments mentioned in the
standard; for example, explicit specialization of std::basic_ios<char> and
std::basic_ios<wchar_t> works for the class template std::basic_ios . But what
happens when the user tries some other type as the character representation, or a
different type for the character traits? Since the implementation is not inline but
requires explicit instantiation, it cannot always be present in the standard library
shipped with the compiler. The preferred approach to this problem is to use the
export keyword, but in the absence of this, an entirely different approach is
necessary. One such approach is to instruct the user on how to instantiate the
corresponding classes using, for example, some environment-specific implementation
file and suitable compiler switches. For instance, instantiating the IOStreams classes
for the character type mychar and the traits type mytraits might look something like:

c++ - o i o- i nst - mychar - myt r ai t s . o i o- i nst . cpp \
 - Dchar T=mychar - Dt r ai t s=myt r ai t s - Di ncl ude=" mychar . hpp"

Using such an approach causes some trouble to the user and more work for the
implementer, which seems to be a fairly high price to pay for a reduction in
dependencies and a speed up of compile-time. But note that the improvement in
compile-time is typically significant when compiling with optimizations enabled. The
reason for this is simple: with many inline functions, the compiler passes huge chunks
of code to the optimizer, which then has to work extra hard to improve them. Bigger
chunks provide better optimization possibilities, but they also cause significantly
longer compile-times due to the non-linear increase in the complexity of the
optimization step as the size of the chunks increases. Furthermore, the object files
written and later processed by the linker are much bigger when all used instantiations
are present in each object file. This can also impact the executable size, because
certain code may be present multiple times, embedded in different inline functions
which have some code from just one other function in common.

Another reason for having the IOStreams and Locales functions in a separate place is
that it is possible to tell from the undefined symbols which features are used in a
program and which are not. This information can then be used by a smart linker to
determine which particular implementation of a function is most suitable for a given
application.

3.2.5 Smart Linking
The discussion above already addresses how to omit unused code by means of a
slightly non-trivial implementation of Locales and virtual functions. It does not
address how to avoid unnecessary code. The term “unnecessary code” refers to code
that is actually executed, but which does not have any real effect. For example, the
code for padding formatted results has no effect if the width() is never set to a non-
zero value. Similarly, there is no need to go through the virtual functions of the
various facets if only the default locale is ever used. As in all other aspects of C++, it
is reasonable to avoid paying a cost in code size or performance for any feature which
is not used.

PDTR 18015 Technical Report on C++ Performance

Version for PDTR approval ballot Page 71 of 189

The basic idea for coping with this is to avoid unnecessary overheads where possible
by providing multiple implementations of some functions. Since writing multiple
implementations of the same function can easily become a maintenance nightmare, it
makes sense to write one implementation, which is configured at compile-time to
handle different situations. For example, a function for numeric formatting that
optionally avoids the code for padding might look like this:

te mpl at e < t ypename c T, t ypename O ut I t >
num_put <cT, O ut I t >: : do_put (Out I t i t , i os_base & f mt,
 cT f i l l , l ong v) const
{
 char b uf f er [some_sui t abl e_si ze] ;
 char * e nd = g et _f or mat t ed(f mt , v) ;
 i f (need_paddi ng & & f mt . wi dt h() > 0)
 r et ur n p ut _padded(i t , f mt , f i l l , b uff er);
 el se
 r et ur n p ut (i t , f mt , b uf f er) ;
}

The value need_padding is a constant bool which is set to false if the compilation
is configured to avoid padding code. With a clever compiler (normally requiring
optimization to be enabled) any reference to put_padded() is avoided, as is the check
for whether the width() is greater than zero. The library would just supply two
versions of this function and the smart linker would need to choose the right one.

To choose the right version, the linker has to be instructed under what circumstances
it should use the one avoiding the padding, i.e. the one where need_padding is set to
false . A simple analysis shows that the only possibil ity for width() being non-zero
is the use of the std::ios_base::width() function with a parameter. The library
does not set a non-zero value, and hence the simpler version can be used if
std::ios_base::width() is never referenced from user code.

The example of padding is pretty simple. Other cases are more complex but still
manageable. Another issue worth considering is whether the Locales library must be
used or if it is possible to provide the functionality directly, possibly using functions
that are shared internally between the Locales and the IOStreams library. That is, if
only the default locale is used, the IOStreams functions can call the formatting
functions directly, bypassing the retrieval of the corresponding facet and associated
virtual function call – indeed, bypassing all code related to locales – thus avoiding any
need to drag in the corresponding locale maintenance code.

The analysis necessary to check if only the default locale is used is more complex,
however. The simplest test is to check for use of the locale's constructors. If only the
default and copy constructors are used, then only the default locale is used because
one of the other constructors is required to create a different locale object. Even then,
if another locale object is constructed, it may not necessarily be used with the
IOStreams. Only if the global locale is changed, or one of
std::ios_base::imbue() , std::basic_ios<...>::imbue() , or
std::basic_streambuf<...>::imbue() is ever called, can the streams be affected
by the non-default locale object. Although this is somewhat more complex to
determine, it is still feasible. There are other approaches which might be exploited
too: for example, whether the streams have to deal with exceptions in the input or

Technical Report on C++ Performance PDTR 18015

Page 72 of 189 Version for PDTR approval ballot

output functions (this depends on the stream buffer and locales possibly used);
whether invoking callback functions is needed (only if callback s are ever
registered, is this necessary); etc.

In order for the linker to decide which functionality is used by the application, it must
follow a set of “rules” provided by the library implementer to exclude functions. It is
important to base these rules only on the application code, to avoid unnecessary
restrictions imposed by unused Standard Library code. However, this results in more,
and more complex, rules. To determine which functionality is used by the
application, the unresolved symbols referenced by the application code are examined.
This requires that any function mentioned in a “rule” is indeed unresolved and results
in the corresponding functions being non-inline.

There are three problems with this approach:

• The maintenance of the implementation becomes more complex because extra
work is necessary. This can be reduced to a more acceptable level by relying
on a clever compiler to eliminate code for branches that it can determine are
never used.

• The analysis of the conditions under which code can be avoided is sometimes
non-trivial. Also, the conditions have to be made available to the linker,
which introduces another potential cause of error.

• Even simple functions cannot be inline when they are used to exclude a simple
implementation of the function std::ios_base::width() . This might result
in less efficient and sometimes even larger code (for simple functions the cost
of calling the function can be bigger than the actual function). See §3.2.7 for
an approach to avoiding this problem.

The same approach can be beneficial to other libraries, and to areas of the Standard
C++ library other than IOStreams and Locales. In general, the library interface can be
simpli fied by choosing among similar functions applicable in different situations,
while still retaining the same eff iciency. However, this technique is not applicable to
all situations and should be used carefully where appropriate.

3.2.6 Object Organization
A typical approach to designing a class is to have member variables for all attributes
to be maintained. This may seem to be a natural approach, but it can result in a bigger
footprint than necessary. For example, in an application where the width() is never
changed, there is no need to actually store the width. When looking at IOStreams, it
turns out that each std::basic_ios object might store a relatively large amount of
data to provide functionality that many C++ programmers using IOStreams are not
even aware of, for example:

• A set of formatting flags is stored in an std::ios_base::fmtflags

subobject.

• Formatting parameters like the width() and the precision() are stored in
std::streamsize objects.

PDTR 18015 Technical Report on C++ Performance

Version for PDTR approval ballot Page 73 of 189

• An std::locale subobject (or some suitable reference to its internal
representation).

• The pword() and iword() lists.

• A list of callback s.

• The error flags and exception flags are stored in objects of type
std::ios_base::iostate . Since each of these has values representable in
just three bits, they may be folded into one word.

• The fil l character used for padding.

• A pointer to the used stream buffer.

• A pointer to the tie() ed std::basic_ostream .

This results in at least eight extra 32-bit words, even when folding multiple data into
just one 32-bit word where possible (the formatting flags, the state and exception
flags, and the fil l character can fit into 32 bits for the character type char). These are
32 bytes for every stream object even if there is just one stream — for example,
std::cout — which in a given program never uses a different precision, width (and
thus no fil l character), or locale; probably does not set up special formatting flags
using the pword() or iword() facilities; almost certainly does not use callback s, and
is not tie() ed to anything. In such a case – which is not unlikely in an embedded
application – it might even need no members at all , and operate by simply sending
string literals to its output.

A different organization could be to use an array of unions and the pword() /iword()

mechanism to store the data. Each of the pieces of data listed above is given an index
in an array of unions (possibly several pieces can share a single union like they shared
just one word in the conventional setting). Only the pword() /iword() pieces would
not be stored in this array because they are required to access the array. A feature
never accessed does not get an index and thus does not require any space in the array.
The only complication is how to deal with the std::locale , because it is the only
non-POD data. This can be handled using a pointer to the locale's internal
representation.

Depending on the exact organization, the approach will show different run-time
characteristics. For example, the easiest approach for assigning indices is to do it on
the fly when the corresponding data are initialized or first accessed. This may,
however, result in arrays which are smaller than the maximum index and thus the
access to the array has to be bounds-checked (in case of an out-of-bound access, the
array might have to be increased; it is only an error to access the corresponding
element if the index is bigger than the biggest index provided so far by
std::ios_base::xalloc()).

Technical Report on C++ Performance PDTR 18015

Page 74 of 189 Version for PDTR approval ballot

An alternative is to determine the maximum number of slots used by the Standard
library at link-time or at start-up time before the first stream object is initialized. In
this case, there would be no need to check for out-of-bound access to the IOStreams
features. However, this initialization is more complex.

A similar approach can be applied to the std::locale objects.

3.2.7 Library Recompilation
So far, the techniques described assume that the application is linked to a pre-
packaged library implementation. Although the library might contain different
variations on some functions, it is still pre-packaged (the templates possibly
instantiated by the user can also be considered to be pre-packaged). However, this
assumption is not necessarily correct. If the source code is available, the Standard
library can also be recompiled.

This leads to the “two phase” building of an application: in the first phase, the
application is compiled against a "normal", fully-fledged implementation. The
resulting object files are automatically analyzed for features actually used by looking
at the unresolved references. The result of this analysis is some configuration
information (possibly a file) which uses conditional compilation to remove all unused
features from the Standard library; in particular, removing unused member variables
and unnecessary code. In the second phase, this configuration information is then
used to recompile the Standard library and the application code for the final program.

This approach does not suffer from drawbacks due to dynamic determination of what
are effectively static features. For example, if it is known at compile-time which
IOStreams features are used, the stream objects can be organized to include members
for exactly those features. Thus, it is not necessary to use a lookup in a dynamically
allocated array of facets, possibly using a dynamically assigned index, if the full
flexibil ity of the IOStreams and Locales architecture is not used by the current
application. Also, in the final compilation phase, it is possible to inline functions that
were not previously inlined (in order to produce the unresolved symbol references).

PDTR 18015 Technical Report on C++ Performance

Version for PDTR approval ballot Page 75 of 189

4 Using C++ in Embedded Systems

4.1 ROMabili ty
For the purposes of this technical report, the terms “ROMable” and “ROMabil ity”
refer to entities that are appropriate for placement in Read-Only-Memory and to the
process of placing entities into Read-Only-Memory so as to enhance the performance
of programs written in C++.

There are two principal domains that benefit from this process:

• Embedded programs that have constraints on available memory, where code
and data must be stored in physical ROM whenever possible.

• Modern operating systems that support the sharing of code and data among
many instances of a program, or among several programs sharing invariant
code and data.

The subject of ROMability therefore has performance application to all programs,
where immutable portions of the program can be placed in a shared, read-only space.
On hosted systems, “read-only” is enforced by the memory manager, while in
embedded systems it is enforced by the physical nature of ROM devices.

For embedded programs in whose environment memory is scarce, it is critical that
compilers identify strictly ROMable objects and allocate ROM, not RAM, area for
them. For hosted systems, the requirement to share ROMable information is not as
critical, but there are performance advantages to hosted programs as well, if memory
footprint and the time it takes to load a program can be greatly reduced. All the
techniques described in this section will benefit such programs.

4.1.1 ROMable Objects
Most constant information is ROMable. Obvious candidates for ROMability are
objects of static storage duration that are declared const and have constant
initializers, but there are several other significant candidates too.

Objects which are not declared const can be modified; consequently they are not
ROMable. But these objects may have constant initializers, and those initializers may
be ROMable. This paper considers those entities in a program that are obviously
ROMable such as global const objects, entities that are generated by the compilation
system to support functionality such as switch statements, and also places where
ROMabil ity can be applied to intermediate entities which are not so obvious.

Technical Report on C++ Performance PDTR 18015

Page 76 of 189 Version for PDTR approval ballot

4.1.1.1 User-Defined Objects
Objects declared const that are initialized with constant expressions are ROMable.
Examples:

• An aggregate (§IS-8.5.1) object with static storage duration (§IS-3.7.1) whose
initializers are all constants:

st at i c c onst i nt t ab[] = { 1, 2, 3};

• Objects of scalar type with external linkage:

A const-quali fied object of scalar type has internal (§IS-7.1.5.1) or no
(§IS-3.5¶2) linkage and thus can usually be treated as a compile-time constant,
i.e. object data areas are not allocated, even in ROM. For example:

co nst i nt t abl es i ze = 4 8;
doubl e t abl e[t abl esi ze] ; / / table has s pace fo r 4 8 d oubl es

However, if such an object is used for initialization or assignment of pointer or
reference variables (by explicitly or implicitly having its address taken), it
requires storage space and is ROMable. For example:

ex t er n c onst i nt a = 1 ; / / e xt er n l i nkage
co nst i nt b = 1 ; / / i nt er nal l i nkage
co nst i nt * c = & b; / / v ar i abl e b should b e a l l ocat ed
co nst i nt t bsi ze = 2 56; / / i t i s e xpect ed th at tbsize i s n ot
 / / a l l ocat ed a t ru n- ti me
ch ar c t b[t bs i ze];

• String literals:

An ordinary string literal has the type “array of n const char ” (§IS-2.13.4),
and so is ROMable. A string literal used as the initializer of a character array
is ROMable, but if the variable to be initialized is not a const-qualified array
of char , then the variable being initialized is not ROMable:

co nst c har * c onst s 1 = " abc" ; / / b ot h s1 and abc ar e R OMabl e
ch ar s 2[] = " def " ; / / s2 i s n ot ROMabl e

A compiler may achieve further space savings by sharing the representation of
string literals in ROM. For example:

co nst c har * s 1 = " abc" ; / / o nl y o ne c opy o f abc needs
co nst c har * s 2 = " abc" ; / / t o e xi st , a nd i t is R OMable

Yet further possibil ities for saving space exist if a string literal is identical to
the trailing portion of a larger string literal. Storage space for only the larger
string literal is necessary, as the smaller one can reference the common sub-
string of the larger. For example:

co nst c har * s 1 = " Hel l o Wor l d";
co nst c har * s 2 = " Wor l d";

// C oul d b e c onsi der ed t o b e i mpl i ci t l y e quiv al ent t o:
co nst c har * s 1 = " Hel l o Wor l d";
co nst c har * s 2 = s 1 + 6 ;

PDTR 18015 Technical Report on C++ Performance

Version for PDTR approval ballot Page 77 of 189

4.1.1.2 Compiler-Generated Objects
• Jump tables for switch statements:

If a jump table is generated to implement a switch statement, the table is
ROMable, since it consists of a fixed number of constants known at compile-
time.

• Virtual function tables:

Virtual function tables of a class are usually23 ROMable.

• Type identification tables:

When a table is generated to identify RTTI types, the table is usually24

ROMable.

• Exception tables:

When exception handling is implemented using static tables, the tables are
usually25 ROMable.

• Reference to constants:

If a constant expression is specified as the initializer for a const-qualified
reference, a temporary object is generated (§IS-8.5.3).This temporary object is
ROMable. For example:

// T he d ecl ar at i on:
co nst d oubl e & a = 2 . 0;

// M ay b e r epr esent ed a s:
st at i c c onst d oubl e t mp = 2 . 0; / / tmp i s R OMable
co nst d oubl e & a = t mp;

If a is declared elsewhere as an extern variable, or if its address is taken, then
space must be allocated for it. If this happens, a is also ROMable. Otherwise,
the compiler may substitute a direct reference to tmp (more accurately, the
address of tmp) anywhere a is used.

23

 For some systems, virtual function tables may not be ROMable if they are dynamically linked from a shared library.
24

 For some systems, RTTI tables may not be ROMable if they are dynamically l inked from a shared l ibrary.
25

 For some systems, exception tables may not be ROMable if they are dynamically linked from a shared library.

Technical Report on C++ Performance PDTR 18015

Page 78 of 189 Version for PDTR approval ballot

• Initializers for aggregate objects with automatic storage duration:

If all the initializers for an aggregate object that has automatic storage duration
are constant expressions, a temporary object that has the value of the constant
expressions and code that copies the value of the temporary object to the
aggregate object may be generated. This temporary object is ROMable. For
example:

st r uct A {
 i nt a ;
 i nt b ;
 i nt c ;
};
vo i d t est () {
 A a = { 1, 2, 3} ;
}

// M ay b e i nt er pr et ed a s:
vo i d t est () {
 st at i c c onst A t mp = { 1, 2, 3} ; / / tmp i s ROMabl e
 A a = t mp;
}

Thus, the instruction code for initializing the aggregate object can be replaced
by a simple bitwise copy, saving both code space and execution time.

• Constants created during code generation:

Some literals, such as integer literals, floating point literals, and addresses, can
be implemented as either instruction code or data. If they are represented as
data, then these objects are ROMable. For example:

vo i d t est () {
 doubl e a = r ead_some_val ue();
 a + = 1 . 0;
}

// M ay b e i nt er pr et ed a s:
vo i d t est () {
 st at i c c onst d oubl e t mp = 1 . 0; / / tmp i s ROMabl e
 doubl e a = r ead_some_val ue();
 a + = t mp;
}

PDTR 18015 Technical Report on C++ Performance

Version for PDTR approval ballot Page 79 of 189

4.1.2 Constructors and ROMable Objects
In general, const objects of classes with constructors must be dynamically initialized.
However, in some cases compile-time initialization could be performed if static
analysis of the constructors resulted in constant values being used. In this case, the
object could be ROMable. Similar analysis would need to be performed on the
destructor.

cl ass A {
 i nt a ;
publ i c:
 A(i nt v) : a (v) { }
};
co nst A t ab[2] = { 1, 2};

Even if an object is not declared const , its initialization “pattern” may be ROMable,
and can be bitwise copied to the actual object when it is initialized. For example:

cl ass A {
 i nt a ;
 char * p ;
publ i c:
 A() : a (7) { p = " Hi " ; }
};
A not _const ;

In this case, all objects are initialized to a constant value (i.e. the pair {7, "Hi"}).
This constant initial value is ROMable, and the constructor could perform a bitwise
copy of that constant value.

4.2 Hard Real-Time Considerations
For most embedded systems, only a very small part of the software is truly real-time
critical. But for that part of the system, it is important to exactly determine the time it
takes to execute a specific piece of software. Unfortunately, this is not an easy
analysis to do for modern computer architectures using multiple pipelines and
different types of caches. Nevertheless, for many code sequences it is still quite
straightforward to calculate a worst-case analysis.

While it may not be possible to perform this analysis in the general case, it is possible
for a detailed analysis to be worked out when the details of the specific architecture
are well understood.

This statement also holds for C++. Here is a short description of several C++ features
and their time predictabil ity.

Technical Report on C++ Performance PDTR 18015

Page 80 of 189 Version for PDTR approval ballot

4.2.1 C++ Features for which Timing Analysis is Straightforward

4.2.1.1 Templates
As pointed out in detail i n §2.5, there is no additional real-time overhead for calling
function templates or member functions of class templates. On the contrary,
templates often allow for better inlining and therefore reduce the overhead of the
function call .

4.2.1.2 Inheritance

4.2.1.2.1 Single Inheritance
Converting a pointer to a derived class to a pointer to base class26 will not introduce
any run-time overhead in most implementations (§2.3). If there is an overhead (in
very few implementations), it is a fixed number of machine instructions (typically
one) and its speed can easily be determined with a test program. This is a fixed
overhead; it does not depend on the depth of the derivation.

4.2.1.2.2 Multiple Inheritance
Converting a pointer to a derived class to a pointer to base class might introduce run-
time overhead (§2.3.5). This overhead is a fixed number of machine instructions
(typically one).

4.2.1.2.3 Virtual Inheritance
Converting a pointer to a derived class to a pointer to a virtual base class will
introduce run-time overhead in most implementations (§2.3.6). This overhead is
typically a fixed number of machine instructions for each access to a data member in
the virtual base class.

4.2.1.3 Vir tual functions
If the static type of an object can be determined at compile-time, calling a virtual
function may be no more expensive than calling a non-virtual member function. If the
type must be dynamically determined at run-time, the overhead wil l typically be a
fixed number of machine instructions (§2.3.3) for each call.

4.2.2 C++ Features for Which Real-Time Analys is is More Complex
The following features are often considered to be prohibitively slow for hard real-time
code sequences. But this is not always true. The run-time overhead of these features
is often quite small, and even in the real-time parts of the program, there may be a
number of CPU cycles available to spend. If the real-time task is complex, a clean
structure that allows for an easier overall timing analysis is often better than hand-
optimized but complicated code – as long as the former is fast enough. The hand-

26

 Such a conversion is also necessary if a function that is implemented in a base class is called for a derived class object.

PDTR 18015 Technical Report on C++ Performance

Version for PDTR approval ballot Page 81 of 189

optimized code might run faster but is in most cases more difficult to analyze
correctly, and the features mentioned below often allow for clearer designs.

4.2.2.1 Dynamic Casts
In most implementations, dynamic_cast<…> from a pointer (or reference) to base
class to a pointer (or reference) to derived class (i.e. a down-cast), will produce an
overhead that is not fixed but depends on the details of the implementation and there
is no general rule to test the worst case.

The same is true for cross-casts (§2.3.8).

As an alternate option to using dynamic_cast s, consider using the typeid operator.
This is a cheaper way to check for the target’s type.

4.2.2.2 Dynamic Memory Allocation
Dynamic memory allocation has – in typical implementations – a run-time overhead
that is not easy to analyze. In most cases, for the purpose of real-time analysis it is
appropriate to assume dynamic memory allocation (and also memory deallocation) to
be non-deterministic.

The most obvious way to avoid dynamic memory allocation is to preallocate the
memory – either statically at compile- (or more correctly link-) time or during the
general setup phase of the system. For deferred initialization, preallocate raw
memory and initialize it later using new-placement syntax (§IS-5.3.4¶11).

If the real-time code really needs dynamic memory allocation, use an implementation
for which all the implementation details are known. The best way to know all the
implementation details is to write a custom memory allocation mechanism. This is
easily done in C++ by providing class-specific operator new and delete functions
or by providing an Allocator template argument to the Standard Library containers.

But in all cases, if dynamic memory allocation is used, it is important to ensure that
memory exhaustion is properly anticipated and handled.

4.2.2.3 Exceptions
Enabling exceptions for compilation may introduce overhead on each function call
(§2.4). In general, it is not so difficult to analyze the overhead of exception handling
as long as no exceptions are thrown. Enable exception handling for real-time critical
programs only if exceptions are actually used. A complete analysis must always
include the throwing of an exception, and this analysis wil l always be implementation
dependent. On the other hand, the requirement to act within a deterministic time
might loosen in the case of an exception (e.g. there is no need to handle any more
input from a device when a connection has broken down).

An overview of alternatives for exception handling is given in §2.4. But as shown
there, all options have their run-time costs, and throwing exceptions might still be the
best way to deal with exceptional cases. As long as no exceptions are thrown a long

Technical Report on C++ Performance PDTR 18015

Page 82 of 189 Version for PDTR approval ballot

way (i.e. there are only a few nested function calls between the throw-expression and
the handler), it might even reduce run-time costs.

4.2.3 Testing Timing
For those features that compile to a fixed number of machine instructions, the number
and nature of these instructions (and therefore an exact worst-case timing) can be
tested by writing a simple program that includes just this specific feature and then
looking at the created code. In general, for those simple cases, optimization should
not make a difference. But, for example, if a virtual function call can be resolved to a
static function call at compile-time, the overhead of the virtual function call will not
show up in the code. Therefore it is important to ensure that the program really tests
what it needs to test.

For the more complex cases, testing the timing is not so easy. Compiler optimization
can make a big difference, and a simple test case might produce completely different
machine code than the real production code. It is important to thoroughly know the
details of the specific implementation in order to test those cases. Given this
information, it is normally possible to write test programs which produce code from
which the correct timing information may be derived.

PDTR 18015 Technical Report on C++ Performance

Version for PDTR approval ballot Page 83 of 189

5 Hardware Addressing Interface
Embedded applications often must interact with specialized I/O devices, such as real-
time sensors, motors, and LCD displays. At the lowest level, these devices are
accessed and controlled through a set of special hardware registers (I/O registers) that
device driver software can read and/or write.

Although different embedded systems typically have their own unique collections of
hardware devices, it is not unusual for otherwise very different systems to have
virtually identical interfaces to similar devices.

As C language implementations have matured over the years, various vendor-specific
extensions for accessing basic I/O hardware registers have been added to address
deficiencies in the language. Today almost all C compilers for freestanding
environments and embedded systems support some method of direct access to I/O
hardware registers from the C source level. However, these extensions have not been
consistent across dialects. As a growing number of C++ compiler vendors are now
entering the same market, the same I/O driver portability problems become apparent
for C++.

As a simple portability goal the driver source code for a given item of I/O hardware
should be portable to all processor architectures where the hardware itself can be
connected. Ideally, it should be possible to compile source code that operates directly
on I/O hardware registers with different compiler implementations for different
platforms and get the same logical behavior at run-time.

Obviously, interface definitions written in the common subset of C and C++ would
have the widest potential audience, since they would be readable by compilers for
both languages. But the additional abstraction mechanisms of C++, such as classes
and templates, are useful in writing code at the hardware access layer. They allow the
encapsulation of features into classes, providing type safety along with maximum
eff iciency through the use of templates.

Nevertheless, it is an important goal to provide an interface that allows device driver
implementers to write code that compiles equally under C and C++ compilers.
Therefore, this report specifies two interfaces: one using the common subset of C and
C++ and a second using modern C++ constructs. Implementers of the common-
subset style interface might use functions or inline functions, or might decide that
function-like macros or intrinsic functions better serve their objectives.

A proposed interface for addressing I/O hardware in the C language is described in:

Technical Report ISO/IEC WDTR 18037

“ Extensions for the programming language C to support embedded
processors ”

This interface is referred to as iohw in this report. It is included in this report for the
convenience of the reader. If the description of iohw in this report differs from the
description in ISO/IEC WDTR 18037, the description there takes precedence. iohw is

Technical Report on C++ Performance PDTR 18015

Page 84 of 189 Version for PDTR approval ballot

also used to refer to both the C and C++ interface where they share common
characteristics. In parallel with that document, the interface using the common subset
of C and C++ is contained in a header named <iohw.h> .

Although the C variant of the iohw interface is based on macros, the C++ language
provides features which make it possible to create eff icient and flexible
implementations of this interface, while maintaining hardware driver source code
portabil ity. The C++ interface provides definitions with a broader functionality than
the C interface. It not only provides mechanisms for writing portable hardware device
drivers, but also general methods to access the hardware of a given system. The C++
interface is contained in a header named <hardware> , and its symbols are placed in
the namespace std::hardware . The name is deliberately different, as it is the
intention that <hardware > provides similar functionality to <iohw.h> , but through a
different interface and implementation, just as <iostream> provides parallel
functionality with <stdio.h> through different interfaces and implementation. There
is no header <ciohw> specified, as that name would imply (by analogy with other
standard library headers) that the C++ interfaces were identical to those in <iohw.h>

but placed inside a namespace. Since macros do not respect namespace scope, the
implication would be false and misleading.

A header exists for the purpose of making certain names visible in the translation unit
in which it is included. It may not exist as an actual file, if the compiler uses some
other mechanism to make names visible. When this document mentions the
“<iohw.h> interface” or the “<hardware> interface” it is referring to the collection of
types and declarations made visible by the corresponding header.

This report provides:

• A general introduction and overview to the iohw interfaces (§5.1)
• A presentation of the common-subset interface (§5.2)
• A description of the C++ <hardware> interface (§5.3)
• Usage guidelines for the <hardware> interface (§Appendix A:)
• General implementation guidelines for both interfaces (§Appendix B:)
• Detailed implementation discussion for the <hardware> interface (§B.8)
• A discussion about techniques for implementing the common-subset interface

on top of an implementation in C++ (§Appendix C:)

5.1 Introduction to Hardware Addressing
The purpose of the iohw access functions described in this chapter is to promote
portabil ity of iohw driver source code and general hardware accessibility across
different execution environments.

PDTR 18015 Technical Report on C++ Performance

Version for PDTR approval ballot Page 85 of 189

5.1.1 Basic Standardization Objectives
A standardization method for basic iohw addressing must be able to fulfill three
requirements at the same time:

• A standardized interface must not prevent compilers from producing machine
code that has no additional overhead compared to code produced by existing
proprietary solutions. This requirement is essential in order to get widespread
acceptance from the embedded programming community.

• The hardware driver source code modules should be completely portable to
any processor system without any modifications to the driver source code
being required [i.e. the syntax should promote driver source code portability
across different environments].

• A standardized interface should provide an “encapsulation” of the underlying
access mechanisms to allow different access methods, different processor
architectures, and different bus systems to be used with the same hardware
driver source code [i.e. the standardization method should separate the
characteristics of the I/O register itself from the characteristics of the
underlying execution environment (processor architecture, bus system,
addresses, alignment, endianness, etc.)].

5.1.2 Terminology
The following is an overview of the concepts related to basic I/O hardware addressing
and short definitions of the terms used in this Technical Report:

• IO and I /O are short notations for Input-Output. In the context of this chapter,
these terms have no relation to C++ iostreams.

• An I /O device or hardware device is a hardware unit which uses registers to
create a data interface between a processor and the external world. As the
<hardware> interface defines a broader interface and encompasses all hardware
access from processor registers to memory locations, this report uses the more
general term hardware device and hardware register , though the <iohw.h>

interface definition from WDTR 18037 and reprinted in §5.2 still uses the terms
I /O device, I /O register, etc.

• A hardware register is the basic data unit in a hardware device.

• A hardware device driver is software which operates on hardware registers in a
hardware device.

• The logical hardware register is the register unit as it is seen from the hardware
device. The language data type used for holding the hardware register data must
have a bit width equal to, or larger than, the bit width of the logical hardware
register. The bit width of the logical hardware register may be larger than the bit
width of the hardware device data bus or the processor data bus.

Technical Report on C++ Performance PDTR 18015

Page 86 of 189 Version for PDTR approval ballot

• Hardware register access is the process of transferring data between a hardware
register and one of the compiler’s native data storage objects. In a program this
process is defined via a hardware register designator specification for the given
hardware register or hardware register buffer.

• A hardware register designator specification specifies hardware access
properties related to the hardware register itself (for instance the hardware
register bit width and hardware register endianness) and properties related to the
hardware register access method (for instance processor address space and
address location).

• The <hardware> interface separates the hardware access properties into register-
specific properties and (hardware) platform-specific properties. So, for the
<hardware> interface, there is no single hardware register designator for a
specific hardware register, but a combination of two. But there is still a single
identifier that can be used in portable driver code (portable across different
implementations of this interface).

• A hardware register designator encapsulates a hardware register designator
specification -- the sum of all of a register’s properties plus the properties of its
access method – and uniquely identifies a single hardware register or hardware
register buffer. The main purpose of the hardware register designator is to hide
this information from the hardware device driver code, in order to make the
hardware device driver code independent of any particular processor (or
compiler).

• Multiple hardware registers of equal size may form a hardware register buffer .
All registers in the hardware register buffer are addressed using the same
hardware register designator. A hardware register buffer element is referenced
with an index in the same manner as a C array.

• Multiple hardware registers may form a hardware group.

• A hardware device may contain multiple hardware registers. These registers can
be combined into a hardware group which is portable as a specification for a
single hardware unit (for instance an I/O chip, an FPGA cell , a plug-in board etc).

• Common hardware access properties for the hardware registers in a hardware
register group are defined by the hardware group designator .

• Typical hardware access properties which are defined and encapsulated via the
hardware register designator are the following:

• The access methods used for hardware register access. Access methods refer
to the various ways that hardware registers can be addressed and hardware
devices can be connected in a given hardware platform. Typical methods are
direct addressing, indexed addressing, and addressing via hardware access

PDTR 18015 Technical Report on C++ Performance

Version for PDTR approval ballot Page 87 of 189

drivers. Different methods have different hardware access properties.
Common for all access methods is that all access properties are encapsulated by
the hardware register designator.

• Direct addressing accesses a hardware register via a single constant or
variable holding the static address of the register.

• Indexed addressing accesses a hardware register by adding a constant offset
to a base address initialized at runtime. (This access method is not to be
confused with the ioindex_t used for accessing hardware register buffers,
where the offset is not constant.)

• A (user-supplied) hardware access driver may be used to encapsulate
complex access mechanisms and to create virtual access spaces. Access via a
user-supplied access function is common in hosted environments and when
external I/O devices are connected to single-chip processors.

• If all the access properties defined by the hardware register designator
specification can be initialized at compile-time then its designator is called a
static designator .

• If some access properties defined by the hardware register designator
specification are initialized at compile-time and others require initialization at
run-time, then its designator is called a dynamic designator .

• Hardware registers within the same hardware group shall share the same
platform-related characteristics. Only the hardware register characteristics and
address information wil l vary between the hardware register designator
specifications.

• Direct designators are fully initialized either at compile-time or by an
iogroup_acquire operation using the <iohw.h> interface. In the <hardware>

interface, direct designators are initialized by constructors that have an empty
parameter list for static designators.

• Indirect designators are fully initialized by an iogroup_map operation using
the <iohw.h> interface. The <hardware> interface provides different means to
bind indirect designators, e.g. template instantiation or function parameter
binding.

• The hardware driver will determine whether a designator is a direct designator
or an indirect designator only for the purpose of mapping (binding) a hardware
group designator.

• If the bit width of the logical hardware register is larger than the bit width of
the hardware device data bus, then (seen from the processor system) the logical
hardware register wil l consist of two or more partial hardware registers. In

Technical Report on C++ Performance PDTR 18015

Page 88 of 189 Version for PDTR approval ballot

such cases the hardware register endianness will be specified by the
designator specification. The hardware register endianness is not related to
any endianness used by the processor system or compiler.

• If the bit width of the logical hardware register is larger than the bit width of
the processor data bus or the bit width of the hardware device data bus, then a
single logical hardware register access operation will consist of multiple
partial hardware register access operations. Such properties may be
encapsulated by a single hardware register designator for the logical hardware
register.

These concepts and terms are described in greater detail in the following sections.

5.1.3 Overview and Principles
The iohw access functions create a simple and platform independent interface between
driver source code and the underlying access methods used when addressing the
hardware registers on a given platform.

The primary purpose of the interface is to separate characteristics which are portable
and specific for a given hardware register – for instance, the register bit width and
device bus size and endianness – from characteristics which are related to a specific
execution environment, such as the hardware register address, processor bus type and
endianness, address interleave, compiler access method, etc. Use of this separation
principle enables driver source code itself to be portable to all platforms where the
hardware device can be connected.

In the driver source code, a hardware register must always be referred to using a
symbolic name, the hardware register designator. The symbolic name must refer to a
complete hardware register designator specification of the access method used with
the given register. A standardized iohw syntax approach creates a conceptually
simple model for hardware registers:

symbolic name for hardware register ⇔ complete definition of the access method

When porting the driver source code to a new platform, only the definition of the
symbolic name encapsulating the access properties needs to be updated.

5.1.4 The Abstract Model
The standardization of basic I/O hardware addressing is based on a three layer abstract
model:

PDTR 18015 Technical Report on C++ Performance

Version for PDTR approval ballot Page 89 of 189

Portable hardware device driver source code

Symbolic names for hardware
registers and groups

Hardware register designator specifications

Standard I/O functions
(portable)

Specifications of access methods
(platform-specific)

Compiler vendor’s <iohw.h> or <hardware>

The top layer contains the hardware device driver code supplied by the hardware
vendor or written by a driver developer. The source code in this layer is intended to
be fully portable to any platform where the hardware can be connected. This code
must only access hardware registers via the standardized I/O functionality described
in this section. Each hardware register must be identified using a symbolic name, the
hardware register designator, and referred to only by that name. These names are
supplied by the author of the driver code, with the expectation that the integrator of
hardware and platform wil l bind access properties to the names.

The middle layer associates symbolic names with complete hardware register
designator specifications for the hardware registers in the given platform. The
hardware register designator definitions in this layer are created last, and are the only
part which must be updated when the hardware driver source code is ported to a
different platform.

The bottom layer is the implementation of the <iohw.h> and <hardware> headers.
They provide interfaces for the functionality defined in this section and specify the
various different access methods supported by the given processor and platform
architecture. This layer is typically implemented by the compiler vendor. The
features provided by this layer, and used by the middle layer, may depend on intrinsic
compiler capabilities.

§Appendix B: contains some general considerations that should be addressed when a
compiler vendor implements the iohw functionality.

§5.3 proposes a generic C++ syntax for hardware register designator specifications.
Using a general syntax in this layer may extend portabil ity to include user’s hardware
register specifications, so it can be used with different compiler implementations for
the same platform.

5.1.4.1 The Module Set
A typical device driver operates with a minimum of three modules, one for each of the
abstraction layers. For example, it is convenient to locate all hardware register name
definitions in a separate header file (called "platform_defs.h " in this example):

Technical Report on C++ Performance PDTR 18015

Page 90 of 189 Version for PDTR approval ballot

1. Device driver module

• The hardware driver source code
• Portable across compilers and platforms
• Includes <iohw.h> or <hardware> and "platform_defs.h "
• Implemented by the author of the device driver

2. Hardware register designator specifications in "platform_defs.h "

• Defines symbolic names for hardware register designators and their
corresponding access methods

• Specific to the execution environment
• The header name and symbolic names are created by the author of the

device driver
• Other parts are implemented and maintained by the integrator

3. Interface header <iohw.h> or <hardware>

• Defines hardware access functionality and access methods
• Specific to a given compiler
• Implemented by the compiler vendor

These might be used as follows (in the common subset of C and C++):

#i ncl ude <i ohw. h>
#i ncl ude " pl at f or m_def s. h" / / m y H W r egi ste r def i ni t i ons f or t ar get

unsi gned c har m ybuf [10] ;
// . ..
io wr (MYPORT1, 0 x8) ; / / w r i te si ngl e r egi st er
fo r (i nt i = 0 ; i < 1 0; i ++)
 mybuf [i] = i or dbuf (MYPORT2, i) ; / / r ead re gi st er a r r ay

In C++:

For demonstration purposes, the hardware register designator specifications that are
hidden in "platform_defs.h" in the above example are shown here in the unnamed
namespace. For modular production code, these specifications wil l typically be in a
separate header file. This example demonstrates various features specific to the
<hardware> interface.

#i ncl ude < har dwar e>

namespace
{

Middle layer (hardware register designator specifications):

us i ng n amespace s t d: : har dwar e;

User-defined class used by the driver:
st r uct U Char Buf
{

PDTR 18015 Technical Report on C++ Performance

Version for PDTR approval ballot Page 91 of 189

 unsi gned c har b uf f er [10];
};

Common platform designator used by all registers in this driver:

platform_traits is an implementation-provided class with default definitions, so
only the specifics must be provided (here only the base address).

st r uct P l at f or m : p l at f or m_t r ai ts
{
 t ypedef s t at i c_addr ess<0x34> a ddr ess_hold er ;
};

Three register designators are defined here:

register_traits is also an implementation-provided class with default definitions.

All register designator specifications here use a static address.

st r uct P or t A1_T : r egi st er _t r ai ts
{
 t ypedef s t at i c_addr ess<0x1a> a ddr ess_hold er ;
};

st r uct P or t A2_T : r egi st er _t r ai ts
{
 t ypedef s t at i c_addr ess<0x20> a ddr ess_hold er ;
};

This designator specification additionally defines the value_type (the logical data
type), as the default in this case is uint8_t:

st r uct P or t A3_T : r egi st er _t r ai ts
{
 t ypedef U Char Buf v al ue_t ype;
 t ypedef s t at i c_addr ess<0x20> a ddr ess_hold er ;
};

} / / u nnamed n amespace

in t m ai n()
{

Writing to a single hardware register defined by the designators PortA1_T and
Platform:

 r egi st er _access<Por t A1_T, P l at f or m> p 1;
 p1 = 0 x08;

Copying a register buffer specified by PortA2_T:

 unsi gned c har m ybuf [10] ;
 r egi st er _buf f er <Por t A2_T, P l at f or m> p 2;
 f or (i nt i = 0 ; i ! = 1 0; + +i)
 {

mybuf [i] = p 2[i];
 }

Essentially the same operation, but as a block read:

 r egi st er _access<Por t A3_T, P l at f or m> p 3;
 UChar Buf m yBl ock;
 myBl ock = p 3;
}

Technical Report on C++ Performance PDTR 18015

Page 92 of 189 Version for PDTR approval ballot

The device driver programmer only sees the characteristics of the hardware register
itself. The underlying platform, bus architecture, and compiler implementation do not
matter during driver programming. The underlying system hardware may later be
changed without modifications to the hardware device driver source code being
necessary.

5.1.5 Information Required by the Interface User
In order to enable a driver library user to define the hardware register designator
specifications for a particular platform, a portable driver library based on the iohw
interface should (in addition to the library source code) provide at least the following
information:

• All hardware register designator names and hardware group designator names
used by the library (in the diagram in §5.1.4, these things comprise the left half
of the middle layer).

• Device and register type information for all designators (in §5.1.4 these
constitute the hardware-specific traits needed in the definitions for the right
half of the middle layer):

• Logical bit width of the logical device register.
• The designator type – single register, a register buffer or a register group.
• Bit width of the device data bus.
• Endianness of registers in the device (if any register has a logical width

larger than the device's data bus).
• Relative address offset of registers in the device (if the device contains

more than one register).
• Whether the driver assumes the use of indirect designators.

5.1.6 Hardware Register Characteristics
The principle behind iohw is that all hardware register characteristics should be
visible to the driver source code, while all platform specific characteristics are
encapsulated by the header files and the underlying iohw implementation.

Hardware registers often behave differently from the traditional memory model. They
may be “read-only” , “write-only” , “read-write,” or “read-modify-write”; often READ

and WRITE operations are allowed only once for each event, etc.

All such hardware register specific characteristics should be visible at the driver
source code level and should not be hidden by the iohw implementation.

5.1.7 Hardware Register Designators
Within a program a machine's hardware registers are specified by hardware register
designators. A hardware register designator according to the <iohw.h> interface may
be an identifier or some implementation-specific construct. In the <hardware>

interface, a hardware register designator can either be the name of a type or the name

PDTR 18015 Technical Report on C++ Performance

Version for PDTR approval ballot Page 93 of 189

of an object, depending on the context. It may also be a class template. In any case,
these are C++ names that follow the normal rules for name lookup (i.e. they shall not
be preprocessor macros). A C implementation must support hardware register
designators in the form of identifiers; other forms of hardware register designators
may be supported but might not be portable to all implementations. A C++
implementation must support hardware register designators according to the
specification in §5.3.

Any unique, non-reserved identifier can be declared as a designator for a hardware
register. The definition of the identifier includes the size and access method of the
hardware register. The means, however, by which an identifier is defined as a
hardware register designator is entirely implemented-defined for the C interface and
must follow the specifications in §5.3 for the C++ interface.

By choosing convenient identifiers as designators for registers, a programmer can
create device driver code with the expectation that the identifiers can be defined to
refer to the actual hardware registers on a machine supporting the same interface. So
long as the only important differences from one platform to another are the access
methods for the registers, device driver code can be ported to a new platform simply
by updating the designator definitions (the "middle layer") for the new platform.

Additional issues and recommendations concerning hardware register designators are
discussed in Appendices A, B, and C of this Technical Report.

5.1.8 Accesses to Ind ividual Hardware Registers
The header <iohw.h> declares a number of functions and/or macros for accessing a
hardware register given a hardware register designator. Each “function” defined by
the <iohw.h> header may actually be implemented either as a function or as a
function-like macro that expands into an expression having the effects described for
the function. If a function is implemented as a function-like macro, there will
ordinarily not be a corresponding actual function declared or defined within the
library.

<iohw.h> defines functions for reading from and writing to a hardware register.
These functions take a hardware register designator as argument.

The header <hardware> defines the same functionality by defining a class template
register_access . This class template takes two arguments that together form a
hardware register designator. These template arguments are traits classes that
describe the hardware register access properties. One traits class defines the register
specific properties while the other defines the platform specific properties.

The class template register_access defines an assignment operator for the write
functionality and a conversion operator to the respective logical data type for the read
functionality.

Example using the <iohw.h> interface:

If dev_status and dev_out are hardware register designators defined in the
file "iodriv_hw.h ", the following is possible valid code:

Technical Report on C++ Performance PDTR 18015

Page 94 of 189 Version for PDTR approval ballot

#i ncl ude < i ohw. h>
#i ncl ude " i odr i v_hw. h" / * P l at f or m- speci f i c desi gnat or
 def i ni t i ons. * /

// W ai t u nt i l c ont r ol l er i s n o l onger b usy.
whi l e (i or d(dev_st at us) & S TATUS_BUSY) / * d o not hi ng * / ;

// W r i t e v al ue t o c ont r ol l er.
io wr (dev_out , c h) ;

Example using the <hardware> interface:

#i ncl ude < har dwar e>
// i nc l udes t he d ef i ni t i ons s hown i n t he e xampl e o f §5. 1. 4. 1:
#i nc l ude " dr i v_def s. h"

re gi st er _access<Por t A1_T, P l at f or m> d evSt at us;
re gi st er _access<Por t A2_T, P l at f or m> d evOut;
co nst u i nt 8_t s t at usBusy = 0 x4;
ui nt 8_t c h = ' ';

// W ai t u nt i l c ont r ol l er i s n o l onger b usy:
whi l e (devSt at us & s t at usBusy)
 ; / / d o n ot hi ng

// W r i t e s ome v al ue t o c ont r ol l er :
devOut = c h;

Besides simple read and write operations, three read-modify-write operations are
supported, corresponding to the bit-wise logical operations AND, OR, and XOR.
Again, these are defined as functions in the <iohw.h> interface and as overloaded
operators in the <hardware> interface.

5.1.9 Hardware Register Buffers
Besides individual hardware registers, a hardware register designator may also
designate a hardware register buffer, which is essentially an array of hardware
registers. As with a C array, an index of unsigned integer type must be supplied to
access a specific register in a hardware register buffer.

The <iohw.h> header declares all the same functions for buffers as for single
registers, with a different name and an additional index parameter, for which the
ioindex_t type is defined.

The <hardware> header defines for this purpose a special class template
register_buffer that defines an operator[], which in turn returns a reference to a
normal register_access instantiation, so all the operations defined for single
registers can be used on the result of the index operator.

Example using <iohw.h> :
If ctrl_buffer is defined in the file "ctrl_regs.h " as a hardware register
designator for a hardware register buffer, the following is possible valid code:

#i ncl ude < i ohw. h>
#i ncl ude " ct r l _r egs. h" / / P l at f or m- speci fi c desi gnat or

PDTR 18015 Technical Report on C++ Performance

Version for PDTR approval ballot Page 95 of 189

 / / d ef i ni t i ons.

unsi gned c har b uf [CTRL_BUFSI ZE] ;

 / / C opy b uf f er c ont ent s.
fo r (i nt i = 0 ; i < C TRL_BUFSI ZE; i ++)
 buf [i] = i or dbuf (ct r l _buf f er , i);

Essentially the same example using <hardware> :
The "middle layer" is not shown here; it is assumed to be the same as for the previous
examples.

#i ncl ude < har dwar e>

co nst s i ze_t b uf Si ze = 1 0;
in t m ai n()
{
unsi gned c har m ybuf [buf Si ze];
re gi st er _buf f er <Por t A2_T, P l at f or m> p 2;
 f or (s i ze_t i = 0 ; i ! = b uf Si ze; + +i)
 {

mybuf [i] = p 2[i];
 }
 r et ur n 0;
}

Two hardware register buffer indexes index and index+1 refer to two adjacent
hardware register locations in the hardware device. Note that this may be different
from adjacent address locations in the underlying platform. See §B.2.2 for a more
detailed discussion.

As in an ordinary array a larger index refers to a platform location at a higher address.

Unlike an ordinary array, the valid locations within a hardware register buffer might
not be “dense” ; any index might not correspond to an actual hardware register in the
buffer. (A programmer should be able to determine the valid indices from
documentation for the hardware device or the machine.) If a hardware register buffer
accesses an “empty” location, the behavior is undefined.

5.1.10 Hardware Group s
A hardware group is an arbitrary collection of hardware register designators. Each
hardware group is intended to encompass all the designators for a single hardware
device. Certain operations are supported only for hardware groups; these operations
apply to the members of a hardware group as a whole. Whether a hardware register
designator can be a member of more than one group is implementation-defined.

Like hardware registers, a hardware group is specified by a hardware group
designator. For the identification of this designator, the same rules apply as for the
identification of normal hardware register group designators, as explained in 5.1.7,
and are different for <iohw.h> and <hardware> as specified there.

Technical Report on C++ Performance PDTR 18015

Page 96 of 189 Version for PDTR approval ballot

5.1.11 Direct and Ind irect Designators
Each hardware register designator is either direct or indirect. An indirect hardware
register designator has a definition that does not fully specify the register or register
buffer to which the designator refers. Before any accesses can be performed with it,
an indirect designator must be mapped to refer to a specific register or register buffer.
A direct hardware register designator, by contrast, has a definition that fully specifies
the register or register buffer to which the designator refers. A direct designator
always refers to the same register or register buffer and cannot be changed.

For the <hardware> interface, a direct designator specification consists of two parts,
one defining the platform access properties and one defining the register access
properties. An indirect hardware register designator specification only has the part
defining the register access properties, and must be completed with the platform
specific part by a mapping.

An indirect hardware register designator is mapped by associating it with a direct
hardware register designator. Accesses to the indirect designator then occur as though
with the direct designator to which the indirect designator is mapped. An indirect
hardware register designator can be remapped any number of times; accesses through
the designator always occur with respect to its latest mapping.

An <iohw.h> implementation is not required to support indirect designators. If an
<iohw.h> implementation does support indirect designators, it may place arbitrary
restrictions on the direct designators to which a specific indirect designator can be
mapped. Typically, an indirect designator will be defined to be of a certain “kind,”
capable of mapping to some subclass of access methods. An indirect designator can
be mapped to a direct designator only if the direct designator's access method is
compatible with the indirect designator. Such issues are specific to an
implementation.

The <hardware > interface defines several methods of mapping that are available in
all <hardware> implementations, which therefore all support indirect designators.

5.1.12 Operations on Hardware Group s

5.1.12.1 Acquir ing Access to a Hardware Register in a Group

For some platforms, it may be necessary to acquire a hardware register or hardware
register buffer before it can be accessed. What constitutes “acquiring” a register is
specific to an implementation, but acquisition performs all the initializations that are
required before one can access that register.

The <iohw.h> header declares two functions, iogroup_acquire and
iogroup_release , each taking a single direct hardware group designator as an
argument and performing any initializing and releasing actions necessary for all
designators in that group.

One purpose of iogroup_acquire is to give the I/O device driver writer control over
when the hardware group designator is initialized, because certain conditions may

PDTR 18015 Technical Report on C++ Performance

Version for PDTR approval ballot Page 97 of 189

have to be met before this can safely be done. For example, some hardware platform
dependent I/O registers may need to be initialized before the given I/O device group
can be safely acquired and initialized. In an implementation for a hosted environment,
the initialization for a specific hardware register might call the operating system to
map the physical hardware registers of the group into a block of addresses in the
process's address space so that they can be accessed. In the same implementation, the
releasing action would call the operating system to unmap the hardware registers,
making them inaccessible to the process. Therefore hardware group designator
initialization must not be something which happens automatically at program startup;
it should be called explicitly.

A <hardware> interface implementation may handle any initializing of hardware
group designators using normal C++ constructors and any releasing actions using
normal destructors.

5.1.12.2 Mapping Indirect Designators

The <iohw.h> header declares a function iogroup_map taking an indirect and a direct
hardware group designator as argument that binds all hardware register designators
from the first group to the respective hardware register designator of the second.

The <hardware> interface defines several methods of mapping. In the <hardware>

interface, a hardware register designator specification consists of two traits classes,
one of them defining the register-specific access properties and one of them defining
the platform-specific access properties. An indirect designator is a designator that has
only the register-specific traits class. For it to become a complete, direct designator a
platform-specific traits class must be added, which is called mapping.

One mapping method is simply the instantiation of a class template that puts together
the register-specific traits class and the platform-specific traits class. If this method is
used for static designators, it will not introduce any register-specific or platform-
specific data members and any address computations for hardware register accesses
can be completely resolved at compile-time.

Another method uses a simple dynamic address holder type with which an indirect
designator can be augmented to make a full direct designator. This way, any
dynamically acquired platform-specific data can be used to map an indirect hardware
group.

Example using <iohw.h> :

If "dev_hw. h" defines two indirect I/O register designators, dev_config and
dev_data , an indirect I/O group designator dev_group with both dev_config and
dev_data as members, and two direct I/O group designators dev1_group and
dev2_group , the following is possible valid code:

#i ncl ude < i ohw. h>
#i ncl ude " dev_hw. h" / / P l at f or m- speci f i c de si gnat or
 / / d ef i ni t i ons.

Technical Report on C++ Performance PDTR 18015

Page 98 of 189 Version for PDTR approval ballot

// P or t abl e d evi ce d r i ver f unct i on.
ui nt 8_t g et _dev_dat a(voi d)
{
 i owr (dev_conf i g, 0 x33) ;
 r et ur n i or d(dev_dat a);
}

// R ead d at a f r om devi ce 1.
io gr oup_map(dev_gr oup, d ev1_gr oup);
ui nt 8_t d 1 = g et _dev_dat a() ;

// R ead d at a f r om devi ce 2.
io gr oup_map(dev_gr oup, d ev2_gr oup);
ui nt 8_t d 2 = g et _dev_dat a() ;

Example using <hardware> :
This example is equivalent to the <iohw.h> example, but for demonstration purposes,
it shows the complete "middle layer" defined here in the unnamed namespace:

#i ncl ude < har dwar e>

namespace
{

// Middle layer (hardware register designator specifications)

us i ng n amespace s t d: : har dwar e;

st r uct P l at f or mA : p l at f or m_t r ai t s
{
 t ypedef s t at i c_addr ess<0x50> a ddr ess_hold er ;
};

st r uct P l at f or mB : p l at f or m_t r ai t s
{
 t ypedef s t at i c_addr ess<0x90> a ddr ess_hold er ;
};

st r uct D ynPl at f or m : p l at f or m_t r ai t s
{
 t ypedef d ynami c_addr ess a ddr ess_hol der;
 enum { a ddr ess_mode=hw_base: : dynami c_addr ess };
};

st r uct P or t A1_T : r egi st er _t r ai ts
{
 t ypedef s t at i c_addr ess<0x1a> a ddr ess_hold er ;
};

st r uct P or t A2_T : r egi st er _t r ai ts
{
 t ypedef s t at i c_addr ess<0x20> a ddr ess_hold er ;
};

// Portable device driver function using the template approach:
te mpl at e < cl ass P l at f or mSpec>
ui nt 8_t g et DevDat a(t ypename P l at f or mSpec: : addre ss_hol der c onst & addr =
ty pename P l at f or mSpec: : addr ess_hol der ())
{

PDTR 18015 Technical Report on C++ Performance

Version for PDTR approval ballot Page 99 of 189

 r egi st er _access<Por t A1_T, P l at f or mSpec> devConf i g(addr) ;
 r egi st er _access<Por t A2_T, P l at f or mSpec> devDat a(addr) ;

 devConf i g = 0 x33;
 r et ur n d evDat a;
}
} / / u nnamed n amespace

in t m ai n()
{

// static version

 / / R ead d at a f r om devi ce 1:
 ui nt 8_t d 1 = g et DevDat a<Pl at f or mA>();

 / / R ead d at a f r om devi ce 2:
 ui nt 8_t d 2 = g et DevDat a<Pl at f or mB>();

// dynamic version
 ui nt 8_t d 3 = g et DevDat a<DynPl at f or m>(0x40) ;

 ui nt 8_t d 4 = g et DevDat a<DynPl at f or m>(0x80) ;

 r et ur n 0;
}

In this example, the mapping is done by simply instantiating register access in
getDevData() using the template parameter of this function template. The first
version shown uses a static approach that gives different static platform traits classes
as template arguments. This approach will produce two different instantiations of
getDevData() , but does all the address computations for accessing devConfi g and
devData at compile-time and produces in typical applications absolutely no object
data for any platform or register object.

The second version uses a dynamic approach and therefore avoids the double
instantiation of getDevData , but in turn produces a data object containing the given
platform address for each of the local hardware register designators, devConfig and
devData . Also, the actual address to access these registers is calculated at run-time.

The <hardware> interface deliberately offers both methods, as the actual trade-off
judgment can only be done by the driver programmer.

5.2 The <iohw.h> Interface for C and C++
For the convenience of the reader, this section duplicates a portion of the Technical
Report ISO/IEC WDTR 18037 “ Extensions for the programming language C to
support embedded processors” from JTC 1/SC 22/WG 14. If the description of
hardware access interfaces in this report differs from that in ISO/IEC WDTR 18037,
the description there takes precedence.

The header <iohw.h> declares a type and defines macros and/or declares functions for
accessing implementation-specific I/O registers.

The type declared is

io i ndex_t

Technical Report on C++ Performance PDTR 18015

Page 100 of 189 Version for PDTR approval ballot

which is the unsigned integer type of an index into an I/O register buffer.

Any “ function” declared in <iohw.h> as described below may alternatively be
implemented as a function-like macro defined in <iohw.h> . (If a function in
<iohw.h> is implemented as a function-like macro, there need not be an actual
function declared or defined as described, despite the use of the word function.) Any
invocation of such a function-like macro shall expand to code that evaluates each of
its arguments exactly once, fully protected by parentheses where necessary, so it is
generally safe to use arbitrary expressions as arguments.

5.2.1 I/O registers

An I/O register is a storage location that is addressable within some address space.
An I/O register has a size and an access method, which is the method by which an
implementation accesses the register at execution time. An I/O register is accessed
(read or written) as an unsigned integer. An I/O register may need to be acquired
before it can be accessed. (I/O registers are acquired with the iogroup_acquire

function described in §5.2.3.1)

Accesses to an I/O register may have unspecified side effects that may be unknown to
the implementation, and an I/O register may be modified in ways unknown to the
implementation. Accesses to I/O registers performed by functions declared in
<iohw.h> are therefore treated as side effects which respect sequence points27.

An I/O register buffer is a collection of I/O registers indexed by an integer of type
ioindex_t and otherwise sharing a common size and access method. The set of valid
indices for the I/O registers in an I/O register buffer may be any subset of the values
of type ioindex_ t ; the set of valid indices need not be contiguous and need not
include zero.

An I/O register designator refers (except as stipulated below) to a specific individual
I/O register or a specific I/O register buffer. Functions that access I/O registers take
an I/O register designator argument to determine the register to access. An
implementation shall support at least one of the following as a valid I/O register
designator for any individual I/O register or I/O register buffer:

• any ordinary identifier that is not a reserved identifier, defined by some
implementation-defined means; and/or

• any object-like macro name that is not a reserved identifier, defined in accordance
with some implementation-defined convention.

An implementation may optionally support other, implementation-defined forms of
I/O register designators.

Each I/O register designator is either direct or indirect. A direct I/O register
designator refers to a specific I/O register or I/O register buffer as determined by the

27

 And therefore I/O register access must always be qualified as volatile .

PDTR 18015 Technical Report on C++ Performance

Version for PDTR approval ballot Page 101 of 189

designator's definition. An indirect I/O register designator does not refer to a specific
I/O register or I/O register buffer until the designator has been mapped to a direct I/O
register designator. Once mapped, an indirect I/O register designator can
subsequently be remapped (mapped again) to the same or a different direct I/O
register designator. An indirect I/O register designator refers to the same I/O register
or I/O register buffer as the direct designator to which it was last mapped. (I/O
register designators are mapped with the iogroup_map function described in
§5.2.3.2.)

An indirect I/O register designator is compatible with a direct I/O register designator
if it is possible to map the indirect designator to the direct designator. An I/O register
designator that refers to an individual I/O register is not compatible with an I/O
register designator that refers to an I/O register buffer, and vice versa. Otherwise,
whether a specific indirect I/O register designator is compatible with a specific direct
I/O register designator is implementation-defined.

An implementation need not support a means for indirect I/O register designators to
be defined.

An I/O register designator covers an I/O register if it refers to the I/O register or it
refers to an I/O register buffer that includes the register.

5.2.2 I/O group s

An I/O group is a collection of I/O register designators. It is intended that each I/O
group encompass all the designators for a single hardware controller or device.

The members of an I/O group shall be either all direct designators or all i ndirect
designators. An I/O group is direct if its members are direct. An I/O group is indirect
if its members are indirect.

An I/O group shall not have as members two or more I/O register designators that
cover the same I/O register. Whether an I/O register designator can be a member of
more than one I/O group at the same time is implementation-defined.

An I/O group designator specifies an I/O group. An implementation shall support at
least one of the following as a valid I/O group designator for any supported I/O group:

• any ordinary identifier that is not a reserved identifier, defined by some
implementation-defined means; and/or

• any object-like macro name that is not a reserved identifier, defined in accordance
with some implementation-defined convention.

5.2.3 I/O group functions

5.2.3.1 The iogroup_acquire and iogroup_release functions
Synopsis

#i ncl ude < i ohw. h>
vo i d i ogr oup_acqui r e(i ogr oup_desi gnat or);
vo i d i ogr oup_r el ease(i ogr oup_desi gnat or);

Technical Report on C++ Performance PDTR 18015

Page 102 of 189 Version for PDTR approval ballot

Description

The iogroup_acquire function acquires a collection of I/O registers; the
iogroup_release function releases a collection of I/O registers. Releasing an I/O
register undoes the act of acquiring the register. The functions acquire or release all
the I/O registers covered by the I/O register designators that are members of the I/O
group designated by iogroup_designator. If the I/O group is indirect, the behavior
is undefined.

An I/O register is only said to be acquired between an invocation of
iogroup_acquire that acquires the register and the next subsequent invocation of
iogroup_release, if any, that releases the register. If iogroup_release releases an
I/O register that is not at the time acquired, or if iogroup_acquire acquires an I/O
register that is at the time already acquired, the behavior is undefined.

Acquiring or releasing an I/O register is treated as a side effect which respects
sequence points.

If an implementation can access a particular I/O register without needing it to be first
acquired, the act of acquiring and the act of releasing the register may have no real
effect.

5.2.3.2 The iogroup_map function
Synopsis

#i ncl ude < i ohw. h>
vo i d i ogr oup_map(i ogr oup_desi gnat or , i ogr oup_desi gnat or);

Description

The iogroup_map function maps the indirect I/O register designators in the I/O group
designated by the first iogroup_designator to corresponding direct I/O register
designators in the I/O group designated by the second iogroup_designator . The
first I/O group shall be indirect, and the second I/O group shall be direct. The
correspondence between members of the two I/O groups is implementation-defined
and shall be one-to-one. If an indirect I/O register designator is mapped to a direct
I/O register designator with which it is not compatible, the behavior is undefined.

5.2.4 I/O register access functions

If a register is accessed (read or written) when it is not acquired, the behavior is
undefined. If an indirect I/O register designator is given as an argument to one of the
functions below and the designator has not been mapped, the behavior is undefined.

5.2.4.1 The iord functions
Synopsis

#i ncl ude < i ohw. h>
unsi gned i nt i or d(i or eg_desi gnat or) ;

PDTR 18015 Technical Report on C++ Performance

Version for PDTR approval ballot Page 103 of 189

unsi gned l ong i or dl (i or eg_desi gnat or) ;

Description

The functions iord and iordl read the individual I/O register referred to by
ioreg_designator and return the value read. The I/O register is read as an unsigned
integer of its size; the read value is then converted to the result type, and this
converted value is returned.

5.2.4.2 The iordbuf functions
Synopsis

#i ncl ude < i ohw. h>
unsi gned i nt i or dbuf (i or eg_desi gnat or , i oi ndex_t i x);
unsi gned l ong i or dbuf l (i or eg_desi gnat or , i oi ndex_t i x);

Description

The functions iordbuf and iordbufl read one of the I/O registers in the I/O register
buffer referred to by ioreg_designator and return the value read. The functions are
equivalent to iord and iordl , respectively, except that the I/O register read is the one
with index ix in the I/O register buffer referred to by ioreg_designator . If ix is not
a valid index for the I/O register buffer, the behavior is undefined.

5.2.4.3 The iowr functions
Synopsis

#i ncl ude < i ohw. h>
vo i d i owr (i or eg_desi gnat or , u nsi gned i nt a);
vo i d i owr l (i or eg_desi gnat or , u nsi gned l ong a) ;

Description

The functions iowr and iowrl write the individual I/O register referred to by
ioreg_designator . The unsigned integer a is converted to an unsigned integer of
the size of the I/O register, and this converted value is written to the I/O register.

5.2.4.4 The iowrbuf functions
Synopsis

#i ncl ude < i ohw. h>
vo i d i owr buf (i or eg_desi gnat or , i oi ndex_t i x, unsi gned i nt a);
vo i d i owr buf l (i or eg_desi gnat or , i oi ndex_t ix , unsi gned l ong a);

Description

The functions iowrbuf and iowrbufl write one of the I/O registers in the I/O register
buffer referred to by ioreg_designator . The functions are equivalent to iowr and
iowrl , respectively, except that the I/O register written is the one with index ix in the
I/O register buffer referred to by ioreg_designator. If ix is not a valid index for
the I/O register buffer, the behavior is undefined.

Technical Report on C++ Performance PDTR 18015

Page 104 of 189 Version for PDTR approval ballot

5.2.4.5 The ioor, ioand, and ioxor functions
Synopsis

#i ncl ude < i ohw. h>
vo i d i oand(i or eg_desi gnat or , u nsi gned i nt a) ;
vo i d i oor (i or eg_desi gnat or , u nsi gned i nt a);
vo i d i oxor (i or eg_desi gnat or , u nsi gned i nt a) ;

vo i d i oor l (i or eg_desi gnat or , u nsi gned l ong a) ;
vo i d i oandl (i or eg_desi gnat or , u nsi gned l ong a);
vo i d i oxor l (i or eg_desi gnat or , u nsi gned l ong a);

Description

The functions ioand , ioandl , ioo r , ioor l , ioxor , and ioxorl modify the individual
I/O register referred to by ioreg_designator . The function ioand has a behavior
equivalent to

io wr (i or eg_desi gnat or , i or d(i or eg_desi gnato r) & a)

except that the ioreg_designator is not evaluated twice (assuming it is an
expression).

Likewise, the function ioor has a behavior equivalent to
io wr (i or eg_desi gnat or , i or d(i or eg_desi gnato r) | a)

and the function ioxor has a behavior equivalent to

io wr (i or eg_desi gnat or , i or d(i or eg_desi gnato r) ^ a)

Corresponding equivalencies apply for ioandl , ioorl , and ioxorl , but with the
unsigned long functions iordl and iowrl replacing iord and iowr .

5.2.4.6 The ioorbuf , ioandbuf , and ioxorbuf functions
Synopsis

#i ncl ude < i ohw. h>
vo i d i oandbuf (i or eg_desi gnat or , i oi ndex_t ix , unsi gned i nt a) ;
vo i d i oor buf (i or eg_desi gnat or , i oi ndex_t i x, unsi gned i nt a);
vo i d i oxor buf (i or eg_desi gnat or , i oi ndex_t ix , unsi gned i nt a) ;

vo i d i oandbuf l (i or eg_desi gnat or , i oi ndex_t i x, u nsi gned l ong a) ;
vo i d i oor buf l (i or eg_desi gnat or , i oi ndex_t ix , unsi gned l ong a);
vo i d i oxor buf l (i or eg_desi gnat or , i oi ndex_t i x, u nsi gned l ong a) ;

Description

The functions ioandbuf , ioorbuf , ioxorbu f , ioorbufl , ioandbufl , and ioxorbufl

modify one of the I/O registers in the I/O register buffer referred to by
ioreg_designator . The functions are equivalent to ioand , ioandl , ioor , ioorl ,
ioxor , and ioxorl , respectively, except that the I/O register modified is the one with
index ix in the I/O register buffer referred to by ioreg_designator . If ix is not a
valid index for the I/O register buffer, the behavior is undefined.

PDTR 18015 Technical Report on C++ Performance

Version for PDTR approval ballot Page 105 of 189

5.3 The <hardware> Interface for C++
The programming model behind these definitions is described in §5.1.4. The header
<hardware> defines an interface for two layers of that model, the top layer for the
portable source code and parts of the middle layer for the device register definitions.
This is notably different to the C interface <iohw.h> described in §5.2.

The header <hardware> declares several types, which together provide a data-type-
independent interface for basic iohw addressing.

Header <hardware> synopsis:

namespace s t d {
 namespace h ar dwar e {
 #i nc l ude " st di nt . h" / / s ee §5. 3. 3

 st r uct h w_base { . . . };

 / / r equi r ed a ddr ess h ol der t ypes
 t empl at e < hw_base: : addr ess_t ype v al >
 st r uct s t at i c_addr ess;

 st r uct d ynami c_addr ess;
 / / [ot her s m ay b e p r ovi ded b y a n i mpl ement at i on]

 st r uct p l at f or m_t r ai t s;
 st r uct r egi st er _t r ai t s;

 t empl at e < cl ass R egTr ai t s, c l ass P l at fo r mTr ai t s>
 cl ass r egi st er _access;

 t empl at e < cl ass R egTr ai t s, c l ass P l at fo r mTr ai t s>
 cl ass r egi st er _buf f er ;
 } / / n amespace h ar dware
} / / n amespace s t d

Technical Report on C++ Performance PDTR 18015

Page 106 of 189 Version for PDTR approval ballot

5.3.1 The Class Template register_access
Synopsis

te mpl at e < cl ass R egTr ai t s, c l ass P l at f or mTr ai ts >
cl ass r egi st er _access
{
publ i c:
 t ypedef t ypename R egTr ai t s : : val ue_t ype va lu e_t ype;

 / / c onst r uct ors
 r egi st er _access
 (t ypename R egTr ai t s: : addr ess_hol der const & r Addr,
 t ypename P l at f or mTr ai t s : : addr ess_hol der c onst & pAddr);
 r egi st er _access
 (t ypename P l at f or mTr ai t s : : addr ess_hol der c onst & pAddr);
 r egi st er _access() ;

 / / o per at or i nt er f ace
 oper at or v al ue_t ype() c onst ;
 voi d o per at or = (val ue_t ype v al) ;
 voi d o per at or | = (val ue_t ype v al) ;
 voi d o per at or & = (val ue_t ype v al) ;
 voi d o per at or ^ = (val ue_t ype v al) ;

 / / F unct i on- st yl e i nt er f ace
 val ue_t ype r ead() c onst ;
 voi d w r i t e(val ue_t ype v al);
 voi d o r _wi t h(val ue_t ype v al);
 voi d a nd_wi t h(val ue_t ype v al) ;
 voi d x or _wi t h(val ue_t ype v al) ;

};

Description
class register_access<...>

• Provides direct access to hardware registers. This defines the interface for the
top layer as described in §5.1.4.

typename RegTraits

• The argument to the first template parameter RegTraits must be a class or
instantiation of a class template that is a derived class of register_traits

and specify the register-specific access properties of the hardware register.

typename PlatformTraits

• The argument to the second template parameter PlatformTraits must be a
class or instantiation of a class template that is a derived class of
platform_traits and specify the platform-specific access properties of the
hardware register.

An implementation may add additional template parameters with default values.

typedef value_type

• Names the value_type of the RegTraits .

Constructors:
register_access

 (typename RegTraits::address_holder const &rAddr,
 typename PlatformTraits::address_holder const &pAddr);

PDTR 18015 Technical Report on C++ Performance

Version for PDTR approval ballot Page 107 of 189

register_access
 (typename PlatformTraits::address_holder const &pAddr);

register_access();

• The constructors take references to the respective address holder classes of the
access specification traits template parameters. If an address holder is marked
as is_static in its traits class, the respective constructor argument shall not
be given.

operator value_type() const
value_type read() const

• Provides read access to the hardware register.

void operator = (value_type val)
void write(value_type val)

• Writes the value_type argument val to the hardware register.

void operator |= (value_type val)
void or_with(value_type val)

• Bitwise ORs the hardware register with the value_type argument val .

void operator &= (value_type val)
void and_with(value_type val)

• Bitwise ANDs the hardware register with the value_type argument val .

void operator ^= (value_type val)
void xor_with(value_type val)

• Bitwise XORs the hardware register with the value_type argument val .

Note: The return type for all assignment operators is void to prevent assignment
chaining that could inadvertently cause considerable harm with device registers.

Note: The class interface provides both member functions and overloaded operators
to perform READ and WRITE accesses to the register. The redundancy is intentional, to
accommodate different programming styles. One set of operations can trivially be
implemented in terms of the other.

Technical Report on C++ Performance PDTR 18015

Page 108 of 189 Version for PDTR approval ballot

5.3.2 The Class Template register_buffer
Synopsis

te mpl at e < cl ass R egTr ai t s, c l ass P l at f or mTr ai ts >
cl ass r egi st er _buf f er
{
publ i c:
 t ypedef r egi st er _access<RegTr ai t s, P l at fo rmTr ai t s> r ef _t ype;
 t ypedef t ypename R egTr ai t s : : val ue_t ype va lu e_t ype;

 / / c onst r uct ors
 r egi st er _buf f er
 (t ypename R egTr ai t s: : addr ess_hol der const & r Addr,

 t ypename P l at f or mTr ai t s: : addr ess_hol der c onst & pAddr) ;
 r egi st er _buf f er
 (t ypename P l at f or mTr ai t s : : addr ess_hol der c onst & pAddr);
 r egi st er _buf f er () ;

 / / o per at or i nt er f ace
 r ef _t ype o per at or [] (si ze_t i ndex) c onst ;
 / / f unct i on- st yl e i nt er f ace
 r ef _t ype g et _buf f er _el ement (si ze_t i ndex);

};

Description
class register_buffer<...>

• Provides direct access to hardware register buffers. This defines the interface
for the top layer as described in 5.1.4.

typename RegTraits

• The argument to the first template parameter RegTraits must be a class or
instantiation of a class template that is a derived class of register_traits

and specify the register-specific access properties of the hardware register.

typename PlatformTraits

• The argument to the second template parameter PlatformTraits must be a
class or instantiation of a class template that is a derived class of
platform_traits and specify the platform-specific access properties of the
hardware register.

An implementation may add additional template parameters with default values.

typedef ref_type

• Names the return type of the index operator which is equivalent to the
corresponding register_access class. (It might be a nested class that can be
used like the corresponding register_access class.)

typedef value_type

• Names the value_type of the RegTraits .

Constructors:
register_buffer

 (typename RegTraits::address_holder const &rAddr,
 typename PlatformTraits::address_holder const &pAddr);

register_buffer
 (typename PlatformTraits::address_holder const &pAddr);

PDTR 18015 Technical Report on C++ Performance

Version for PDTR approval ballot Page 109 of 189

register_buffer();

• The constructors take references to the respective address holder classes of the
access specification traits template parameters. If an address holder is marked
as is_static in its traits class, the respective constructor argument shall not
be given.

ref_type operator [] (size_t index)
ref_type get_buffer_element(size_t index)

• Returns the equivalent of a reference to the location specified by index inside
of the device register. The return value can be used like a register_access

object, i.e. it can be written or read, and the bitwise OR, AND and XOR can be
applied to it.

Note: The purpose of providing both operator[] and a member function
get_buffer_element is to accommodate different programming styles. One
can be implemented in terms of the other.

5.3.3 Header "stdint.h"
The header <stdint.h> is specified by C99 (IS 9899-1999), and is not part of the
C++ Standard (ISO/IEC 14882:2003 (Second Edition)). Instead, some
implementation specific mechanism introduces the fixed size integer types described
by <stdint.h> of the C standard into namespace std::hardware as if the header
<stdint.h> were included by <hardware> .

No names are introduced into global namespace.

5.3.4 The struct hw_base
Synopsis

namespace s t d {
 namespace h ar dwar e {
 st r uct h w_base
 {
 enum access_mode { r andom, r ead_wr i t e, w r i t e, r ead } ;
 enum devi ce_bus { d evi ce8, dev ic e16,
 devi ce32, d ev ic e64 };
 enum byt e_or der { m sb_l ow, m sb_hi gh } ; / / p ossi bl y m or e
 enum pr ocessor _bus { b us8, b us16, bus32, b us64 } ;

 / / i dent i f i er s f or b us t ypes a s ty pe n ames
 enum dat a_bus { } ;
 enum i o_bus { } ;
 / / o nl y i dent i f i er s s houl d b e p r es ent th at a r e s uppor t ed
 / / b y t he u nder l y i ng i mpl ement at io n -- di agnost i c r equi r ed

 enum addr ess_ki nd { i s_st at i c , i s_ dynami c };

 t ypedef implementation-defined addre ss_t ype;
 } ;
 } / / n amespace h ar dware
} / / n amespace s t d

Technical Report on C++ Performance PDTR 18015

Page 110 of 189 Version for PDTR approval ballot

Description
struct hw_base

• Provides the names for the supported hardware characteristics. Only those
names that are supported by the hardware shall be present. Additional names
that define additional or different functionality may be defined by an
implementation.

enum access_mode

• Defines the possible modes for accessing a device register.

enum device_bus

• Defines the names for the width of the hardware register device bus as seen
from the processor.

enum byte_order

• Defines the names for the endianness of the device register. An
implementation may define additional byte orders.

enum processor_bus

• Defines the names for the width of the processor bus.

enum data_bus, io_bus

• Defines a type name for each bus at which accessible devices can be
connected. data_bus specifies a bus that addresses attached devices like
normal memory cells (memory-mapped). io_bus specifies a bus that
addresses attached devices by using special instructions (e.g. in/out or port

instructions). An implementation may define additional type names for
additional buses. Only names shall be defined in an implementation for which
a respective bus actually exists in the underlying hardware architecture.

enum address_kind

• Defines the names is_static and is_dynamic to mark address holders in
register and platform traits. An address holder that is marked as is_static

holds an address that is known at compile time. An address holder that is
marked as is_dynamic holds an address that might only be known at run-time.

address_type

• Is a type specified by the implementation to hold a hardware address. If the
underlying hardware platform supports it, this type shall be an integral type. If
the underlying hardware platform supports more than one type of hardware
address (as is usually the case where more than one bus exists), an
implementation shall define additional types for those addresses with
implementation defined names.

An implementation may define additional names and types in hw_base .

5.3.5 Common Address Holder Types
This Technical Report defines the names and properties for the two address holder
types static_address and dynamic_address . An implementation may define
additional address holder types.

PDTR 18015 Technical Report on C++ Performance

Version for PDTR approval ballot Page 111 of 189

5.3.5.1 The Class Template static_address
Synopsis

te mpl at e < hw_base: : addr ess_t ype v al >
st r uct s t at i c_addr ess
{
 enum { v al ue_=val } ;
 hw_base: : addr ess_t ype v al ue() c onst ;
};

Description

static_address

• Holds an address known at compile time.

hw_base::address_type val

• Provides the statically known address. If in an implementation
hw_base::address_type is not a basic type, the implementation can define
different template parameters.

value_

• Provides the address value through a name. If in an implementation
hw_base::address_type is not an integral type, the implementation must
provide the address by the name value_ using a different mechanism than
enum.

hw_base::address_type value()

• Provides the address value through a function.

5.3.5.2 The Class dynamic_address
Synopsis

st r uct d ynami c_addr ess
{
 dynami c_addr ess(hw_base: : addr ess_t ype a ddr) ;
 hw_base: : addr ess_t ype v al ue() c onst ;
 hw_base: : addr ess_t ype v al ue_;
};

Description
struct dynamic_address

• Holds an address that can be set at run-time.

dynamic_address (hw_base::address_type addr)

• A (converting) constructor to set the address.

hw_base::address_type value()

• Provides the address value through a function.

value_

• Provides the address value through a name.

Technical Report on C++ Performance PDTR 18015

Page 112 of 189 Version for PDTR approval ballot

5.3.6 Basic Hardware Register Designator Traits Classes
An implementation shall provide at least one traits class for the platform-specific
access properties and one traits class for register-specific access properties for
hardware registers (see §5.1.3). These traits classes specify the most common access
properties for a given implementation. If there is no most common case, the
implementation shall provide respective traits classes for all common cases.

The traits classes must be provided in a way that they can easily be used as base
classes where all names that are not overridden in the derived class are inherited from
the base class.

5.3.6.1 Traits Class platform_traits
Synopsis

st r uct p l at f or m_t r ai t s
{
 t ypedef implementation-defined addr ess_hold er ;
 t ypedef implementation-defined pr ocessor_ bus;
 enum
 {
 addr ess_mode,
 pr ocessor _endi anness,
 pr ocessor _bus_wi dth
 } ;
};

Description
struct platform_traits

• Provides names that specify the most common platform-specific access
properties for an implementation.

• Names that are not meaningful in an implementation shall be omitted. An
implementation can also define additional names that specify additional access
properties that are meaningful for that implementation.

typedef address_holder

• Specifies the type for the address that is part of the platform-specific access
properties (e.g. the base address of a hardware group, see §5.1.10). [Note:
This can be the static_address<0> where there is no platform-specific
address and will probably be dynamic_address for group base addresses to be
initialized at run-time).]

typedef processor_bus

• Specifies the bus where hardware registers are attached. The choice of the bus
for an implementation can be arbitrary, but shall be one of the bus type names
in hw_base . If an implementation provides only one bus where hardware
devices can be attached, this name can be omitted.

address_mode

• One of the values from hw_base::address_kind . Specifies whether the
address held by address_holder is known at compile-time or only known at
run-time.

PDTR 18015 Technical Report on C++ Performance

Version for PDTR approval ballot Page 113 of 189

processor_endianness

• One of the values from hw_base::byte_order . Specifies the endianness of
the processor or processor_bu s.

processor_bus_width

• One of the values from hw_base::processor_bus . Specifies the width in
bytes of the processor_bus .

5.3.6.2 Traits Class register_traits
Synopsis

st r uct r egi st er _t r ai t s
{
 t ypedef implementation-defined val ue_t ype;
 t ypedef implementation-defined addr ess_hold er ;
 enum
 {
 addr ess_mode,
 access_mode,
 endi anness,
 devi ce_bus_wi dt h
 } ;
};

Description
struct register_traits

• Provides names that specify the most common register-specific access
properties for an implementation.

• Names that are not meaningful in an implementation shall be omitted. An
implementation can also define additional names that specify additional access
properties that are meaningful for that implementation.

typedef value_type

• Specifies the type of the hardware register. This shall be an Assignable and
CopyConstructible type.

typedef address_holder

• Specifies the type for the address of the hardware register. [Note: If the
address (offset) of the register is known at compile-time (as is usually the
case), this can be omitted, as users will override this with
static_address<register_addr> in the register-specific derivation. If the
register address is to be specified at run-time, which sometimes might be
useful even if it is known at compile-time, this will probably be
dynamic_address .]

address_mode

• One of the values from hw_base::address_kind . Specifies whether the
address held by address_holder is known at compile-time or only known at
run-time.

access_mode

• One of the values from hw_base::access_mode . Specifies what access
operations (read/write) are allowed on the hardware register.

Technical Report on C++ Performance PDTR 18015

Page 114 of 189 Version for PDTR approval ballot

endianness

• One of the values from hw_base::byte_order . Specifies the endianness of
the device bus where the hardware register is attached.

device_bus_width

• One of the values from hw_base::device_bus . Specifies the width in bytes
of the device bus where the hardware register is attached.

PDTR 18015 Technical Report on C++ Performance

Version for PDTR approval ballot Page 115 of 189

Appendix A: Guidelines on Using the
<hardware> Interface

A.1 Usage Introduction
The design of the C++ <hardware> interface follows two lines of separation between:

• The definition of hardware register designator specifications and the device
driver code

• What is known at compile-time and what is known only at run-time

Unfortunately, these two lines of separation are neither orthogonal nor identical; for
example, a dynamic_address is only known at run-time, but is part of the hardware
register designator specifications.

As C++ is a typed language, the differences for the interface are in the type system,
and therefore the main separation line for the interface definition itself is between
what is statically known at compile-time (which becomes type names or enum

constants in traits classes) and what is only known at run-time (which becomes
function (especially constructor) arguments or operator operands to the interface of
register_access and register_buffer).

A.2 Using Hardware Register Designator Specifications
Hardware register designator specifications specify how a given device register can be
accessed. These specifications are separated into two parts: the register-specific part
and the (hardware) platform-specific part. Both parts are defined as traits classes in
the middle layer of the abstract model (§5.1.4). These traits classes are then used as
template parameters to the class templates register_access and register_buffer .

The actual details of these traits classes are mainly implementation defined, as these
specify access details that can vary widely over different platforms. An
implementation provides at least two generic traits classes: platform_traits and
register_traits . These traits classes specify which definitions and names are
required for a platform and give meaningful default values for them. So, these
implementation provided traits classes can be used as a guide to what information
must be provided, and they also serve as base classes such that only those names
which differ from the default must be (re-)defined in the user's own traits classes.

 Though the details of these traits classes are implementation defined by nature, there
are some aspects that these traits classes have in common:

• platform_traits and register_traits contain the typedef address_holder

that actually holds the hardware address. The address_holder for the register
often holds an offset address that specifies the offset of this specific register inside
a hardware device. To form the final address, this offset is added to the base
address of the hardware device that is specified in the respective

Technical Report on C++ Performance PDTR 18015

Page 116 of 189 Version for PDTR approval ballot

platform _traits class. But for simpler cases, the address_holder for the
register simply holds the final address of the register and the respective address
holder of the platform _traits class holds a null address.

• address_holder can hold either an address that is statically known at compile-
time or an address that is initialized at run-time. What kind of address the
address_holder actually holds is specified by the value of the enum constant
address_mode and can either be hw_base::is_static or
hw_base::is_dynamic .

• r egister _traits contains a typedef value_type that specifies the type of the
data held in that register.

• r egister _traits contains an enum constant access_mode that contains a value
from hw_base::access_mode and specifies whether a register is read-only, write-
only or read/write.

Other information that must be specified in the platform _traits class often
includes:

• A typedef processor_bus that specifies to which bus the device is connected if
a processor has more than one bus.

• An enum constant processor_bus_width if that can vary for a given platform.
• An enum constant processor_endian ness to specify the order of bytes for

multiple byte bus widths.

Other information that must be specified in the register _traits class often
includes:

• An enum constant endian ness to specify the order of bytes for multiple byte wide
registers.

• An enum constant device_bus_width to specify width of the device bus to which
the register is connected.

As already said, the actual requirement details of platform _traits and
register _traits are platform dependent and can vary widely for more exotic
platforms. It is the purpose of the middle layer of the abstract model (§5.1.4) to cope
with such requirements and to isolate them from the device driver code.

A.2.1 Using address_holders
An implementation typically provides two pre-defined address_holder definitions: a
class static_address and a class dynamic_address , to hold address information
known at compile-time and address information that can be initialized at run-time,
respectively.

For addresses that are known at compile time, the class template static_address

defines the actual address through a template argument (there can be more than one

PDTR 18015 Technical Report on C++ Performance

Version for PDTR approval ballot Page 117 of 189

template parameter if the address is not a simple scalar value). A simple offset address
of a register might be specified as static_address<0x0b> .

For address information that must be initialized at run-time, the class
dynamic_address is provided. This class provides a constructor that accepts as many
arguments as necessary for a platform.

For more complex cases it might be necessary to provide a user-specified
address_holder class. This class must provide a public member function value()

with the return type hw_base::address_type (or something similar, if an
implementation provides more than one address type in hw_base). If the address is
known at compile-time (and therefore marked is_static in its traits class), this
member function must be static .

For example, an implementation might provide a general_address for which the
dynamic data type is unsigned long . Then the user can provide a corresponding
class:

st r uct D ynAddr essPor t DA
{
 DynAddr essPor t DA() : v al (gl obal Base+0x120) {}

 unsi gned l ong v al ue() c onst { / / s ome co mpl i cat ed ca l cul at i on
 / / b ased on t he c ur r ent m ode o f
 / / t he p ro cessor
 }
 unsi gned l ong v al ;
};

Here the initialization of the address information is provided by some global variable.
In a different case, the constructor might require an argument, and therefore some
initialization code must provide that argument. But the mechanics of the initialization
are always left to the user to choose the most suitable method.

A.2.2 Traits Specifications
As already said, the actual requirements details of the register and platform traits are
implementation defined by nature. But as the classes register_traits and
platform_traits are provided, in most cases it is quite easy to define the traits for a
specific application. Sometimes the platform_traits can even be used directly,
without any modifications. More often, the provided platform_traits is used as a
base class with overrides specific to the application:

st r uct D ynMM : p l at f or m_t r ai t s
{
 t ypedef d ynami c_addr ess a ddr ess_hol der;
 t ypedef h w_base: : dat a_bus p r ocessor _bus;
 enum { a ddr ess_mode=hw_base: : i s_dynami c };
};

In this example, the derived class uses a dynamic base address and the (memory
mapped) data bus of the processor.

Here is another example, using the DynAddressPortDA address holder from above:

Technical Report on C++ Performance PDTR 18015

Page 118 of 189 Version for PDTR approval ballot

st r uct M ySpeci al Dyn : p l at f or m_t r ai ts
{
 t ypedef D ynAddr essPor t DA a ddr ess_hol der ;
 enum { a ddr ess_mode=hw_base: : i s_dynami c };
};

Register traits nearly always have a static address, so it is often useful to provide class
templates to cover common cases:

te mpl at e < t ypename V al Type, h w_base: : addr ess_ ty pe a ddr>
st r uct D ev16Reg : p ubl i c r egi st er _t r ai t s
{
 t ypedef V al Type v al ue_t ype;
 t ypedef s t at i c_addr ess<addr > a ddr ess_hold er ;
 enum
 {
 addr ess_mode=hw_base: : i s_st at i c,
 access_mode=hw_base: : r andom,
 endi anness=hw_base: : msb_hi gh,
 devi ce_bus_wi dt h=hw_base: : devi ce16
 } ;
};

It is then simple to use this class to define traits for concrete registers:

ty pedef D ev16Reg<ui nt 8_t , 0 x04> C ont r ol Por t ;

A.3 Hardware Access
All hardware access is provided through the class templates register_access and
register_buffer . For access traits that require no dynamic information the
respective register_access objects contain no data and therefore are optimized
completely out of existence by most compilers. A typical usage might be:

// d ef i ned r egi st er t r ai t s w i t h V al ueType = uin t 8_t :
// I nPor t , O ut Por t a nd C ont r ol Por t
re gi st er _access<I nPor t , p l at f or m_t r ai t s> i p;
re gi st er _access<Out Por t , p l at f or m_t r ai t s> op;
re gi st er _access<Cont r ol Por t , p l at f or m_t r ai t s> ct l _p;

ui nt 8_t t mp = i p; / / r ead f r om I nPor t , uses
 / / r egi st er _access: : oper at or v al ue_t ype();
op = 0 x12; / / w r i t e t o O ut Por t , uses
 / / r egi st er _access: : oper at or =(val ue_t ype);
ct l _p | = 0 x34; / / s et b i t s 5 , 4 a nd 2 i n C ont r ol Por t

Because the register_access object is empty, there is no real need to define these
objects, as it is possible to use temporary objects created on the fly. The example
above would then become:

// d ef i ned a ccess- speci f i cat i ons w i t h V al ueType = u i nt 8_t :
// I nPor t , O ut Por t a nd C ont r ol Por t
ty pedef r egi st er _access<I nPor t , p l at f or m_t r ai ts > i p;
ty pedef r egi st er _access<Out Por t , p l at f or m_t ra it s> op;
ty pedef r egi st er _access<Cont r ol Por t , p l at f orm_t r ai t s> c t l _p;

PDTR 18015 Technical Report on C++ Performance

Version for PDTR approval ballot Page 119 of 189

ui nt 8_t t mp = i p() ; / / r ead f r om I nPor t , uses
 / / r egi st er _access: : oper at or v al ue_t ype();
op() = 0x12; / / w r i t e t o O ut Por t , uses
 / / r egi st er _access: : oper at or =(val ue_t ype);
ct l _p() | = 0 x34; / / s et b i t s 5 , 4 a nd 2 i n C ont r ol Por t

But this is a rather unnatural syntax and is generally not necessary, as compilers are
usually smart enough to optimize away the objects from the first example.

A.3.1 Indexed Access
A register_buffer is used to access a block of hardware registers, rather than a
single register. In this case the value_type definition of the register _traits

denotes the type of a single register and the address is the base address (index 0). The
registers in the block can then be addressed through the subscript operator:

// a ssume r egi st er b l ock P or t Buf f er w i t h r andom a ccess
// a ssume p l at f or m t r ai t s I Obus f or a d evi ce on t he I /O bus
re gi st er _buf f er <Por t Buf f er , I Obus> p or t Buf;
ui nt 8_t b uf [sz] ;

por t Buf [0] & = 0 x03;
por t Buf [1] = sz – 2;

fo r (i nt i =2; i ! = s z; + +i)
 buf [i] = p or t Buf [i] ;

If a full register block is always to be accessed as a unit, an appropriate value_type

can be defined:

st r uct B uf f er 32 { u i nt 8_t d at a[32] ; } ;
st r uct X YBl ock : p ubl i c r egi st er _t r ai ts
{
 t ypedef B uf f er 32 v al ue_t ype;
 t ypedef s t at i c_addr ess<0x35800> a ddr ess_hol der;
 enum
 {
 addr ess_mode=hw_base: : i s_st at ic
 } ;
};
re gi st er _access<XYBl ock, I Obus> b l ockBuf;
Buf f er 32 t mpBl ock;

tmpBl ock = b l ockBuf ; / / r ead w hol e b l ock at once

The binary layout of the value_type must match the register block, which is
normally only guaranteed for PODs. If the register block has a complex layout (e.g. a
mix of different data types), the value_type can be a correspondingly complex
struct .

A.3.2 Initialization o f register_access
For access traits with static address _holder s that are fully specified at compile-time,
register_access and register_buffer provide only a default constructor (in these
cases there is nothing to construct). But if one of the traits contains an
address_holder with dynamic data, this must be initialized at run-time. For those

Technical Report on C++ Performance PDTR 18015

Page 120 of 189 Version for PDTR approval ballot

cases, register_access and register_buffer provide a constructor that takes a
respective address_holder object as argument. How the address_holder type is
initialized is under control of the user, as explained above. As there are two traits
arguments for register_access and register_buffer, in theory there can be two
dynamic address_holder s, though in practice the address_holder of the
register _traits is nearly always static. So, regarding the examples from above,
the initialization can be:

// u si ng d ef aul t c onst r uct or o f D ynAddr essPor t DA
re gi st er _access<Cont r ol Por t , M ySpeci al Dyn> po rt A(DynAddr essPor t DA());

or in very special cases:
// u si ng c onver s i on c onst r uct or s o f t he r espect i ve a ddr ess_hol der s
re gi st er _access<Speci al DynReg, D ynBase>
 por t DB(0x1234, / / d ynami c r egi ste r of f set
 0xa0b165) ; / / d ynami c b ase ad dr ess

PDTR 18015 Technical Report on C++ Performance

Version for PDTR approval ballot Page 121 of 189

Appendix B: Implementing the
iohw Interfaces

B.1 General Implementation Considerations
The <hardware> header defines a standardized syntax for basic hardware register
addressing. This header should normally be created by the compiler vendor.

While this standardized syntax for basic hardware register addressing provides a
simple, easy-to-use method for a programmer to write portable and hardware-
platform-independent hardware driver code, the <hardware> header itself may require
careful consideration to achieve an efficient implementation.

This section gives some guidelines for implementers on how to implement the
<hardware> header in a relatively straightforward manner given a specific processor
and bus architecture.

B.1.1 Recommended Steps
Briefly, the recommended steps for implementing the <hardware> header are:

• Get an overview of all the possible and relevant ways the hardware device is
typically connected with the given bus hardware architectures, plus an
overview of the basic software methods typically used to address such
hardware registers.

• Define specializations of register_access and register_buffer which
support the relevant hardware register access methods for the intended
compiler market.

• Provide platform_traits and register_traits as a way to select the right
register_access and register_buffer specializations at compile time and
generate the right machine code based on the hardware register access
properties related to the hardware register designators (the traits classes).

B.1.2 Compiler Considerations
In practice, an implementation will often require that very different machine code is
generated for different hardware register access cases. Furthermore, with some
processor architectures, hardware register access wil l require the generation of special
machine instructions not typically used when generating code for the traditional C++
memory model.

Selection between different code generation alternatives must be determined solely
from the hardware register designator definition for each hardware register.
Whenever possible, this access method selection should be implemented such that it
may be determined entirely at compile-time in order to avoid any run-time or machine
code overhead.

Technical Report on C++ Performance PDTR 18015

Page 122 of 189 Version for PDTR approval ballot

For a compiler vendor, selection between code generation alternatives can always be
implemented by supporting different intrinsic access specification types and keywords
designed specially for the given processor architecture, in addition to the standard
types and keywords defined by the language. Alternatively, inline assembler can be
used to produce the required machine instructions.

With a conforming C++ compiler, an efficient, all -round implementation of both the
<iohw.h> and <hardware> interface headers can usually be achieved using C++
template functionality (see also §Appendix C:). A template-based solution allows the
number of compiler specific intrinsic hardware access types or intrinsic hardware
access functions to be minimized or even removed completely, depending on the
processor architecture.

B.2 Overview of Hardware Device Connection Options
The various ways of connecting an external device’s register to processor hardware
are determined primarily by combinations of the following three hardware
characteristics:

• The bit width of the logical device register
• The bit width of the data bus of the device
• The bit width of the processor bus

B.2.1 Multi-address ing and Device Register Endianness
If the width of the logical device register is greater than the width of the device data
bus, a hardware access operation will require multiple consecutive addressing
operations.

The device register endianness information describes whether the most significant
byte (MSB) or the least significant byte (LSB) byte of the logical hardware register is
located at the lowest processor bus address. (Note that the hardware register
endianness has nothing to do with the endianness of the underlying processor
hardware architecture).

[Note: while this section ill ustrates architectures that use 8-bit bytes and word widths
that are factorable by 8, it is not intended to imply that these are the only possible
architectures.]

PDTR 18015 Technical Report on C++ Performance

Version for PDTR approval ballot Page 123 of 189

Table B-1: Logical hardware register / hardware device addressing overview28

Device bus width

8-bit device bus 16-bit device bus 32-bit device bus 64-bit device bus
Logical

register width
LSB-MSB MSB-LSB LSB-MSB MSB-LSB LSB-MSB MSB-LSB LSB-MSB MSB-LSB

8-bit register Direct n/a n/a n/a

16-bit register r8{ 0-1} r8{ 1-0} Direct n/a n/a

32-bit register r8{ 0-3} r8{ 3-0} r16{ 0-1} r16{ 1-0} Direct n/a

64-bit register r8{ 0-7} r8{ 7-0} r16{ 0-3} r16{ 3-0} r32{ 0-1} r32{ 1-0} Direct

(For byte-aligned address ranges)

B.2.2 Address Interleave
If the size of the device data bus is less than the size of the processor data bus, buffer
register addressing will require the use of address interleave.

For example, if the processor architecture has a byte-aligned addressing range with a
32-bit processor data bus, and an 8-bit device is connected to the 32-bit data bus, then
three adjacent registers in the device will have the processor addresses:

<addr + 0 >, < addr + 4 >, < addr + 8 >

This can also be written as
<addr + i nt er l eave* 0>, < addr + i nt er l eave* 1>, <addr + i nt er l eave* 2>

where interleave = 4.

Table B-2: Inter leave overview: (bus to bus interleave relationship)

Processor bus width
Device bus width

8-bit bus 16-bit bus 32-bit bus 64-bit bus

8-bit device bus interleave 1 interleave 2 interleave 4 interleave 8

16-bit device bus n/a interleave 2 interleave 4 interleave 8

32-bit device bus n/a n/a interleave 4 interleave 8

64-bit device bus n/a n/a n/a interleave 8
(For byte-aligned address ranges)

28

 This table describes some common bus and register widths for I/O devices. A given hardware platform may use other register
and bus widths.

Technical Report on C++ Performance PDTR 18015

Page 124 of 189 Version for PDTR approval ballot

B.2.3 Device Conn ection Overview
A combination of the two tables above shows all relevant cases for how device
registers can be connected to a given processor hardware bus:

Table B-3: Inter leave between adjacent hardware registers in buffer

Device bus Processor data bus width

Width=8 Width=16 Width=32 Width=64Register
width Width

LSB
MSB

No.
Oper-
ations. size 1 size 2 size 4 size 8

8-bit 8-bit n/a 1 1 2 4 8

LSB 2 2 4 8 16
8-bit

MSB 2 2 4 8 1616-bit

16-bit n/a 1 n/a 2 4 8

LSB 4 4 8 16 32
8-bit

MSB 4 4 8 16 32

LSB 2 n/a 4 8 16
16-bit

MSB 2 n/a 4 8 16

32-bit

32-bit n/a 1 n/a n/a 4 8

MSB 8 8 16 32 64
8-bit

LSB 8 8 16 32 64

LSB 4 n/a 8 16 32
16-bit

MSB 4 n/a 8 16 32

LSB 2 n/a n/a 8 16
32-bit

MSB 2 n/a n/a 8 16

64-bit

64-bit n/a 1 n/a n/a n/a 8

(For byte-aligned address ranges)

B.2.3.1 Generic Buffer I ndex
The interleave distance between two logically adjacent registers in a device register
array can be calculated from29:

• The size of the logical register in bytes
• The processor data bus width in bytes
• The device data bus width in bytes

29

 For systems with byte-aligned addressing.

PDTR 18015 Technical Report on C++ Performance

Version for PDTR approval ballot Page 125 of 189

Conversion from register index to address offset can be calculated using the following
general formula:

Addr ess_of f set = i ndex *
 si zeof (l ogi cal _r egi st er) *
 s i zeof (p r ocessor _dat a_bus) /
 si zeof (d evi ce_dat a_bus)

Assumptions:

• Bytes are 8-bits wide
• Address range is byte-aligned
• Data bus widths are a whole number of bytes
• The width of the logical_register is greater than or equal to the width of

the device_data_bus

• The width of the device_data_bus is less than or equal to the width of the
processor_data_bus

B.3 Hardware Register Designators for Different Device
Addressing Methods

A processor may have more than one addressing range30. For each processor
addressing range an implementer should consider the following typical addressing
methods:

• Address is defined at compile-time:

The address is a constant. This is the simplest case and also the most common
case with smaller architectures.

• Base address initialized at run-time:

Variable base-address + constant-offset; i.e. the hardware register designator
consists of a platform traits class with a dynamic address (address of base
register) and a register traits class with a static address (offset of address).

The user-defined base-address is normally initialized at run-time (by some
platform-dependent part of the program). This also enables a set of driver
functions to be used with multiple instances of the same device type.

• Indexed bus addressing:

Also called orthogonal or pseudo-bus addressing. This is a common way to
connect a large number of device registers to a bus, while still occupying only
a few addresses in the processor address space.

This is how it works: first the index-address (or pseudo-address) of the device
register is written to an address bus register located at a given processor
address. Then the data read/write operation on the pseudo-bus is done via the
following processor address, i.e. the hardware register designator must contain
an address pair (the processor address of the indexed bus, and the pseudo-bus

30

 Processors with a single addressing range use only memory mapped I/O.

Technical Report on C++ Performance PDTR 18015

Page 126 of 189 Version for PDTR approval ballot

address (or index) of the device register itself). Whenever possible, atomic
operations should be applied to indexed bus addressing in order to prevent an
interrupt occurring between setting up the address and the data operation.

This access method also makes it particularly easy for a user to connect
common devices that have a multiplexed address/data bus to a processor
platform with non-multiplexed buses, using a minimum amount of glue logic.
The driver source code for such a device is then automatically made portable
to both types of bus architecture.

• Access via user-defined access driver functions:

These are typically used with larger platforms and with small single-chip
processors (e.g. to emulate an external bus). In this case, the traits classes of
the hardware register designator contain a user-defined address_holder .

The access driver solution makes it possible to connect a given device driver
source library to any kind of platform hardware and platform software using
the appropriate platform-specific interface functions.

In general, an implementation should always support the simplest addressing case.
Whether it is the constant-address or base-address method that is used wil l depend on
the processor architecture. Apart from this, an implementer is free to add any
additional cases required to satisfy a given domain.

To adapt to the different requirements and interface properties of the different
addressing modes, the <hardware> interface uses different combinations of platform
and register traits classes in the hardware register designators of the different
addressing methods.

For the <iohw.h> interface, it is often convenient for the implementer of the iohw
middle layer to provide definitions for each of the different addressing methods using
templates also, therefore implementing the C-style interface on top of the C++
implementation (see §Appendix C:). This allows the implementer to share a common
implementation between both interfaces, while also providing greater type safety than
the macro-based implementation can provide.

B.4 Atomic Operation
It is a requirement of the iohw implementation that in each iohw function a given
(partial31) device register is addressed exactly once during a READ or a WRITE operation
and exactly twice during a READ-modify-WRITE operation.

It is recommended that each access function in an iohw implementation be
implemented such that the device access operation becomes atomic whenever
possible. However, atomic operation is not guaranteed to be portable across platforms
for the logical-write operations (i.e. the OR, AND, and XOR operations) or for multi-
addressing cases. The reason for this is simply that many processor architectures do
not have the instruction set features required for assuring atomic operation.

31

 A 32-bit logical register in a device with an 8-bit data bus contains 4 partial I/O registers.

PDTR 18015 Technical Report on C++ Performance

Version for PDTR approval ballot Page 127 of 189

B.5 Read-Modify-Write Operations and Multi-Addressing
In general READ-modify-WRITE operations should do a complete READ of the hardware
register, followed by the operation, followed by a complete WRITE to the hardware
register.

It is therefore recommended that an implementation of multi-addressing cases should
not use READ-modify-WRITE machine instructions during partial register addressing
operations.

The rationale for this restriction is to use the lowest common denominator of multi-
addressing hardware implementations in order to support the widest possible range of
hardware register implementations.

For instance, more advanced multi-addressing device register implementations often
take a snapshot of the whole logical device register when the first partial register is
being read, so that data will be stable and consistent during the whole read operation.
Similarly, write registers are often “double-buffered” , so that a consistent data set is
presented to the internal logic at the time when the access operation is completed by
the last partial write.

Such hardware implementations often require that each access operation be completed
before the next access operation is initiated.

B.6 Initialization
Some parts of hardware register designators may require some initalization at run-
time, which is done using normal C++ constructors. But quite often, the compiler-
known lifetime of such objects is not identical with the logical li fetime that is
important for initialization and de-initialization. In such cases, the constructor
(through placement new syntax) and destructor must be called explicitly.

With respect to the abstract model in §5.1.4, it is important to make a clear distinction
between hardware (device) related initialization, and platform related initialization.
Typically, three types of initialization are related to hardware device register
operation:

• hardware (device) initialization

• device access initialization of hardware register designators

• device selector (or hardware group) initialization32 of platform traits

32

 I f for instance the access method is implemented as (base_addres s + constant_offset) then "device selector
initialization" refers to assignment of the base_addres s value.

Technical Report on C++ Performance PDTR 18015

Page 128 of 189 Version for PDTR approval ballot

Here only device access initialization and device selector initialization is relevant for
basic hardware register addressing:

• hardware initialization: This is a natural part of a hardware driver, and
should always be considered part of the device driver application itself. This
initialization is done using the standard functions for basic hardware
addressing. Hardware initialization is therefore not a topic for the
standardization process.

• device access initialization: This concerns the definition of hardware register
designator objects. The actual functionality of this initialization is inherently
implementation-defined. It depends both on the platform and processor
architecture and also on which underlying access methods are supported by the
<hardware> implementation. While the functionality is implementation-
defined, the syntax for this initialization is the normal C++ syntax of object
constructors.

If runtime initialization is needed, this can easily be done by providing a
platform traits class with a dynamic address_holder . The register traits class
can in most cases still use a static address_holder .

• device selector (or hardware group) initialization of platform traits: This
is used if the platform-specific part of the address information is only available
at run-time. In this case the platform traits class contains a dynamic
address_holder , which must be initialized using normal C++ constructors.

This can also be used if, for instance, the same hardware device driver code
needs to service multiple hardware devices of the same type. But if the
addresses of the different hardware devices are known at compile time, it is also
possible to implement the hardware device driver code as a function template
on the platform_traits class and call this function with different platform
traits with static address_holder . Here is an example that demonstrates both
options:

#i ncl ude < har dwar e>

namespace
{

// middle layer (hardware register designator specifications):

 usi ng n amespace s t d: : har dwar e;

st r uct D evi ceA : p l at f or m_t r ai t s
{
 t ypedef s t at i c_addr ess<0x50> a ddr ess_hold er ;
};

st r uct D evi ceB : p l at f or m_t r ai t s
{
 t ypedef s t at i c_addr ess<0x90> a ddr ess_hold er ;
};

st r uct D ynDevi ce : p l at f or m_t r ai t s

PDTR 18015 Technical Report on C++ Performance

Version for PDTR approval ballot Page 129 of 189

{
 t ypedef d ynami c_addr ess a ddr ess_hol der;
 enum { a ddr ess_mode=hw_base: : dynami c_addr ess };
};

st r uct P or t A1_T : r egi st er _t r ai ts
{
 t ypedef s t at i c_addr ess<0x1a> a ddr ess_hold er ;
};

st r uct P or t A2_T : r egi st er _t r ai ts
{
 t ypedef s t at i c_addr ess<0x20> a ddr ess_hold er ;
};

Portable device driver function using the template approach:

te mpl at e < cl ass P l at f or mSpec>
ui nt 8_t g et DevDat a(t ypename P l at f or mSpec: : addre ss_hol der c onst & addr =
 t ypename P l at f or mSpec: : addr ess_hold er ())
{
 r egi st er _access<Por t A1_T, P l at f or mSpec> devConf i g(addr) ;
 r egi st er _access<Por t A2_T, P l at f or mSpec> devDat a(addr) ;

 devConf i g = 0 x33;
 r et ur n d evDat a;
}
} / / u nnamed n amespace

in t m ai n()
{

static version:
 / / R ead d at a f r om devi ce 1:
 ui nt 8_t d 1 = g et DevDat a<Devi ceA>();

 / / R ead d at a f r om devi ce 2:
 ui nt 8_t d 2 = g et DevDat a<Devi ceB>();

dynamic version:

 ui nt 8_t d 3 = g et DevDat a<DynDevi ce>(0x40);

 ui nt 8_t d 4 = g et DevDat a<DynDevi ce>(0x80);

 r et ur n 0;
}

With most free-standing environments and embedded systems the platform
hardware is well defined, so all hardware group designators for device registers
used by the program can be completely defined at compile-time. For such
platforms run-time device selector initialization is not an issue.

With larger processor systems the base address of a hardware device is often
assigned dynamically at run-time. Here only the register_traits of the
hardware group designator can be defined at compile-time, while the
platform_traits part of it must be initialized at run-time.

Technical Report on C++ Performance PDTR 18015

Page 130 of 189 Version for PDTR approval ballot

When designing the hardware group designator object a compiler implementer
should therefore make a clear distinction between the static information in the
register_traits class and the dynamic information in the platform_traits

class; i.e. the register traits class should contain a static address_holder that
can be defined and initialized at compile time, while the platform traits class
should contain a dynamic address_holder that must be initialized at runtime.

Depending on the implementation method and depending on whether the
hardware group designator objects need to contain dynamic information, such
an object may or may not require an instantiation in data memory. Better
execution performance can usually be achieved if more of the information is
static.

B.7 Intrinsic Features for Hardware Register Access
The implementation of hardware device access operations may require for many
platforms the use of special machine instructions not otherwise used with the normal
C/C++ memory model. It is recommended that the compiler vendor provide the
necessary intrinsics for operating on any special addressing range supported by the
processor.

In C++ special machine instructions can be inserted inline using the asm declaration
(§IS-7.4) However when using asm in connection with hardware register access,
intrinsic functionality is often still required in order to enable easy load of symbolic
named variables to processor registers and to handle return values from asm

operations.

The implementation should completely encapsulate any intrinsic functionality.

B.8 Implementation Guidelines for the <hardware> Interface
There are two main design alternatives in implementing register_access and
register_buffer for the different hardware register designators:

• Using the information in the traits classes of the hardware register designators
to implement the register_access and register_buffer functionality (this
is the approach chosen in the sample implementation).

• Using the traits classes of the hardware register designators as mere labels that
also hold the address information and specializing register_access and
register_buffer for each of the meaningful combinations of platform and
register traits (this is a useful approach if there are very few commonalities
between the implementations for the different traits).

In any case, carefully implemented specializations of helper classes used in
register_access and register_buffer together with an optimizing compiler can
provide resulting object code that only contains the necessary hardware access
statements and produces absolutely no overhead.

PDTR 18015 Technical Report on C++ Performance

Version for PDTR approval ballot Page 131 of 189

The ultimate hardware access statements typically wil l be realized either as inline
assembler or as compiler intrinsics. But this is hidden in the implementation; the user
does not see them.

B.8.1 Anno tated Sample Implementation
The sample implementation implements the <hardware> interface for a very simple
8-bit processor. This processor supports only 8-bit buses, but has a memory bus and
an I/O bus. This simpli fies the implementation, but the necessary steps for a more
general implementation are also mentioned. Also, as is typical for such small
systems, all address information is assumed to be known at run-time; i.e. dynamic
address_holder s are not supported.

A note on the style: as the <hardware> header belongs in some way to the
implementation of a (non-standard) part of the C++ library and a user of that may
place any macros before this header, the header itself should only use symbols
reserved to the implementation, i.e. names beginning with an underscore.

B.8.1.1 Common Definitions — struct hw_base
hw_base defines all the constants that are necessary in the hardware register
designators' traits classes. Of course, this is highly dependent on the specific
hardware, and only those that are used in this implementation are shown here. In
general, there are two different ways to define constants: the standard IOStreams
library defines constants as static. This allows for easier implementation, but has
some space and possibly run-time overheads. For performance reasons, the enum

approach is chosen here, where all constant values are defined as enumerators.

According to the interface specification, an implementation can define additional
members in hw_base . This implementation defines two tagging types data_bus and
io_bus for use in platform traits classes. Otherwise, as the chosen example platform
is pretty simple, hw_base is quite small :

st r uct h w_base
{
 enum access_mode { r andom, r ead_wr i t e, w ri te , r ead};
 enum devi ce_bus { devi ce8=1} ;
 enum byt e_or der { msb_l ow, m sb_hi gh} ;
 enum p r ocessor _bus { bus8=1} ;

 t ypedef _ ul a ddr ess_t ype;
 enum addr ess_ki nd { i s_st at i c, i s_dynamic } ;

 / / t ype n ames f or d i f f er ent b us t ypes
 enum dat a_bus { };
 enum i o_bus { };

};

_ul is used as shorthand for the type that holds an address and is defined as 16-bit
type:

ty pedef u i nt 16_t _ ul;

Technical Report on C++ Performance PDTR 18015

Page 132 of 189 Version for PDTR approval ballot

And the other required types are defined as well:

ty pedef u nsi gned c har u i nt 8_t ;
ty pedef u nsi gned s hor t u i nt 16_t ;
ty pedef u nsi gned l ong u i nt 32_t;

ty pedef u nsi gned c har s i ze_t;
ty pedef s i gned c har p t r di f f _t ;

These definitions are inside of std::hardware , so the size_t and ptrdiff_t types
can be differently defined as the respective global types.

The width definitions for device_bus and processor_bus are not really necessary,
as this platform supports only 8-bit buses. Therfore, any endianness doesn't matter
and the definition of byte_order could also be omitted. But they are shown here for
demonstration purposes.

B.8.1.2 Access Traits Classes
In this sample implementation the traits classes of the hardware register designators
hold all necessary access property information and provide them to the
implementation of register_access and register_buffer. To produce as little
overhead as possible in cases where the address information is known at compile-
time, no object data is produced. The address value is kept in the type information of
the address_holder static_address :

te mpl at e < _ul v al >
st r uct s t at i c_addr ess
{
 enum { v al ue_=val } ;
 st at i c _ ul v al ue() { r et ur n v al ue_; }
};

As this platform only supports statically known addresses, only this address_holder

is required. Where dynamically initialized addresses are also supported, a respective
dynamic address_holder is required:

// a c l ass t o h ol d a ddr ess i nf or mat i on d ynami ca l l y
st r uct d ynami c_addr ess
{
 dynami c_addr ess(_ul _ addr) : v al ue_(_addr) {}
 ul v al ue() c onst { r et ur n v al ue; }
 ul v al ue;
};

The default traits classes don't define much more than the address_holder , as
everything else is fixed for this platform. Only the platform_traits define the I/O
bus as the default bus:

st r uct p l at f or m_t r ai t s
{
 t ypedef s t at i c_addr ess<0> a ddr ess_hol der;
 t ypedef h w_base: : i o_bus p r ocessor _bus;
 enum
 {
 addr ess_mode=hw_base: : i s_st at ic
 } ;
};

PDTR 18015 Technical Report on C++ Performance

Version for PDTR approval ballot Page 133 of 189

st r uct r egi st er _t r ai t s
{
 t ypedef u i nt 8_t v al ue_t ype;
 t ypedef s t at i c_addr ess<0> a ddr ess_hol der;
 enum
 {
 addr ess_mode=hw_base: : i s_st at i c,
 access_mode=hw_base: : r andom
 } ;
};

In a more flexible environment, these classes would provide more information:

st r uct p l at f or m_t r ai t s
{
 t ypedef s t at i c_addr ess<0> a ddr ess_hol der;
 t ypedef h w_base: : dat a_bus p r ocessor _bus;
 enum
 {

addr ess_mode=hw_base: : i s_st at i c,
pr ocessor _endi anness=hw_base: : msb_hi gh,
pr ocessor _bus_wi dt h=hw_base: : bus32

 } ;
};

st r uct r egi st er _t r ai t s
{
 t ypedef u i nt 8_t v al ue_t ype;
 t ypedef s t at i c_addr ess<0> a ddr ess_hol der;
 enum
 {

addr ess_mode=hw_base: : i s_st at i c,
ac cess_mode=hw_base: : r andom,
endi anness=hw_base: : msb_hi gh,
devi ce_bus_wi dt h=hw_base: : devi ce16

 } ;
};

B.8.1.3 The Inter face register_access and register_buffer
The actual interface for register_access is realized by the class template
register_access . This provides the full interface for single registers. As the
sample platform supports only static addresses, only a default constructor is required:

te mpl at e < cl ass _ RegTr ai t s , c l ass _ Pl at f or mTr ai t s>
cl ass r egi st er _access
{
publ i c:
 r egi st er _access() { }

 t ypedef t ypename _ RegTr ai t s: : val ue_t ype val ue_t ype;

 oper at or v al ue_t ype() c onst ;
 voi d o per at or =(val ue_t ype _ val) ;
 voi d o per at or | =(val ue_t ype _ val);
 voi d o per at or &=(val ue_t ype _ val);
 voi d o per at or ^=(val ue_t ype _ val);
// f unct i onal i nt er f ace o mi t t ed f or b r evi ty
};

Technical Report on C++ Performance PDTR 18015

Page 134 of 189 Version for PDTR approval ballot

This template needs no data members, as all address information is held in the type
definitions. If a platform supports dynamic addresses as well , the template would
have to hold respective data members:

pr i vat e:
 const t ypename _ RegTr ai t s: : addr ess_hol der _addr R;
 const t ypename _ Pl at f or mTr ai t s : : addr ess_hol der _ addr P;

This would not cause any overhead for static address holders, as those static types
have no data members and are simply empty types, which are completely optimized
away by the compiler. But there is another problem: register_access instantiations
on traits classes with dynamic address holders require appropriate constructors. One
option is simply to provide all constructors in the same class template:

 r egi st er _access() ;

 expl i c i t r egi st er _access
 (t ypename _ RegTr ai t s: : addr ess_hold er c onst & _r Addr);

 expl i c i t r egi st er _access
 (t ypename _ Pl at f or mTr ai t s : : addre ss _hol der c onst & _pAddr) ;

 r egi st er _access
 (t ypename _ RegTr ai t s : : addr ess_hol der const & _r Addr,
 t ypename _ Pl at f or mTr ai t s: : addr ess_hold er c onst & _pAddr);

But this would allow for construction with two arguments even if both address holders
are static. To avoid this, a common base class template _RAInterface can be
introduced with all interface functions. Then the register_access class template
can inherit (privately) from _RAInterface and import the functions from
_RAInterface with using-declarations. The register_access class template is
then specialized on the address_mode of the traits classes to provide only that
constructor for each class that is meaningful:

te mpl at e < cl ass _ RegTr ai t s , c l ass _ Pl at f or mTr ai t s,
 i nt = _ RegTr ai t s : : addr ess_mode,
 i nt = _ Pl at f or mTr ai t s: : addr ess_mode>
cl ass r egi st er _access
 : p r i vat e _ RAI nt er f ace<_RegTr ai t s, _ Pl atf or mTr ai t s>
{
 t ypedef t ypename _ RegTr ai t s: : addr ess_hold er _ Addr essHol der R;
 t ypedef t ypename _ Pl at f or mTr ai t s : : addr ess _hol der _ Addr essHol der P;
 t ypedef _ RAI nt er f ace<_RegTr ai t s, _ Pl at f or mTr ai t s> _ Base;
publ i c:
 r egi st er _access(_Addr essHol der R c onst & rA ddr,
 _Addr essHol der P c onst & pAddr)
 : _ Base(r Addr , p Addr) { }

 us i ng t ypename _ Base: : val ue_t ype;
 us i ng _ Base: : oper at or v al ue_t ype;

 us i ng _ Base: : oper at or =;
 us i ng _ Base: : oper at or | =;
 us i ng _ Base: : oper at or &=;
 us i ng _ Base: : oper at or ^=;
};

PDTR 18015 Technical Report on C++ Performance

Version for PDTR approval ballot Page 135 of 189

And the specialization for static addresses for both traits provides only the default
constructor:

// s peci al i zat i on f or s t at i c p l at f or m and r egis t er a ddr ess
te mpl at e < cl ass _ RegTr ai t s , c l ass _ Pl at f or mTr ai t s>
cl ass r egi st er _access<_RegTr ai t s , _ Pl at f or mTr ai t s,
 hw_base: : i s_st at i c , h w_base: : i s_st at i c>
 : p r i vat e _ RAI nt er f ace<_RegTr ai t s, _ Pl atf or mTr ai t s>
{
 t ypedef _ RAI nt er f ace<_RegTr ai t s, _ Pl at f or mTr ai t s> _ Base;
publ i c:
 r egi st er _access() : _ Base() { }
// t he u si ng d ecl ar at i ons. . .
};

But the sample platform doesn't support dynamic_address and therefore
_RAInterface can be omitted.

The class template register_buffer has the same problem (and the same or a
similar solution), but the sample platform implementation again is simple. The only
problem is the ref_type definition. Clearly it is some instantiation of
register_access , but the problem is that the result of the subscript operator needs
some knowledge about the index to perform the hardware access to the correct
address. But this index might not be known at compile time, and currently
register_access has no way to hold a dynamic address.

The solution is the same as the one above for dynamic addresses in the traits: an
additional template parameter for the type of the index holder and a data member of
that type (which is empty if there is no index). For the holder of the index itself a
class similar to dynamic_address above is used, but with size_t as the value type:

// a c l ass t o h ol d a n i ndex v al ue d ynami cal ly
st r uct _ I dxHol der
{
 _I dxHol der (s i ze_t _ i) : v al ue_(_i) {}
 si ze_t v al ue() c onst { r et ur n v al ue_; }
 si ze_t v al ue_;
};

With that, the definitions for register_buffer and register_access can be
completed:

te mpl at e < cl ass _ RegTr ai t s , c l ass _ Pl at f or mTr ai t s,
 cl ass _ I ndexHol der = s t at i c_addr ess <0> >
cl ass r egi st er _access
{
publ i c:
 r egi st er _access() { }
 expl i c i t r egi st er _access(_I ndexHol der c onst & _i) : _ i dx(_i) { }

 t ypedef t ypename _ RegTr ai t s: : val ue_t ype val ue_t ype;

 oper at or v al ue_t ype() c onst ;
 voi d o per at or =(val ue_t ype _ val) ;
 voi d o per at or | =(val ue_t ype _ val);
 voi d o per at or &=(val ue_t ype _ val);
 voi d o per at or ^=(val ue_t ype _ val);

pr i vat e:

Technical Report on C++ Performance PDTR 18015

Page 136 of 189 Version for PDTR approval ballot

 _I ndexHol der _ i dx;
};

te mpl at e < cl ass _ RegTr ai t s , c l ass _ Pl at f or mTr ai t s>
cl ass r egi st er _buf f er
{
 t ypedef r egi st er _access<_RegTr ai t s,
 _Pl at f or mTr ai t s,
 _I dxHol der > r ef _t ype;
publ i c:
 r egi st er _buf f er () { }

 r ef _t ype o per at or [] (si ze_t _ i dx) c onst
 {
 r et ur n r ef _t ype(_i dx) ;
 }
};

The constructor for the index type in register_access can be private, and
register_buffer can be declared as friend, but this is omitted here for brevity.

Instead of directly implementing the functions in register_access , to save some
typing and better separate the different tasks some helper classes are introduced:
_RAImpl combines the different assignment functions and performs the address
calculation, while _AccessHelper is concerned with different specializations for
register value types that are larger than the connecting bus. Finally, _hwRead and
_hwOp provide the actual hardware access functionality for the different processor
buses.

To combine the different assignment functions (at least for the intermediate steps), an
enumeration for the different assignment operations is defined:

enum _bi nops { _ wr i t e_op, _ or _op, _ and_op, _x or _op };

Using that, register_acces s can delegate the functions to _RAImpl :
te mpl at e < cl ass _ RegTr ai t s , c l ass _ Pl at f or mTr ai t s,
 cl ass _ I ndexHol der = s t at i c_addr ess <0> >
cl ass r egi st er _access
{
 t ypedef _ RAI mpl <_RegTr ai t s , _ Pl at f or mTr ai ts , _ I ndexHol der > _ I mpl;

publ i c:
 oper at or v al ue_t ype() c onst
 {
 r et ur n _ I mpl : : _r ead(_i dx) ;
 }
 voi d o per at or =(val ue_t ype _ val)
 {
 _I mpl : : t empl at e _ op<_wr i t e_op>(_i dx, _val);
 }
 voi d o per at or | =(val ue_t ype _ val)
 {
 _I mpl : : t empl at e _ op<_or _op>(_i dx, _ va l) ;
 }
 / / e t c.
};

PDTR 18015 Technical Report on C++ Performance

Version for PDTR approval ballot Page 137 of 189

_RAImpl then performs the actual address calculation and then delegates further to
_AccessHelper:

te mpl at e < cl ass _ RegTr ai t s , c l ass _ Pl at f or mTr ai t s, c l ass _ I ndexHol der >
cl ass _ RAI mpl
{
publ i c:
 t ypedef t ypename _ RegTr ai t s: : val ue_t ype _Val T;

 st at i c _ ul _ addr Cal c(_I ndexHol der c onst &_i dx)
 {
 r et ur n _ Pl at f or mTr ai t s : : addr ess_hol der: : val ue()
 + _ RegTr ai t s : : addr ess_hol der : : val ue()
 + _ i dx. val ue() * s i zeof (_RegTr ait s: : val ue_t ype) ;
 }

 st at i c _ Val T _ r ead(_I ndexHol der c onst & _i dx)
 {
 r et ur n _ AccessHel per <_Val T,
 t ypename _ Pl at fo rmTr ai t s: : pr ocessor _bus,
 s i zeof (_Val T)>
 : : _r ead(_addr Cal c(_i dx));
 }

 t empl at e < _bi nops f unct i on>
 st at i c v oi d _ op(_I ndexHol der c onst & _i dx, _Val T _ val)
 {
 _AccessHel per <_Val T,
 t ypename _ Pl at f or mTr ait s: : pr ocessor _bus,
 si zeof (_Val T) >
 : : t empl at e _ op<f unct i on>(_val , _a ddr Cal c(_i dx)) ;
 }
};

_addrCalc is simple for the sample platform, but is a bit more complex in the general
case (see §B.2.3.1), but all required information is in the traits classes that are still
template parameters for _RAImpl .

Apart from the address calculation, _RAImpl simply delegates further to
_AccessHelper. The purpose of _AccessHelper is to separate the single hardware
accesses from the ones where the register's value type is larger than the connecting
bus and therefore multiple accesses are required. For the sample implementation on
an 8-bit platform any access to registers with more than one byte requires multiple
accesses, so the specialization can be done on sizeof(value_type):

// g ener al c ase t hat u ses a f or - l oop
te mpl at e < t ypename _ Val T, t ypename _ BusTag, s iz e_t _ s>
st r uct _ AccessHel per
{
 st at i c _ Val T _ r ead(_ul _ addr)
 {
 ui nt 8_t b uf f er [_s];
 f or (ui nt 8_t _ i =0; _ i ! = _ s; + +_i)
 {
 buf f er [_i] = _ hwRead<_BusTag>: : r(_addr +_i);
 }
 r et ur n * ((_Val T *) buf f er) ;
 }
 t empl at e < _bi nops _ f unc>
 st at i c v oi d _ op(_Val T _ val , _ ul _ addr)

Technical Report on C++ Performance PDTR 18015

Page 138 of 189 Version for PDTR approval ballot

 {
 f or (ui nt 8_t _ i =0; _ i ! = _ s; + +_i)
 {
 _hwOp<_f unc, _ BusTag>
 : : f (_addr +_i , ((ui nt 8_t *) &_v al) [_i]) ;
 }
 }
};

// h er e t he s peci al i zat i on f or s i ze==1
te mpl at e < t ypename _ Val T, t ypename _ BusTag>
st r uct _ AccessHel per <_Val T, _ BusTag, 1>
{
 st at i c _ Val T _ r ead(_ul _ addr)
 {
 r et ur n (_Val T) _hwRead<_BusTag>: : r (_addr);
 }
 t empl at e < _bi nops _ f unc>
 st at i c v oi d _ op(_Val T _ val , _ ul _ addr)
 {
 _hwOp<_f unc, _ BusTag>: : f (_addr , (ui nt 8_t) _val);
 }
};

For a more flexible platform, _AccessHelper must be specialized for each valid pair
matching the size of the value_type and the width of the device bus, with additional
specializations for different endiannesses. To achieve that, _AccessHelper needs the
complete traits classes as template arguments.

The final separation is done on the processor bus type: different access instructions
are necessary for the (memory mapped) data bus than for the I/O bus. This is done by
a specialization on _hwRead and _hwOp based on the bus.

B.8.1.4 Actual Access Implementation
The actual hardware access method depends on the processor architecture and the
type of the bus where a hardware device is connected. For the memory mapped case
normal C++ expressions together with some (completely machine-dependent) casts
can do the access:

The general declaration:
te mpl at e < t ypename _ BusTag> s t r uct _ hwRead;
te mpl at e < _bi nops, t ypename _ BusTag> s t r uct _hwOp;

The cast:
te mpl at e < _bi nops _ op> s t r uct _ hwOp< _ op, h w_base: : dat a_bus>
{
 st at i c v oi d f (_ul _ addr , u i nt 8_t _ r hs)
 {
 _hwOp_dat a<_op>
 : : f (* const _cast <ui nt 8_t v ol at i l e * >
 (r ei nt er pr et _cast <ui nt 8_t * >(_addr)),
 _r hs) ;
 }
};

PDTR 18015 Technical Report on C++ Performance

Version for PDTR approval ballot Page 139 of 189

The address (which is of integer type) is first cast to a pointer (to uint8_t in the
sample case, in the more general case the value_type must be transferred as a further
template argument), and that pointer is then cast to a pointer to volatile to tell the
compiler not to make any assumptions on the memory cell . That cast done, the access
is accomplished by a specialization of yet another helper class:

// h el per c l ass d ecl ar at i on
te mpl at e < _bi nops> s t r uct _ hwOp_dat a;

// a nd o ne s peci al i zat i on f or e ach o per at i on:
st r uct _ hwOp_dat a<_wr i t e_op>
{
 st at i c v oi d f (ui nt 8_t v ol at i l e & _l hs, u in t8 _t _ r hs)
 {
 _l hs = _ r hs;
 }
};
st r uct _ hwOp_dat a<_or _op>
{
 st at i c v oi d f (ui nt 8_t v ol at i l e & _l hs, u in t8 _t _ r hs)
 {
 _l hs | = _ r hs;
 }
};
st r uct _ hwOp_dat a<_and_op>
{
 st at i c v oi d f (ui nt 8_t v ol at i l e & _l hs, u in t8 _t _ r hs)
 {
 _l hs & = _ r hs;
 }
};
st r uct _ hwOp_dat a<_xor _op>
{
 st at i c v oi d f (ui nt 8_t v ol at i l e & _l hs, u in t8 _t _ r hs)
 {
 _l hs ^ = _ r hs;
 }
};

And for the read, the same cast sequence is required:

st r uct _ hwRead<hw_base: : dat a_bus>
{
 st at i c u i nt 8_t r (_ul c onst & _ addr)
 {
 r et ur n
 * const _cast <ui nt 8_t v ol at i l e *>
 (r ei nt er pr et _cast <ui nt 8_t * >(_addr));
 }
};

For registers that are attached to the I/O bus, special machine instructions must be
generated. For this, some compiler specific extensions are necessary. The sample
implementation uses the asm extensions of GCC.

Using these extensions, the basic access functions can be defined:
in l i ne u i nt 8_t i _i o_r d(ui nt 8_t _ por t)
{
 ui nt 8_t _ r et;
 asm v ol at i l e (" i n %0, %1" : " =r " (_r et) : "i " (_por t)) ;

Technical Report on C++ Performance PDTR 18015

Page 140 of 189 Version for PDTR approval ballot

 r et ur n _ r et ;
}

in l i ne v oi d i _i o_wr (ui nt 8_t _ por t , u i nt 8_t _v al)
{
 asm v ol at i l e (" out % 0, %1" : : " i " (_por t) , " r " (_val));
}

in l i ne v oi d i _i o_and(ui nt 8_t _ por t , u i nt 8_t _va l)
{
 ui nt 8_t _ t mp;
 asm v ol at i l e (" i n %0, %1\ n\ t and %0, %2\ n\ to ut % 1, %0"
 : " =&r " (_t mp) : " i " (_port), " r " (_val)) ;
}

in l i ne v oi d i _i o_or (ui nt 8_t _ por t , u i nt 8_t _v al)
{
 ui nt 8_t _ t mp;
 asm v ol at i l e (" i n %0, %1\ n\ t or % 0, %2\ n\ t out %1, %0"
 : " =&r " (_t mp) : " i " (_port), " r " (_val)) ;
}

in l i ne v oi d i _i o_xor (ui nt 8_t _ por t , u i nt 8_t _va l)
{
 ui nt 8_t _ t mp;
 asm v ol at i l e (" i n %0, %1\ n\ t eor % 0, %2\ n\ to ut % 1, %0"
 : " =&r " (_t mp) : " i " (_port), " r " (_val)) ;
}

These basic functions can then be used to implement the specializations for the I/O
bus:

st r uct _ hwRead<hw_base: : i o_bus>
{
 st at i c u i nt 8_t r (_ul c onst & _ addr) { r et ur n i _i o_r d(_addr) ; }
};
st r uct _ hwOp<_wr i t e_op, h w_base: : i o_bus>
{
 st at i c v oi d f (_ul _ addr , u i nt 8_t _ r hs) { i_ i o_wr (_addr , _ r hs) ; }
};
st r uct _ hwOp<_or _op, h w_base: : i o_bus>
{
 st at i c v oi d f (_ul _ addr , u i nt 8_t _ r hs) { i_ i o_or (_addr , _ r hs) ; }
};
st r uct _ hwOp<_and_op, h w_base: : i o_bus>
{
 st at i c v oi d f (_ul _ addr , u i nt 8_t _ r hs) { i_ i o_and(_addr , _ r hs) ; }
};
st r uct _ hwOp<_xor _op, h w_base: : i o_bus>
{
 st at i c v oi d f (_ul _ addr , u i nt 8_t _ r hs) { i_ i o_xor (_addr , _ r hs) ; }
};

B.8.1.5 Usage and Overhead
Using that implementation, the <hardware> interface can be used as specified:

namespace
{
// m i ddl e l ayer (har dwar e r egi st er d esi gnat or s)
us i ng n amespace s t d: : har dwar e;

ty pedef p l at f or m_t r ai t s I Obus;

PDTR 18015 Technical Report on C++ Performance

Version for PDTR approval ballot Page 141 of 189

st r uct M Mbus : p l at f or m_t r ai t s
{
 t ypedef h w_base: : dat a_bus p r ocessor _bus;
};

te mpl at e < t ypename V al Type, s t d: : har dwar e: : si ze_t a ddr>
st r uct S t at i cReg : p ubl i c r egi st er _t r ai ts
{
 t ypedef V al Type v al ue_t ype;
 t ypedef s t at i c_addr ess<addr > a ddr ess_hold er ;
 enum
 {
 addr ess_mode=hw_base: : i s_st at ic
 } ;
};

} / / a nonymous n amespace

// t est
in t m ai n()
{
 r egi st er u i nt 8_t v , i ;

 r egi st er _access<St at i cReg<ui nt 8_t , 0 x23>, I Obus> p or t 1;
 i = p or t 1; / / (1)

 r egi st er _access<St at i cReg<ui nt 8_t , 0 x24>, I Obus> p or t 2;
 por t 2 & = 0 xaa; / / (2)

 r egi st er _access<St at i cReg<ui nt 8_t , 0 x25>, I Obus> p or t 3;
 por t 3 = 0 x17; / / (3)

 r egi st er _access<St at i cReg<ui nt 8_t , 0 xab>, MMbus> mem1;
 v = m em1; / / (4)
 mem1 & = 0 x55; / / (5)
 mem1 = v ; / / (6)

 r egi st er _buf f er <St at i cReg<ui nt 8_t , 0 x0a>, MMbus> memBuf ;
 v = m emBuf [i] ; / / (7)
 memBuf [4] & = 0 x03; / / (8)

 r et ur n 0;
}

The compiler output for this small program looks very different depending on the
optimization level. Without optimization, the generated code is horrible as none of
the many intermediate functions is inlined. The result is lots of function calls (and
related stack handling).

With low optimization (-O1) the resulting code is essentially what one could expect:

(1) results in two machine instruction, one for the port read and one to store the result
in a separate register).

C++:
i = p or t 1; / / (1)

Assembler:
5a: 83 b 5 in r2 4, 0 x23 ; R24 i s u sed a s a ccumul at or
5c: 48 2 f mov r2 0, r 24 ; r 20 i s ' i ' v ar i able

Technical Report on C++ Performance PDTR 18015

Page 142 of 189 Version for PDTR approval ballot

(2) results in four machine instructions, one register load and the in /and /out

sequence.

C++:
por t 2 & = 0 xaa; / / (2)

Assembler:
5e: 8a e a ldi r2 4, 0 xAA
60: 94 b 5 in r2 5, 0 x24
62: 98 2 3 and r2 5, r 24
64: 94 b d out 0x 24, r 25

(3) results in two machine instructions, one register load and the out instruction.

C++:
por t 3 = 0 x17; / / (3)

Assembler:
66: 87 e 1 ldi r2 4, 0 x17
68: 85 b d out 0x 25, r 24

(4) results in two machine instruction, one access to the memory and one register
move for the resulting v.

C++:

v = mem1; / / (4)

Assembler:

6a: 80 9 1 a b 0 0 lds r2 4, 0 x00AB
6e: 28 2 f mov r1 8, r 24
70: 33 2 7 eor r1 9, r 19 ; super f l uous n ul l i ng o f R 19

(5) results in three machine instructions, again one read access to the memory (that
was declared as volatile), the and , and a store to the memory.

C++:

mem1 & = 0 x55; / / (5)

Assembler:

72: 80 9 1 a b 0 0 lds r2 4, 0 x00AB
76: 85 7 5 andi r2 4, 0 x55
78: 80 9 3 a b 0 0 sts 0x 00AB, r 24

(6) results in one machine instruction, the value of v that is still in a register is stored
to the memory.

C++:

mem1 = v ; / / (6)

Assembler:

7c: 20 9 3 a b 0 0 sts 0x 00AB, r 18

(7) takes a number of machine instructions, as the address calculation is in 16-bit,
which takes several instructions on an 8-bit processor.

C++:

PDTR 18015 Technical Report on C++ Performance

Version for PDTR approval ballot Page 143 of 189

v = memBuf [i] ; / / (7)

Assembler:
80: 8a e 0 ldi r2 4, 0 x0A ; l oadi ng b ase a ddr ess L SB
82: 90 e 0 ldi r2 5, 0 x00 ; l oadi ng b ase a ddr ess M SB
84: f9 2 f mov r3 1, r 25 ; move t o a ddr ess r egi st er
86: e8 2 f mov r3 0, r 24
88: e4 0 f add r3 0, r 20 ; add t he i ndex
8a: f1 1 d adc r3 1, r1 ; add 0 a s MSB
8c: 20 8 1 ld r1 8, Z ; l oad u si ng a ddr ess r egi st er

(8) finally takes six machine instructions, two for the move of the 16-bit base address
(0x0a, still in the register), one for the add of the index, one for the load of the
memory value, one for the and and a last one for the store back to the memory.

C++:
memBuf [4] & = 0 x03; / / (8)

Assembler:
8e: f9 2 f mov r3 1, r 25; ; base a ddr ess s t i l l i n R 24/ 25
90: e8 2 f mov r3 0, r 24
92: 34 9 6 adi w r3 0, 0 x04 ; add i ndex (as 1 6- bi t v al ue)
94: 80 8 1 ld r2 4, Z ; l oad u si ng a ddr ess r egi st er
96: 83 7 0 andi r2 4, 0 x03
98: 80 8 3 st Z, r 24 ; st or e u si ng a ddr ess r egi st er

The most annoying case is (8), as the base address and the index are both known at
compile-time, but the computation is done at run-time.

But with optimization one level higher (-O2) that is also solved:

(7) knows the base address from compile-time and comes down to four machine
instructions.

Assembler:
80: e9 2 f mov r3 0, r 25 ; move ' i ' t o a ddr ess r egi st er
82: ff 2 7 eor r3 1, r 31; ; zeor M SB o f a ddr ess r egi st er
84: 3a 9 6 adi w r3 0, 0 x0a ; add b ase a ddr ess
86: 80 8 1 ld r2 4, Z ; l oad u si ng a ddr ess r egi st er

(8) comes down to three machine instructions as the final address 0x0e is completely
computed at compile-time and therefore does only one load, the and and the store.

Assembler:

88: 80 9 1 0 e 0 0 lds r2 4, 0 x000E ; l oad f i nal a ddr ess
8c: 83 7 0 andi r2 4, 0 x03
8e: 80 9 3 0 e 0 0 sts 0x 000E, r 24 ; st or e u si ng R 24 a s a ddr ess

So for this platform and for optimization level -O2 the goal of a non-overhead
implementation is reached.

Technical Report on C++ Performance PDTR 18015

Page 144 of 189 Version for PDTR approval ballot

Appendix C: A <hardware>
Implementation for the
<iohw.h> Interface

The implementation of the basic <iohw.h> hardware register access interface on top
of the <hardware> interface is mainly straightforward. This section provides an
example of how such an implementation can be achieved.

The purpose of using C++ at the lowest level is to take advantage of compile-time
evaluation of template code to yield object code specialized for specific hardware. For
a good implementation of the basic templates that perform the lowest-level hardware
access operations, this approach typically leads to code that maps directly to machine
instructions as efficient as code produced by an expert programmer. Additionally, the
type safety of the C++ interface minimizes debugging and errors.

The sample implementation presented here uses the sample <hardware>

implementation presented in §B.8.

C.1 Implementation of the Basic Access Functions
The sample implementation here avoids the creation of unnecessary objects and
instead generally passes ioreg-designator arguments in the form of (properly typed)
null pointers. But it would also be possible to pass them as normal objects, as long as
they contain no data members, as the compiler typically optimizes them away.
Though the null pointer is syntactically de-referenced in the access functions, it is
never actually de-referenced, as the objects do not contain any data members.

The access functions are implemented as function templates on the ioreg-designator,
which must be an instantiation of register_access :

te mpl at e < t ypename _ RegAcc>
in l i ne t ypename _ RegAcc: : val ue_t ype
io r d(_RegAcc * _ r eg)
{
 r et ur n s t at i c_cast <t ypename _ RegAcc: : valu e_t ype>(* _r eg) ;
}
te mpl at e < t ypename _ RegAcc>
in l i ne v oid
io wr (_RegAcc * _ r eg, t ypename _ RegAcc: : val ue_ty pe _ val)
{
 * _r eg = _ val;
}
te mpl at e < t ypename _ RegAcc>
in l i ne v oid
io or (_RegAcc * _ r eg, t ypename _ RegAcc: : val ue_ty pe _ val)
{
 * _r eg | = _ val ;
}
// e t c.

PDTR 18015 Technical Report on C++ Performance

Version for PDTR approval ballot Page 145 of 189

The iord implementation calls the conversion operator of register_access

explicitly by using a static_cast , but this is not really necessary.

This can be used by providing a middle layer that is essentially the same as for the
<hardware> interface as presented in the previous chapter:

ty pedef p l at f or m_t r ai t s I Obus;

te mpl at e < t ypename V al Type, s i ze_t a ddr >
st r uct D ev8Reg : p ubl i c r egi st er _t r ai ts
{
 t ypedef V al Type v al ue_t ype;
 t ypedef s t at i c_addr ess<addr > a ddr ess_hold er ;
 enum
 {
 addr ess_mode=hw_base: : i s_st at i c,
 access_mode=hw_base: : r andom,
 devi ce_bus_wi dt h=hw_base: : devi ce8
 } ;
};

re gi st er _access<Dev8Reg<ui nt 8_t , 0 x06>, I Obus > * myPor t 1 = 0;

The only difference to the middle layer of the <hardware> interface is that the final
designator is defined as a pointer (and initialized to null).

The device driver code itself refers only to functions named in the <iohw.h>

interface:
ui nt 8_t v al 8;

va l 8 = i or d(myPor t 1) ; / / r ead s i ngl e r egi st er
io wr (myPor t 1, 0 x9) ; / / w r i t e s i ngl e r egi st er

C.2 Buffer Functions
The buffer functions are analogous to the single register functions. They are also
implemented as function templates and their template argument must be an
instantiation of register_buffer :

te mpl at e < t ypename _ RegBuf>
in l i ne t ypename _ RegBuf : : val ue_t ype
io r dbuf (_RegBuf * _ r eg, i oi ndex_t _ i dx)
{
 r et ur n (* _r eg) [_i dx];
}
te mpl at e < t ypename _ RegBuf>
in l i ne v oid
io wr buf (_RegBuf * _ r eg, i oi ndex_t _ i dx, t ypename _ RegBuf : : val ue_t ype
_v al)
{
 (* _r eg) [_i dx] = _ val;
}
te mpl at e < t ypename _ RegBuf>
in l i ne v oid
io or buf (_RegBuf * _ r eg, i oi ndex_t _ i dx, t ypename _ RegBuf : : val ue_t ype
_v al)
{
 (* _r eg) [_i dx] | = _ val ;
}

Technical Report on C++ Performance PDTR 18015

Page 146 of 189 Version for PDTR approval ballot

Here, the iordbuf implementation uses the conversion operator of register_access

implicitly.

Again, the respective middle layer is similar to the middle layer of the <hardware>

interface:
st r uct M Mbus : p l at f or m_t r ai t s
{
 t ypedef h w_base: : dat a_bus p r ocessor _bus;
};

te mpl at e < t ypename V al Type, s i ze_t a ddr >
st r uct D ev8Reg : p ubl i c r egi st er _t r ai t s; / / as a bove

re gi st er _buf f er <Dev8Reg<ui nt 16_t , 0 x04>, M Mbus > * myBuf = 0 ;

And again, the device driver code uses only <iohw.h> functionality:
ui nt 16_t b uf f er [10] ;
ui nt 8_t v al 8;

fo r (i oi ndex_t i = 0 ; i ! = 1 0; + +i)
{
 buf f er [i] = i or dbuf (myBuf , i) ; / / r ead re gi st er a r r ay
 i owr buf (myBuf , i , b uf f er [i]) ; / / w r i t e re gi st er a r r ay
 i oor buf (myBuf , v al 8, b uf f er [i]) ; / / o r re gi st er a r r ay
}

C.3 Group Functionality
Up to this point, the implementation of <iohw.h> has used only the interface of
<hardware> , not its implementation. However, this might not be possible for the
grouping functionality of <iohw.h> . The sample implementation here uses the
internal implementation of the <hardware> interface, but it does not require any
changes to that implementation.

While “normal” hardware register designators always use the combination of register
traits and platform traits together, for hardware register groups these are separated.
The indirect designators contain only the register traits, while the direct designators
contain the platform traits. Only through a call to iogroup_map are they combined to
make a fully usable designator. But when working with groups, the device driver
code syntactically uses the indirect designators for the access functions, so they need
to know which direct designator is currently mapped to them. And the access
function must combine the address information from both designators to form the
final address that is accessed.

The actual designators for indirect groups must be an instantiation of the class
template _IOGroupRegister . This is just a type holder for the used register traits and
the direct designator that can be mapped to this group:

te mpl at e < cl ass _ RegTr ai t s , c l ass _ Gr pBase>
st r uct _ I OGr oupRegi st er { };

The _GrpBase template argument must be an instantiation of a platform traits class
with a special address_holder that provides a static value_ member that can be

PDTR 18015 Technical Report on C++ Performance

Version for PDTR approval ballot Page 147 of 189

modified and the value() function must also be static . That way, the class
_IOGroupRegister does not need a pointer to keep the connection to the mapped
direct designator. Such a pointer would introduce a major overhead in space and time
for the hardware accesses. The implementation provides such an address holder
_BaseAddress as a class template that can be used by the middle layer of an
application to define respective platform traits:

te mpl at e < i nt _ i d>
st r uct _ BaseAddr ess
{
 st at i c _ ul v al ue() { r et ur n v al ue_; }
 st at i c _ ul v al ue_;
};
te mpl at e < i nt _ i d>
_ul _ BaseAddr ess<_i d>: : val ue_;

The _id template parameter serves to differentiate the different direct designators if
more than one is used in an application. Such an address holder can still be declared
as is_static in the traits where it is used, as it offers exactly the same interface as
"normal" compile-time static_address holders.

The access functions of <iohw.h> must be redefined for indirect designators, through
a set of overloads. For the purpose of implementation, the overload set presented here
uses the _RAImpl helper class presented in §B.8.1.333:

te mpl at e < cl ass _ RegTr ai t s , c l ass _ Gr pBase>
in l i ne t ypename _ RegTr ai t s : : val ue_t ype
io r d(_I OGr oupRegi st er <_RegTr ai t s , _ Gr pBase> _re g)
{
 r et ur n _ RAI mpl <_RegTr ai t s, _ Gr pBase>: : _re ad(0);
}

te mpl at e < cl ass _ RegTr ai t s , c l ass _ Gr pBase>
in l i ne v oid
io wr (_I OGr oupRegi st er <_RegTr ai t s , _ Gr pBase> _re g,
 t ypename _ RegTr ai t s : : val ue_t ype _ val)
{
 _RAI mpl <_RegTr ai t s , _ Gr pBase>: : t empl at e _op<_wr i t e_op>(0, _ val) ;
}

// e t c.

Internally _RAImpl uses _GrpBase::address_holder::value() , which is exactly
the interface provided by _BaseAddress .

The implementation for the buffer functions is quite similar to that of the basic access
functions: an empty class template _IOGroupBuffer is defined to provide the
necessary type information, and that is used to instantiate _RAImpl and call its
member functions directly:

te mpl at e < cl ass _ RegTr ai t s , c l ass _ Gr pBase>
st r uct _ I OGr oupBuf f er { };

te mpl at e < cl ass _ RegTr ai t s , c l ass _ Gr pBase>

33

 The _RAImpl template has been slightly modified in this implementation for typing convenience: the _IndexHolder
template parameter is assumed to have a default argument of _IdxHolder .

Technical Report on C++ Performance PDTR 18015

Page 148 of 189 Version for PDTR approval ballot

in l i ne t ypename _ RegTr ai t s : : val ue_t ype
io r dbuf (_I OGr oupBuf f er <_RegTr ai t s, _ Gr pBase> _r eg,
 i oi ndex_t _ i)
{
 r et ur n _ RAI mpl <_RegTr ai t s, _ Gr pBase>: : _re ad(_i) ;
}

te mpl at e < cl ass _ RegTr ai t s , c l ass _ Gr pBase>
in l i ne v oid
io wr buf (_I OGr oupBuf f er <_RegTr ai t s, _ Gr pBase> _r eg,
 t ypename _ RegTr ai t s: : val ue_t ype _ val,
 i oi ndex_t _ i)
{
 _RAI mpl <_RegTr ai t s , _ Gr pBase>: : t empl at e _op<_wr i t e_op>(_i , _ val);
}

The middle layer in this implementation is similar to the middle layer for the
<hardware> interface:

// t he p l at f or m t r ai t s t o b e u sed f or g r oup des i gnat ors
te mpl at e < i nt b aseI d>
st r uct D ynMM : p l at f or m_t r ai t s
{
 t ypedef _ BaseAddr ess<baseI d> a ddr ess_hold er ;
 t ypedef h w_base: : dat a_bus p r ocessor _bus;
 enum { a ddr ess_mode=hw_base: : i s_st at i c };
};

// t he d esi gnat or s
ty pedef D ynMM<1> D evGr oupT;
_I OGr oupRegi st er <Dev8Reg<ui nt 8_t , 0 x00>, D evGro upT> d evConf i g;
_I OGr oupBuf f er <Dev8Reg<ui nt 8_t , 0 x04>, D evGro upT> d evDat a;

DevGr oupT * devGr oup = 0 ;

devConfig and devData are the indirect designators to be used as arguments to the
access functions. devGroup or DevGroupT is not really a direct designator; it is
merely a place holder to define the group. The actual direct designators must provide
the functionality to be used in the group functions of <iohw.h> , which are
iogroup_acquire() , iogroup_release() and iogroup_map() . Therefore the real
direct designators must provide the member functions init() and release() and the
data member value that has the same type as the value_ member of the address
holder for the group. Not every direct designator needs non-trivial initialization and
release functions, so a helper class is provided for convenience to save defining
unnecessary functions:

st r uct _ Empt yGr oup
{
 voi d i ni t () { }
 voi d r el ease() {}
};

Using that, the middle layer can provide the direct designators for the group:
st r uct D ev1Gr oupT : _ Empt yGr oup
{
 voi d i ni t () { v al ue = 0 x0020; }
 hw_base: : addr ess_t ype v al ue;
} dev1Gr oup;

PDTR 18015 Technical Report on C++ Performance

Version for PDTR approval ballot Page 149 of 189

st r uct D ev2Gr oupT : _ Empt yGr oup
{
 voi d i ni t () { v al ue = 0 x0120; }
 hw_base: : addr ess_t ype v al ue;
} dev2Gr oup;

Of course, for real life applications the init() function will typically be a bit more
complex.

Based on that interface, the implementation of the group functions is easy:
te mpl at e < cl ass _ Gr p>
in l i ne v oi d i ogr oup_acqui r e(_Gr p & _g)
{
 _g. i ni t () ;
}
te mpl at e < cl ass _ Gr p>
in l i ne v oi d i ogr oup_r el ease(_Gr p & _g)
{
 _g. r el ease();
}

te mpl at e < cl ass _ Gr pBase, c l ass _ Gr p>
in l i ne v oi d i ogr oup_map(_Gr pBase * , _ Gr p c ons t &_g)
{
 _Gr pBase: : addr ess_hol der : : val ue_ = _ g. val ue;
}

The device driver code again uses only <iohw.h> functionality:
ui nt 8_t g et _dev_dat a(voi d)
{
 i owr (devConf i g, 0 x33) ;
 r et ur n i or dbuf (devDat a, 3);
}

// . . .
io gr oup_acqui r e(dev1Gr oup);
// R ead d at a f r om devi ce 1
io gr oup_map(devGr oup, d ev1Gr oup);
ui nt 8_t d 1 = g et _dev_dat a() ;
io gr oup_r el ease(dev1Gr oup);

io gr oup_acqui r e(dev2Gr oup);
// R ead d at a f r om devi ce 2
io gr oup_map(devGr oup, d ev2Gr oup);
ui nt 8_t d 2 = g et _dev_dat a() ;
io gr oup_r el ease(dev2Gr oup);

C.4 Remarks
The implementation here does not completely conform to the <iohw.h> interface in
WDTR 18037. That definition requires a value type for the access functions of
unsigned int and a second set of access functions with the suffix 'l' with a value
type of unsigned long . That is not only unnecessarily constraining (in general, the
iohw interface allows transfers of non-integer number types as well as any POD
struct type), but also introduces a major overhead for many real-li fe devices where

Technical Report on C++ Performance PDTR 18015

Page 150 of 189 Version for PDTR approval ballot

registers are only 8 bits wide. Therefore this implementation allows for generic value
types.

In general, using C++ for the implementation of <iohw.h> introduces no overhead,
but allows for a common implementation of the <iohw.h> interface and the more
generic <hardware> interface.

The implementation summarized here is not the only possible C++ implementation.
Complete code for this implementation and some alternatives can be found on the
WG21 web site, www.dkuug.dk/jtc1/sc22/wg21.

PDTR 18015 Technical Report on C++ Performance

Version for PDTR approval ballot Page 151 of 189

Appendix D: Timing Code

D.1 Measuring the Overhead of Class Operations
This is the sample program discussed in 2.3.2 and following.

/*
 Si mpl e/ nai ve measur ement s t o g i ve a r ough i dea o f t he r el at i ve
 cost o f f aci l i t i es r el at ed t o O OP.

 Thi s c oul d b e f ool ed/ f oi l ed b y c l ever o pt im i zer s a nd by
 cache e f f ect s.

 Run a t l east t hr ee t i mes t o e nsur e t hat r esul t s a r e r epeat abl e.

 Test s:

 vi r t ual f unct i on
 gl obal f unct i on c al l ed i ndi r ect ly
 nonvi r t ual m ember f unct i on
 gl obal f unct i on
 i nl i ne member f unct i on
 macro
 1st b r anch o f M I
 2nd b r anch o f M I
 cal l t hr ough v i r t ual b ase
 cal l o f v i r t ual b ase f unct i on

 dynami c c ast
 t wo- l evel d ynami c c ast
 t ypei d()

 cal l t hr ough p oi nt er t o member

 cal l - by- r ef er ence
 cal l - by- val ue

 pass a s p oi nt er t o f unct i on
 pass a s f unct i on o bj ect

 not y et :

 co- var i ant r et urn

 The c ost o f t he l oop i s n ot m easur abl e at t hi s p r eci si on:
 see i nl i ne t est s

 By d ef aul t d o 1 000000 i t er at i ons t o c out

 1st o pt i onal a r gument : n umber o f i t er at io ns
 2nd o pt i onal a r gument : t ar get f i l e n ame
 */

// i nt b ody(i nt i) { r et ur n i * (i +1) * (i +2) ; }

Technical Report on C++ Performance PDTR 18015

Page 152 of 189 Version for PDTR approval ballot

cl ass X {
 i nt x ;
 st at i c i nt s t ;
publ i c:
 vi r t ual v oi d f (i nt a) ;
 voi d g (i nt a) ;
 st at i c v oi d h (i nt a);
 voi d k (i nt i) { x +=i ; } / / i nl i ne
};

st r uct S {
 i nt x ;
};

in t g l ob = 0;

ex t er n v oi d f (S* p , i nt a);
ex t er n v oi d g (S* p , i nt a);
ex t er n v oi d h (i nt a);
ty pedef v oi d (* PF) (S* p , i nt a) ;
PF p [10] = { g , f };
// i nl i ne v oi d k (S* p , i) { p - >x+=i ; }
#def i ne K (p, i) ((p) - >x+=(i))

st r uct T {
 const c har * s ;
 doubl e t;

 T(const c har * s s, d oubl e t t) : s (ss) , t (t t) { }
 T() : s (0) , t (0) {}
};

st r uct A {
 i nt x ;
 vi r t ual v oi d f (i nt) = 0 ;
 voi d g (i nt) ;
};

st r uct B {
 i nt x x;
 vi r t ual v oi d f f (i nt) = 0;
 voi d g g(i nt);
};

st r uct C : A , B {
 voi d f (i nt) ;
 voi d f f (i nt);
};

st r uct C C : A , B {
 voi d f (i nt) ;
 voi d f f (i nt);
};

vo i d A : : g(i nt i) { x += i ; }
vo i d B : : gg(i nt i) { x x + = i ; }
vo i d C : : f (i nt i) { x += i ; }
vo i d C : : f f (i nt i) { x x + = i ; }
vo i d C C: : f (i nt i) { x += i ; }
vo i d C C: : f f (i nt i) { x x + = i ; }

PDTR 18015 Technical Report on C++ Performance

Version for PDTR approval ballot Page 153 of 189

te mpl at e<cl ass T , c l ass T 2> i nl i ne T * c ast (T* p, T 2* q)
{
 gl ob++;
 r et ur n d ynami c_cast <T* >(q);
}

st r uct C 2 : v i r t ual A { / / n ot e: v i r t ual b ase
};

st r uct C 3 : v i r t ual A {
};

st r uct D : C 2, C 3 { / / n ot e: v i r t ual b ase
 voi d f (i nt) ;
};

vo i d D : : f (i nt i) { x +=i ; }

st r uct P {
 i nt x ;
 i nt y ;
};

vo i d b y_r ef (P& a) { a . x++; a . y++; }
vo i d b y_val (P a) { a . x++; a . y++; }

te mpl at e<cl ass F , c l ass V > i nl i ne v oi d o per (F f , V v al) { f (val) ; }

st r uct F O {
 voi d o per at or () (i nt i) { g l ob + = i ; }
};

// ----------------------

#i ncl ude < st dl i b. h> / / o r < cst dl i b>
#i ncl ude < i ost r eam>
#i ncl ude < f st r eam>
#i ncl ude < t i me. h> / / o r < ct i me>
#i ncl ude < vect or>
#i ncl ude < t ypei nf o>
us i ng n amespace s t d;

te mpl at e<cl ass T > i nl i ne T * t i (T* p)
{
 i f (t ypei d(p) = = t ypei d(i nt *))
 p++;
 r et ur n p;
}

in t m ai n(i nt a r gc, c har * a r gv[])
{
 i nt i ; / / l oop v ar i abl e h er e f or t he be nef i t o f n on- conf or mi ng
 / / c ompi l ers

 i nt n = (1 < a r gc) ? a t oi (ar gv[1]) : 1 0000000; / / n umber o f
 / / i t er at i ons

Technical Report on C++ Performance PDTR 18015

Page 154 of 189 Version for PDTR approval ballot

 of st r eam t ar get ;
 ost r eam* o p = & cout ;
 i f (2 < a r gc) { / / p l ace o ut put i n f i l e
 t ar get . open(ar gv[2]);
 op = & t ar get;
 }
 ost r eam& o ut = * op;

 / / o ut put c ommand f or d ocument at i on:
 f or (i = 0 ; i < a r gc; + +i)
 out < < a r gv[i] < < " " ;
 out < < e ndl ;

 X* p x = n ew X;
 X x;
 S* p s = n ew S;
 S s;

 vect or <T> v ;

 cl ock_t t = c l ock() ;
 i f (t = = c l ock_t (- 1)) {
 cer r < < " sor r y, n o c l ock" < < e ndl ;
 ex i t (1) ;
 }

 f or (i = 0 ; i < n ; i ++)
 px- >f (1);
 v. push_back(T(" v i r t ual p x- >f (1) " , c l ock() - t)) ;

 t = c l ock() ;
 f or (i = 0 ; i < n ; i ++)
 p[1] (ps, 1) ;
 v. push_back(T(" pt r - t o- f c t p [1] (ps, 1) " , c l ock() - t)) ;

 t = c l ock() ;
 f or (i = 0 ; i < n ; i ++)
 x. f (1);
 v. push_back(T(" v i r t ual x . f (1) " , c l ock() - t)) ;

 t = c l ock() ;
 f or (i = 0 ; i < n ; i ++)
 p[1] (&s, 1) ;
 v. push_back(T(" pt r - t o- f c t p [1] (&s, 1) " , c l ock() - t)) ;

 t = c l ock() ;
 f or (i = 0 ; i < n ; i ++)
 px- >g(1);
 v. push_back(T(" member p x- >g(1) " , c l ock() - t)) ;

 t = c l ock() ;
 f or (i = 0 ; i < n ; i ++)
 g(ps, 1);
 v. push_back(T(" gl obal g (ps, 1) " , c l ock() - t)) ;

 t = c l ock() ;
 f or (i = 0 ; i < n ; i ++)
 x. g(1);
 v. push_back(T(" member x . g(1) " , c l ock() - t)) ;

PDTR 18015 Technical Report on C++ Performance

Version for PDTR approval ballot Page 155 of 189

 t = c l ock() ;
 f or (i = 0 ; i < n ; i ++)
 g(&s, 1);
 v. push_back(T(" gl obal g (&s, 1) " , c l ock() - t)) ;

 t = c l ock() ;
 f or (i = 0 ; i < n ; i ++)
 X: : h(1) ;
 v. push_back(T(" st at i c X : : h(1) " , c l ock() - t)) ;

 t = c l ock() ;
 f or (i = 0 ; i < n ; i ++)
 h(1);
 v. push_back(T(" gl obal h (1) " , c l ock() - t)) ;

 t = c l ock() ;
 f or (i = 0 ; i < n ; i ++)
 px- >k(1);
 v. push_back(T(" i nl i ne p x- >k(1) " , c l ock() - t)) ;

 t = c l ock() ;
 f or (i = 0 ; i < n ; i ++)
 K(ps, 1);
 v. push_back(T(" macr o K (ps, 1) " , c l ock() - t)) ;

 t = c l ock() ;
 f or (i = 0 ; i < n ; i ++)
 x. k(1);
 v. push_back(T(" i nl i ne x . k(1) " , c l ock() - t)) ;

 t = c l ock() ;
 f or (i = 0 ; i < n ; i ++)
 K(&s, 1);
 v. push_back(T(" macr o K (&s, 1) " , c l ock() - t)) ;

 C* p c = n ew C;
 A* p a = p c;
 B* p b = p c;

 t = c l ock() ;
 f or (i = 0 ; i < n ; i ++)
 pc- >g(i);
 v. push_back(T(" base1 member p c- >g(i) " , c l ock() - t)) ;

 t = c l ock() ;
 f or (i = 0 ; i < n ; i ++)
 pc- >gg(i) ;
 v. push_back(T(" base2 member p c- >gg(i) " , c l ock() - t)) ;

 t = c l ock() ;
 f or (i = 0 ; i < n ; i ++)
 pa- >f (i);
 v. push_back(T(" base1 v i r t ual p a- >f (i) " , c l ock() - t)) ;

 t = c l ock() ;
 f or (i = 0 ; i < n ; i ++)
 pb- >f f (i) ;
 v. push_back(T(" base2 v i r t ual p b- >f f (i) " , c l ock() - t)) ;

Technical Report on C++ Performance PDTR 18015

Page 156 of 189 Version for PDTR approval ballot

 t = c l ock() ;
 f or (i = 0 ; i < n ; i ++)
 cast (pa, p c);
 v. push_back(T(" base1 d own- cast c ast (pa, pc) " , c l ock() - t));

 t = c l ock() ;
 f or (i = 0 ; i < n ; i ++)
 cast (pb, p c);
 v. push_back(T(" base2 d own- cast c ast (pb, pc) " , c l ock() - t));

 t = c l ock() ;
 f or (i = 0 ; i < n ; i ++)
 cast (pc, p a);
 v. push_back(T(" base1 u p- cast c ast (pc, pa) " , c l ock() - t));

 t = c l ock() ;
 f or (i = 0 ; i < n ; i ++)
 cast (pc, p b);
 v. push_back(T(" base2 u p- cast c ast (pc, pb) " , c l ock() - t));

 t = c l ock() ;
 f or (i = 0 ; i < n ; i ++)
 cast (pb, p a);
 v. push_back(T(" base2 c r oss- cast c ast (pb,p a) " , c l ock() - t));

 CC* p cc = n ew CC;
 pa = p cc;
 pb = p cc;

 t = c l ock() ;
 f or (i = 0 ; i < n ; i ++)
 cast (pa, p cc) ;
 v. push_back(T(" base1 d own- cast 2 c ast (pa,p cc) " , c l ock() - t));

 t = c l ock() ;
 f or (i = 0 ; i < n ; i ++)
 cast (pb, p cc) ;
 v. push_back(T(" base2 d own- cast cast (pb,p cc) " , c l ock() - t));

 t = c l ock() ;
 f or (i = 0 ; i < n ; i ++)
 cast (pcc, p a) ;
 v. push_back(T(" base1 u p- cast c ast (pcc, pa) " , c l ock() - t));

 t = c l ock() ;
 f or (i = 0 ; i < n ; i ++)
 cast (pcc, p b) ;
 v. push_back(T(" base2 u p- cast 2 c ast (pcc, pb) " , c l ock() - t));

 t = c l ock() ;
 f or (i = 0 ; i < n ; i ++)
 cast (pb, p a);
 v. push_back(T(" base2 c r oss- cast 2 c ast (pa, pb) " , c l ock() - t));

 t = c l ock() ;
 f or (i = 0 ; i < n ; i ++)
 cast (pa, p b);
 v. push_back(T(" base1 c r oss- cast 2 c ast (pb, pa) " , c l ock() - t));

PDTR 18015 Technical Report on C++ Performance

Version for PDTR approval ballot Page 157 of 189

 D* p d = n ew D;
 pa = p d;

 t = c l ock() ;
 f or (i = 0 ; i < n ; i ++)
 pd- >g(i);
 v. push_back(T(" vbase member p d- >gg(i) " , c l ock() - t)) ;

 t = c l ock() ;
 f or (i = 0 ; i < n ; i ++)
 pa- >f (i);
 v. push_back(T(" vbase v i r t ual p a- >f (i) " , c l ock() - t)) ;

 t = c l ock() ;
 f or (i = 0 ; i < n ; i ++)
 cast (pa, p d);
 v. push_back(T(" vbase d own- cast c ast (pa, pd) " , c l ock() - t));

 t = c l ock() ;
 f or (i = 0 ; i < n ; i ++)
 cast (pd, p a);
 v. push_back(T(" vbase u p- cast c ast (pd, pa) " , c l ock() - t));

 t = c l ock() ;
 f or (i = 0 ; i < n ; i ++)
 t i (pa);
 v. push_back(T(" vbase t ypei d(pa) " , c l ock() - t)) ;

 t = c l ock() ;
 f or (i = 0 ; i < n ; i ++)
 t i (pd);
 v. push_back(T(" vbase t ypei d(pd) " , c l ock() - t)) ;

 voi d (A: : * p mf) (i nt) = & A: : f ; / / vi rt ual

 t = c l ock() ;
 f or (i = 0 ; i < n ; i ++)
 (pa- >* pmf) (i) ;
 v. push_back(T(" pmf v i r t ual (pa- >* pmf) (i) " , c l ock() - t)) ;

 pmf = & A: : g; / / no n v i r t ual

 t = c l ock() ;
 f or (i = 0 ; i < n ; i ++)
 (pa- >* pmf) (i) ;
 v. push_back(T(" pmf (pa- >* pmf) (i) " , c l ock() - t)) ;

 P p p;

 t = c l ock() ;
 f or (i = 0 ; i < n ; i ++)
 by_r ef (pp);
 v. push_back(T(" cal l b y_r ef (pp) " , c lo ck() - t)) ;

 t = c l ock() ;
 f or (i = 0 ; i < n ; i ++)
 by_val (pp);
 v. push_back(T(" cal l b y_val (pp) " , c l ock() - t)) ;

Technical Report on C++ Performance PDTR 18015

Page 158 of 189 Version for PDTR approval ballot

 FO f ct;

 t = c l ock() ;
 f or (i = 0 ; i < n ; i ++)
 oper (h, g l ob) ;
 v. push_back(T(" cal l p t r - t o- f ct o per (h, glo b) " , c l ock() - t)) ;

 t = c l ock() ;
 f or (i = 0 ; i < n ; i ++)
 oper (f ct , g l ob) ;
 v. push_back(T(" cal l f c t - obj o per (f ct , gl ob) " , c l ock() - t)) ;

 i f (cl ock() = = c l ock_t (- 1)) {
 cer r < < " sor r y, c l ock o ver f l ow" < <endl ;
 ex i t (2) ;
 }

 out < < e ndl ;
 f or (i = 0 ; i < v . si ze() ; i ++)
 out < < v [i] . s < < " : \ t"
 << v [i] . t * (doubl e(1000000) / n) /C LOCKS_PER_SEC
 << " m s" < < e ndl;

 i f (ar gc < 2) { / / i f o ut put i s g oi ng to c out
 cout < < " pr ess a ny c har act er t o f i nis h" < < e ndl ;
 char c;
 ci n >> c ; / / t o p l acat e Wi ndows consol e mode
 }

 r et ur n 0 ;
}

in t X: : st = 0;

vo i d X : : f (i nt a) { x += a ; }
vo i d X : : g(i nt a) { x += a ; }
vo i d X : : h(i nt a) { s t + = a ; }

vo i d f (S* p , i nt a) { p - >x + = a ; }
vo i d g (S* p , i nt a) { p - >x + = a ; }
vo i d h (i nt a) { g l ob + = a ; }

PDTR 18015 Technical Report on C++ Performance

Version for PDTR approval ballot Page 159 of 189

D.2 Measuring Template Overheads
This is the sample code discussed in §2.5.1.

/* ----------
Test p r ogr am t o g i ve a r ough measur e o f " t empla t e b l oat ."
If t he macr o " DI FFERENT" i s d ef i ned a t c ompil e- ti me, t his
 pr ogr am c r eat es a l i s t <T* > f or 1 00 d i f f er ent t ypes o f T.
Ot her wi se, i t c r eat es 1 00 i nst ances o f a l i st of a s i ngle
 poi nt er t ype.
A capabl e c ompi l er w i l l r ecogni se t hat t he bi nar y r epr esent at i on
 of l i st <T* > i s t he s ame f or a l l T a nd i t n eed r et ai n o nl y a
 s i ngl e c opy o f t he i nst ant i at i on c ode i n t he pr ogr am.
 -------- * /

#i nc l ude < l i st>

cl ass x0;
cl ass x1;
cl ass x2;
cl ass x3;
cl ass x4;
cl ass x5;
cl ass x6;
cl ass x7;
cl ass x8;
cl ass x9;
cl ass x 10;
cl ass x 11;
cl ass x 12;
cl ass x 13;
cl ass x 14;
cl ass x 15;
cl ass x 16;
cl ass x 17;
cl ass x 18;
cl ass x 19;
cl ass x 20;
cl ass x 21;
cl ass x 22;
cl ass x 23;
cl ass x 24;
cl ass x 25;
cl ass x 26;
cl ass x 27;
cl ass x 28;
cl ass x 29;
cl ass x 30;
cl ass x 31;
cl ass x 32;
cl ass x 33;
cl ass x 34;
cl ass x 35;
cl ass x 36;
cl ass x 37;
cl ass x 38;
cl ass x 39;
cl ass x 40;
cl ass x 41;
cl ass x 42;
cl ass x 43;

Technical Report on C++ Performance PDTR 18015

Page 160 of 189 Version for PDTR approval ballot

cl ass x 44;
cl ass x 45;
cl ass x 46;
cl ass x 47;
cl ass x 48;
cl ass x 49;
cl ass x 50;
cl ass x 51;
cl ass x 52;
cl ass x 53;
cl ass x 54;
cl ass x 55;
cl ass x 56;
cl ass x 57;
cl ass x 58;
cl ass x 59;
cl ass x 60;
cl ass x 61;
cl ass x 62;
cl ass x 63;
cl ass x 64;
cl ass x 65;
cl ass x 66;
cl ass x 67;
cl ass x 68;
cl ass x 69;
cl ass x 70;
cl ass x 71;
cl ass x 72;
cl ass x 73;
cl ass x 74;
cl ass x 75;
cl ass x 76;
cl ass x 77;
cl ass x 78;
cl ass x 79;
cl ass x 80;
cl ass x 81;
cl ass x 82;
cl ass x 83;
cl ass x 84;
cl ass x 85;
cl ass x 86;
cl ass x 87;
cl ass x 88;
cl ass x 89;
cl ass x 90;
cl ass x 91;
cl ass x 92;
cl ass x 93;
cl ass x 94;
cl ass x 95;
cl ass x 96;
cl ass x 97;
cl ass x 98;
cl ass x 99;

in t m ai n()
{
#i f d ef i ned D I FFERENT / / c r eat e 1 00 l i s t s of di f f er ent p oi nt er t ypes
 s t d: : l i st <x0* > v0;
 s t d: : l i st <x1* > v1;
 s t d: : l i st <x2* > v2;

PDTR 18015 Technical Report on C++ Performance

Version for PDTR approval ballot Page 161 of 189

 s t d: : l i st <x3* > v3;
 s t d: : l i st <x4* > v4;
 s t d: : l i st <x5* > v5;
 s t d: : l i st <x6* > v6;
 s t d: : l i st <x7* > v7;
 s t d: : l i st <x8* > v8;
 s t d: : l i st <x9* > v9;
 s t d: : l i st <x10* > v 10;
 s t d: : l i st <x11* > v 11;
 s t d: : l i st <x12* > v 12;
 s t d: : l i st <x13* > v 13;
 s t d: : l i st <x14* > v 14;
 s t d: : l i st <x15* > v 15;
 s t d: : l i st <x16* > v 16;
 s t d: : l i st <x17* > v 17;
 s t d: : l i st <x18* > v 18;
 s t d: : l i st <x19* > v 19;
 s t d: : l i st <x20* > v 20;
 s t d: : l i st <x21* > v 21;
 s t d: : l i st <x22* > v 22;
 s t d: : l i st <x23* > v 23;
 s t d: : l i st <x24* > v 24;
 s t d: : l i st <x25* > v 25;
 s t d: : l i st <x26* > v 26;
 s t d: : l i st <x27* > v 27;
 s t d: : l i st <x28* > v 28;
 s t d: : l i st <x29* > v 29;
 s t d: : l i st <x30* > v 30;
 s t d: : l i st <x31* > v 31;
 s t d: : l i st <x32* > v 32;
 s t d: : l i st <x33* > v 33;
 s t d: : l i st <x34* > v 34;
 s t d: : l i st <x35* > v 35;
 s t d: : l i st <x36* > v 36;
 s t d: : l i st <x37* > v 37;
 s t d: : l i st <x38* > v 38;
 s t d: : l i st <x39* > v 39;
 s t d: : l i st <x40* > v 40;
 s t d: : l i st <x41* > v 41;
 s t d: : l i st <x42* > v 42;
 s t d: : l i st <x43* > v 43;
 s t d: : l i st <x44* > v 44;
 s t d: : l i st <x45* > v 45;
 s t d: : l i st <x46* > v 46;
 s t d: : l i st <x47* > v 47;
 s t d: : l i st <x48* > v 48;
 s t d: : l i st <x49* > v 49;
 s t d: : l i st <x50* > v 50;
 s t d: : l i st <x51* > v 51;
 s t d: : l i st <x52* > v 52;
 s t d: : l i st <x53* > v 53;
 s t d: : l i st <x54* > v 54;
 s t d: : l i st <x55* > v 55;
 s t d: : l i st <x56* > v 56;
 s t d: : l i st <x57* > v 57;
 s t d: : l i st <x58* > v 58;
 s t d: : l i st <x59* > v 59;
 s t d: : l i st <x60* > v 60;
 s t d: : l i st <x61* > v 61;
 s t d: : l i st <x62* > v 62;
 s t d: : l i st <x63* > v 63;
 s t d: : l i st <x64* > v 64;
 s t d: : l i st <x65* > v 65;

Technical Report on C++ Performance PDTR 18015

Page 162 of 189 Version for PDTR approval ballot

 s t d: : l i st <x66* > v 66;
 s t d: : l i st <x67* > v 67;
 s t d: : l i st <x68* > v 68;
 s t d: : l i st <x69* > v 69;
 s t d: : l i st <x70* > v 70;
 s t d: : l i st <x71* > v 71;
 s t d: : l i st <x72* > v 72;
 s t d: : l i st <x73* > v 73;
 s t d: : l i st <x74* > v 74;
 s t d: : l i st <x75* > v 75;
 s t d: : l i st <x76* > v 76;
 s t d: : l i st <x77* > v 77;
 s t d: : l i st <x78* > v 78;
 s t d: : l i st <x79* > v 79;
 s t d: : l i st <x80* > v 80;
 s t d: : l i st <x81* > v 81;
 s t d: : l i st <x82* > v 82;
 s t d: : l i st <x83* > v 83;
 s t d: : l i st <x84* > v 84;
 s t d: : l i st <x85* > v 85;
 s t d: : l i st <x86* > v 86;
 s t d: : l i st <x87* > v 87;
 s t d: : l i st <x88* > v 88;
 s t d: : l i st <x89* > v 89;
 s t d: : l i st <x90* > v 90;
 s t d: : l i st <x91* > v 91;
 s t d: : l i st <x92* > v 92;
 s t d: : l i st <x93* > v 93;
 s t d: : l i st <x94* > v 94;
 s t d: : l i st <x95* > v 95;
 s t d: : l i st <x96* > v 96;
 s t d: : l i st <x97* > v 97;
 s t d: : l i st <x98* > v 98;
 s t d: : l i st <x99* > v 99;

#el se / / c r eat e 1 00 i nst ances o f a si ngl e l i s t <T* > t ype
 s t d: : l i st <x0* > v0;
 s t d: : l i st <x0* > v1;
 s t d: : l i st <x0* > v2;
 s t d: : l i st <x0* > v3;
 s t d: : l i st <x0* > v4;
 s t d: : l i st <x0* > v5;
 s t d: : l i st <x0* > v6;
 s t d: : l i st <x0* > v7;
 s t d: : l i st <x0* > v8;
 s t d: : l i st <x0* > v9;
 s t d: : l i st <x0* > v 10;
 s t d: : l i st <x0* > v 11;
 s t d: : l i st <x0* > v 12;
 s t d: : l i st <x0* > v 13;
 s t d: : l i st <x0* > v 14;
 s t d: : l i st <x0* > v 15;
 s t d: : l i st <x0* > v 16;
 s t d: : l i st <x0* > v 17;
 s t d: : l i st <x0* > v 18;
 s t d: : l i st <x0* > v 19;
 s t d: : l i st <x0* > v 20;
 s t d: : l i st <x0* > v 21;
 s t d: : l i st <x0* > v 22;
 s t d: : l i st <x0* > v 23;
 s t d: : l i st <x0* > v 24;
 s t d: : l i st <x0* > v 25;
 s t d: : l i st <x0* > v 26;

PDTR 18015 Technical Report on C++ Performance

Version for PDTR approval ballot Page 163 of 189

 s t d: : l i st <x0* > v 27;
 s t d: : l i st <x0* > v 28;
 s t d: : l i st <x0* > v 29;
 s t d: : l i st <x0* > v 30;
 s t d: : l i st <x0* > v 31;
 s t d: : l i st <x0* > v 32;
 s t d: : l i st <x0* > v 33;
 s t d: : l i st <x0* > v 34;
 s t d: : l i st <x0* > v 35;
 s t d: : l i st <x0* > v 36;
 s t d: : l i st <x0* > v 37;
 s t d: : l i st <x0* > v 38;
 s t d: : l i st <x0* > v 39;
 s t d: : l i st <x0* > v 40;
 s t d: : l i st <x0* > v 41;
 s t d: : l i st <x0* > v 42;
 s t d: : l i st <x0* > v 43;
 s t d: : l i st <x0* > v 44;
 s t d: : l i st <x0* > v 45;
 s t d: : l i st <x0* > v 46;
 s t d: : l i st <x0* > v 47;
 s t d: : l i st <x0* > v 48;
 s t d: : l i st <x0* > v 49;
 s t d: : l i st <x0* > v 50;
 s t d: : l i st <x0* > v 51;
 s t d: : l i st <x0* > v 52;
 s t d: : l i st <x0* > v 53;
 s t d: : l i st <x0* > v 54;
 s t d: : l i st <x0* > v 55;
 s t d: : l i st <x0* > v 56;
 s t d: : l i st <x0* > v 57;
 s t d: : l i st <x0* > v 58;
 s t d: : l i st <x0* > v 59;
 s t d: : l i st <x0* > v 60;
 s t d: : l i st <x0* > v 61;
 s t d: : l i st <x0* > v 62;
 s t d: : l i st <x0* > v 63;
 s t d: : l i st <x0* > v 64;
 s t d: : l i st <x0* > v 65;
 s t d: : l i st <x0* > v 66;
 s t d: : l i st <x0* > v 67;
 s t d: : l i st <x0* > v 68;
 s t d: : l i st <x0* > v 69;
 s t d: : l i st <x0* > v 70;
 s t d: : l i st <x0* > v 71;
 s t d: : l i st <x0* > v 72;
 s t d: : l i st <x0* > v 73;
 s t d: : l i st <x0* > v 74;
 s t d: : l i st <x0* > v 75;
 s t d: : l i st <x0* > v 76;
 s t d: : l i st <x0* > v 77;
 s t d: : l i st <x0* > v 78;
 s t d: : l i st <x0* > v 79;
 s t d: : l i st <x0* > v 80;
 s t d: : l i st <x0* > v 81;
 s t d: : l i st <x0* > v 82;
 s t d: : l i st <x0* > v 83;
 s t d: : l i st <x0* > v 84;
 s t d: : l i st <x0* > v 85;
 s t d: : l i st <x0* > v 86;
 s t d: : l i st <x0* > v 87;
 s t d: : l i st <x0* > v 88;
 s t d: : l i st <x0* > v 89;

Technical Report on C++ Performance PDTR 18015

Page 164 of 189 Version for PDTR approval ballot

 s t d: : l i st <x0* > v 90;
 s t d: : l i st <x0* > v 91;
 s t d: : l i st <x0* > v 92;
 s t d: : l i st <x0* > v 93;
 s t d: : l i st <x0* > v 94;
 s t d: : l i st <x0* > v 95;
 s t d: : l i st <x0* > v 96;
 s t d: : l i st <x0* > v 97;
 s t d: : l i st <x0* > v 98;
 s t d: : l i st <x0* > v 99;

#endi f
 r et ur n 0 ;
}

PDTR 18015 Technical Report on C++ Performance

Version for PDTR approval ballot Page 165 of 189

D.3 The Stepanov Abstraction Penalty Benchmark
This is the sample code discussed in 2.3.1.

/* KAI's version of Stepanov Benchmark -- Version 1.2

 Version 1.2 -- removed some special code for GNU systems that
 GNU complained about without -O

To verify how efficiently C++ (and in particular STL) is compiled by
the present day compilers, I composed a little benchmark. It outputs
13 numbers. In the ideal world these numbers should be the same. In
the real world, however, ...

The final number printed by the benchmark is a geometric mean of the
performance degradation factors of individual tests. It claims to
represent the factor by which you will be punished by your
compiler if you attempt to use C++ data abstraction features. I call
this number "Abstraction Penalty."

As with any benchmark it is hard to prove such a claim; some people
told me that it does not represent typical C++ usage. It is, however,
a noteworthy fact that majority of the people who so object are
responsible for C++ compilers with disproportionatly large Abstraction
Penalty.

The structure of the benchmark is really quite simple. It adds 2000
doubles in an array 25000 times. It does it in 13 different ways that
introduce more and more abstract ways of doing it:

0 - uses simple Fortran-like for loop.
1 - 12 use STL style accumulate template function with plus function object.
1, 3, 5, 7 ,9, 11 use doubles.
2, 4, 6, 8, 10, 12 use Double - double wrapped in a class.
1, 2 - use regular pointers.
3, 4 - use pointers wrapped in a class.
5, 6 - use pointers wrapped in a reverse-iterator adaptor.
7, 8 - use wrapped pointers wrapped in a reverse-iterator adaptor.
9, 10 - use pointers wrapped in a reverse-iterator adaptor wrapped in a
 reverse-iterator adaptor.
11, 12 - use wrapped pointers wrapped in a reverse-iterator adaptor wrapped in a
reverse-iterator adaptor.

All the operators on Double and different pointer-like classes are
declared inline. The only thing that is really measured is the penalty for data
abstraction. While templates are used, they do not cause any performance degradation.
They are used only to simplify the code.

Since many of you are interested in the C++ performance issues, I
decided to post the benchmark here. I would appreciate if you run it
and (if possible) send me the results indicating what you have
compiled it with (CPU, clock rate, compiler, optimization level). It
is self contained and written so that it could be compiled even with
those compilers that at present cannot compile STL at all.

It takes a fairly long time to run - on a really slow machine it might take a full
hour. (For those of you who want to run it faster - give it a command line argument
that specifies the number of
iterations. The default is 25000, but it gives an accurate predictions even with 500
or a thousand.)

Alex Stepanov

*/

#include <stddef.h>

Technical Report on C++ Performance PDTR 18015

Page 166 of 189 Version for PDTR approval ballot

#include <stdio.h>
#include <time.h>
#include <math.h>
#include <stdlib.h>

template <class T>
inline int operator!=(const T& x, const T& y) {
 return !(x == y);
}

struct Double {
 double value;
 Double() {}
 Double(const double& x) : value(x) {}
 operator double() { return value; }
};

inline Double operator+(const Double& x, const Double& y) {
 return Double(x.value + y.value);
}

struct double_pointer {
 double* current;
 double_pointer() {}
 double_pointer(double* x) : current(x) {}
 double& operator*() const { return *current; }
 double_pointer& operator++() {

++current;
return *this;

 }
 double_pointer operator++(int) {

double_pointer tmp = *this;
++*this;
return tmp;

 }
 double_pointer& operator--() {

--current;
return *this;

 }
 double_pointer operator--(int) {

double_pointer t mp = *this;
--*this;
return tmp;

 }
};

inline int operator==(const double_pointer& x,
 const double_pointer& y) {

 return x.current == y.current;
}

struct Double_pointer {
 Double* current;
 Double_pointer() {}
 Double_pointer(Double* x) : current(x) {}
 Double& operator*() const { return *current; }
 Double_pointer& operator++() {

++current;
return *this;

 }
 Double_pointer operator++(int) {

Double_pointer tmp = *this;
++*this;
return tmp;

 }
 Double_pointer& operator--() {

--current;
return *this;

 }
 Double_pointer operator--(int) {

PDTR 18015 Technical Report on C++ Performance

Version for PDTR approval ballot Page 167 of 189

Double_pointer tmp = *this;
--*this;
return tmp;

 }
};

inline int operator==(const Double_pointer& x,
 const Double_pointer& y) {

 return x.current == y.current;
}

template <class RandomAccessIterator, class T>
struct reverse_iterator {
 RandomAccessIterator current;
 reverse_iterator(RandomAccessIterator x) : current(x) {}
 T& operator*() const {
 RandomAccessIterator tmp = current;
 return *(--tmp);
 }
 reverse_iterator<RandomAccessIterator, T>& operator++() {

--current;
return *this;

 }
 reverse_iterator<RandomAccessIterator, T> operator++(int) {
 reverse_iterator<RandomAccessIterator, T> tmp = *this;

++*this;
return tmp;

 }
 reverse_iterator<RandomAccessIterator, T>& operator--() {

++current;
return *this;

 }
 reverse_iterator<RandomAccessIterator, T> operator--(int) {
 reverse_iterator<RandomAccessIterator, T> tmp = *this;

--*this;
return tmp;

 }
};

template <class RandomAccessIterator, class T>
inline
int operator==(const reverse_iterator<RandomAccessIterator, T>& x,

const reverse_iterator<RandomAccessIterator, T>& y) {
 return x.current == y.current;
}

struct {
 double operator()(const double& x, const double& y) {

return x + y;
 }
 Double operator()(const Double& x, const Double& y) {
 return x + y;
 }
} plus;

template <class Iterator, class Number>
Number accumulate(Iterator first, Iterator last, Number result) {
 while (first != last) result = plus(result, *first++);
 return result;
}

int iterations = 25000;
#define SIZE 2000

int current_test = 0;

double result_times[20];

void summarize() {

Technical Report on C++ Performance PDTR 18015

Page 168 of 189 Version for PDTR approval ballot

 printf("\ntest absolute additions ratio with\n");
 printf("number time per second test0\n\n");
 int i;
 double millions = (double(SIZE) * iterations)/1000000.;
 for (i = 0; i < current_test; ++i)
 printf("%2i %5.2fsec %5.2fM %.2f\n",

 i,
 result_times[i],
 millions/result_times[i],
 result_times[i]/result_times[0]);

 double gmean_times = 0.;
 double total_absolute_times = 0.; // sam added 12/05/95
 double gmean_rate = 0.;
 double gmean_ratio = 0.;
 for (i = 0; i < current_test; ++i) {
 total_absolute_times += result_times[i]; // sam added 12/05/95
 gmean_times += log(result_times[i]);
 gmean_rate += log(millions/result_times[i]);
 gmean_ratio += log(result_times[i]/result_times[0]);
 }
 printf("mean: %5.2fsec %5.2fM %.2f\n",

 exp(gmean_times/current_test),
 exp(gmean_rate/current_test),
 exp(gmean_ratio/current_test));

 printf("\nTotal absolute time: %.2f sec\n",total_absolute_times);//sam added 12/05/95
 printf("\nAbstraction Penalty: %.2f\n\n", exp(gmean_ratio/current_test));
}

clock_t start_time, end_time;

inline void start_timer() { start_time = clock(); }

inline double timer() {
 end_time = clock();
 return (end_time - start_time)/double(CLOCKS_PER_SEC);
}

const double init_value = 3.;

double data[SIZE];

Double Data[SIZE];

inline void check(double result) {
 if (result != SIZE * init_value) printf("test %i failed\n", current_test);
}

void test0(double* first, double* last) {
 start_timer();
 for(int i = 0; i < iterations; ++i) {
 double result = 0;
 for (int n = 0; n < last - first; ++n) result += first[n];
 check(result);
 }
 result_times[current_test++] = timer();
}

template <class Iterator, class T>
void test(Iterator first, Iterator last, T zero) {
 int i;
 start_timer();
 for(i = 0; i < iterations; ++i)
 check(double(accumulate(first, last, zero)));
 result_times[current_test++] = timer();
}

template <class Iterator, class T>
void fill(Iterator first, Iterator last, T value) {

PDTR 18015 Technical Report on C++ Performance

Version for PDTR approval ballot Page 169 of 189

 while (first != last) *first++ = value;
}

double d = 0.;
Double D = 0.;
typedef double* dp;
dp dpb = data;
dp dpe = data + SIZE;
typedef Double* Dp;
Dp Dpb = Data;
Dp Dpe = Data + SIZE;
typedef double_pointer dP;
dP dPb(dpb);
dP dPe(dpe);
typedef Double_pointer DP;
DP DPb(Dpb);
DP DPe(Dpe);
typedef reverse_iterator<dp, double> rdp;
rdp rdpb(dpe);
rdp rdpe(dpb);
typedef reverse_iterator<Dp, Double> rDp;
rDp rDpb(Dpe);
rDp rDpe(Dpb);
typedef reverse_iterator<dP, double> rdP;
rdP rdPb(dPe);
rdP rdPe(dPb);
typedef reverse_iterator<DP, Double> rDP;
rDP rDPb(DPe);
rDP rDPe(DPb);
typedef reverse_iterator<rdp, double> rrdp;
rrdp rrdpb(rdpe);
rrdp rrdpe(rdpb);
typedef reverse_iterator<rDp, Double> rrDp;
rrDp rrDpb(rDpe);
rrDp rrDpe(rDpb);
typedef reverse_iterator<rdP, double> rrdP;
rrdP rrdPb(rdPe);
rrdP rrdPe(rdPb);
typedef reverse_iterator<rDP, Double> rrDP;
rrDP rrDPb(rDPe);
rrDP rrDPe(rDPb);

int main(int argv, char** argc) {
 if (argv > 1) iterations = atoi(argc[1]);
 fill(dpb, dpe, double(init_value));
 fill(Dpb, Dpe, Double(init_value));
 test0(dpb, dpe);
 test(dpb, dpe, d);
 test(Dpb, Dpe, D);
 test(dPb, dPe, d);
 test(DPb, DPe, D);
 test(rdpb, rdpe, d);
 test(rDpb, rDpe, D);
 test(rdPb, rdPe, d);
 test(rDPb, rDPe, D);
 test(rrdpb, rrdpe, d);
 test(rrDpb, rrDpe, D);
 test(rrdPb, rrdPe, d);
 test(rrDPb, rrDPe, D);
 summarize();
 return 0;
}

Technical Report on C++ Performance PDTR 18015

Page 170 of 189 Version for PDTR approval ballot

D.4 Comparing Function Objects to Function Pointers
2.6 mentions that optimizers work better with function objects than function pointers.
This program attempts to measure any benefit.

//===
// This is a program to measure the relative efficiency of qsort vs std::sort
// and of function objects vs function pointers.
//
// Optional Arguments: number of iterations to repeat
// size of array of doubles to sort
// name of output file
//
// In all cases, an array of doubles is filled with random numbers.
// This array is sorted in ascending order, then the same random numbers are
// reloaded into the array and sorted again. Repeat ad libitum.
//
//
// What is measured:
// These measurements operate on an array of doubles
// 1. Using qsort + user-defined comparison function to sort array
// 2. Using std::sort + a function pointer (not a function object)
// 3. Using std::sort + user-defined function object, out-of-line code
// 4. Using std::sort + user-defined function object, inline code
// 5. Using std::sort + std::less
// 6. Using std::sort + native operator <
//
// These measurements operate on an std::vector of doubles
// instead of a primitive array
//
// 7. Using std::sort + std::less
// 8. Using std::sort + native operator <
// 9. Using std::sort + function pointer from test 2
//
//
// Since qsort's comparison function must return int (less than 0, 0, greater than 0)
// and std::sort's must return a bool, it is not possible to test them with each
// other's comparator.

//===
// struct to hold identifier and elapsed time
struct T {
 const char* s;
 double t;

 T(const char* ss, double tt) : s(ss), t(tt) {}
 T() : s(0), t(0) {}
};

// --------- helper functions --
// qsort passes void * arguments to its comparison function,
// which must return negative, 0, or positive value

int
less_than_function1(const void * lhs, const void * rhs)
{
 int retcode = 0;
 if(*(const double *) lhs < *(const double *) rhs) retcode = -1;
 if(*(const double *) lhs > *(const double *) rhs) retcode = 1;
 return retcode;
}

// std::sort, on the other hand, needs a comparator that returns true or false
bool
less_than_function2(const double lhs, const double rhs)
{
 if(lhs < rhs) return true;
 else return false;

PDTR 18015 Technical Report on C++ Performance

Version for PDTR approval ballot Page 171 of 189

}

// the comparison operator in the following functor is defined out of line
struct less_than_functor
{
 bool operator()(const double& lhs, const double& rhs) const;
};

bool
less_than_functor::operator()(const double& lhs, const double& rhs) const
{
 return(lhs < rhs? true : false);
}

// the comparison operator in the following functor is defined inline
struct inline_less_than_functor
{
 bool operator()(const double& lhs, const double& rhs) const
 {
 return(lhs < rhs? true : false);
 }
};

// --
#include <vector>
#include <functional>
#include <algorithm>
#include <iostream>
#include <fstream>
#include <ctime>
#include <stdlib.h>

using namespace std;

int main(int argc, char* argv[])
{

 int i;

 int iterations = (1 < argc) ? atoi(argv[1]) : 1000000; // number of
 // iterations
 int tablesize = (2 < argc) ? atoi(argv[2]) : 1000000; // size of
 // array

 ofstream target;
 ostream* op = &cout;
 if (3 < argc) { // place output in file
 target.open(argv[3]);
 op = ⌖
 }
 ostream& out = *op;

 // output command for documentation:
 for (i = 0; i < argc; ++i)
 out << argv[i] << " ";
 out << endl;

 vector<T> v; // holds elapsed time of the tests

 // seed the random number generator
 srand(clock());
 clock_t t = clock();
 if (t == clock_t(-1))
 {
 cerr << "sorry, no clock" << endl;
 exit(1);
 }

Technical Report on C++ Performance PDTR 18015

Page 172 of 189 Version for PDTR approval ballot

 // initialize the table to sort. we use the same table for all tests,
 // in case one randomly-generated table might require more work than
 // another to sort
 double * master_table = new double[tablesize];
 for(int n = 0; n < tablesize; ++n)
 {
 master_table[n] = static_cast<double>(rand());
 }

 double * table = new double[tablesize]; // working copy

 // here is where the timing starts
 // TEST 1: qsort with a C-style comparison function
 copy(master_table, master_table+tablesize, table);
 t = clock();
 for (i = 0; i < iterations; ++i)
 {
 qsort(table, tablesize, sizeof(double), less_than_function1);
 copy(master_table, master_table+tablesize, table);
 }
 v.push_back(T("qsort array with comparison function1 ", clock() - t));

 //TEST 2: std::sort with function pointer
 copy(master_table, master_table+tablesize, table);
 t = clock();
 for (i = 0; i < iterations; ++i)
 {
 sort(table, table + tablesize, less_than_function2);
 copy(master_table, master_table+tablesize, table);
 }
 v.push_back(T("sort array with function pointer ", clock() - t));

 // TEST 3: std::sort with out-of-line functor
 copy(master_table, master_table+tablesize, table);
 t = clock();
 for (i = 0; i < iterations; ++i)
 {
 sort(table, table + tablesize, less_than_functor());
 copy(master_table, master_table+tablesize, table);
 }
 v.push_back(T("sort array with user-supplied functor ", clock() - t));

 // TEST 4: std::sort with inline functor
 copy(master_table, master_table+tablesize, table);
 t = clock();
 for (i = 0; i < iterations; ++i)
 {
 sort(table, table + tablesize, inline_less_than_functor());
 copy(master_table, master_table+tablesize, table);
 }
 v.push_back(T("sort array with user-supplied inline functor ", clock() - t));

 //TEST 5: std::sort with std::<less> functor
 copy(master_table, master_table+tablesize, table);
 t = clock();
 for (i = 0; i < iterations; ++i)
 {
 sort(table, table + tablesize, less<double>());
 copy(master_table, master_table+tablesize, table);
 }
 v.push_back(T("sort array with standard functor ", clock() - t));

 //TEST 6: std::sort using native operator <
 copy(master_table, master_table+tablesize, table);
 t = clock();
 for (i = 0; i < iterations; ++i)
 {
 sort(table, table + tablesize);
 copy(master_table, master_table+tablesize, table);
 }

PDTR 18015 Technical Report on C++ Performance

Version for PDTR approval ballot Page 173 of 189

 v.push_back(T("sort array with native < operator ", clock() - t));

 //TEST 7: std::sort with std::less functor,
 // on a vector rather than primitive array
 vector<double> v_table(master_table, master_table+tablesize);
 t = clock();
 for (i = 0; i < iterations; ++i)
 {
 sort(v_table.begin(), v_table.end(), less<double>());
 copy(master_table, master_table+tablesize, v_table.begin());
 }
 v.push_back(T("sort vector with standard functor ", clock() - t));

 //TEST 8: std::sort vector using native operator <
 v_table.assign(master_table, master_table+tablesize);
 t = clock();
 for (i = 0; i < iterations; ++i)
 {
 sort(v_table.begin(), v_table.end());
 copy(master_table, master_table+tablesize, v_table.begin());
 }
 v.push_back(T("sort vector with native < operator ", clock() - t));

 //TEST 9: std::sort vector using function pointer from test 2
 v_table.assign(master_table, master_table+tablesize);
 t = clock();
 for (i = 0; i < iterations; ++i)
 {
 sort(v_table.begin(), v_table.end(), less_than_function2);
 copy(master_table, master_table+tablesize, v_table.begin());
 }
 v.push_back(T("sort vector with function pointer ", clock() - t));

 if (clock() == clock_t(-1))
 {
 cerr << "sorry, clock overflow" <<endl;
 exit(2);
 }

 // output results
 out << endl;
 for (i = 0; i < v.size(); i++)
 out << v[i].s << " :\t"
 << v[i].t /CLOCKS_PER_SEC
 << " seconds" << endl;
 delete[] table;
 return 0;
}

Technical Report on C++ Performance PDTR 18015

Page 174 of 189 Version for PDTR approval ballot

D.5 Measuring the Cost of Synchronized I/O
§2.6 discusses using sync_with_stdio(false) to improve I/O performance. This
program attempts to measure any benefit.

/* --

 Test program to
 (1) compare the performance of classic iostreams,
 standard iostreams, and C-style stdio for output, and
 (2) test any overhead of sync_with_stdio(true). Standard
 iostreams by default are synchronized with stdio streams;
 the opposite was true of classic iostreams.

 optional command line argument:
 - how many numbers to output (default 1,000,000)
 - name of output file (default cout)

 When compiling, define CLASSIC or STDIO to enable
 those options; otherwise the default is to use
 standard iostreams.
 --*/
#if defined (STDIO)
 #include <stdio.h>

#elif defined (CLASSIC)
 #include <iostream.h>
 #include <fstream.h>

#else
 #include <iostream> // use standard iostreams
 #include <fstream>
 using namespace std;
#endif

#include <vector>
#include <ctime>

//===
// struct to hold identifier and elapsed time
struct T {
 const char* s;
 double t;

 T(const char* ss, double tt) : s(ss), t(tt) {}
 T() : s(0), t(0) {}
};

int main (int argc, char *argv[])
{
 const int n = (1 < argc) ? atoi(argv[1]) : 1000000; // number of
 // iterations

#if defined(STDIO)
 FILE * target;
 target = stdout;
 if (2 < argc) { // place output in file
 target = fopen(argv[2], "w");
 }
#else // for both iostreams libs
 ofstream target;
 ostream* op = &cout;
 if (2 < argc) { // place output in file
 target.open(argv[2]);
 op = ⌖

PDTR 18015 Technical Report on C++ Performance

Version for PDTR approval ballot Page 175 of 189

 }
 ostream& out = *op;
#endif

 int i; // for-loop variable

 // output command for documentation:
#if defined(STDIO)
 for (i = 0; i < argc; ++i)
 fprintf(target, "%s ", argv[i]) ;
 fprintf(target, "\n");
#else
 for (i = 0; i < argc; ++i)
 out << argv[i] << " ";
 out << "\n";
#endif

 std::vector<T> v; // holds elapsed time of the tests

#if !defined(STDIO)
 #if defined (CLASSIC)
 // non-synchronized I/O is the default
 #else
 out.sync_with_stdio (false); // must be called before any output
 #endif
#endif

 // seed the random number generator
 srand(clock());
 clock_t t = clock();
 if (t == clock_t(-1))
 {
#if defined(STDIO)
 fprintf(stderr, "sorry, no clock\n");
#else
 cerr << "sorry, no clock\n";
#endif
 exit(1);
 }

#if defined(STDIO)
 t = clock();
 for (i = 0; i != n; ++i)
 {
 fprintf (target, "%d ", i);
 }
 v.push_back(T("output integers to stdio ", clock() -
t));

 t = clock();
 for (i = 0; i != n; ++i)
 {
 fprintf (target, "%x ", i);
 }
 v.push_back(T("output hex integers to stdio ", clock() -
t));

 if (clock() == clock_t(-1))
 {
 fprintf (stderr, "sorry, clock overflow\n");
 exit(2);
 }

 // output results
 fprintf (stderr, "\n");
 for (i = 0; i<v.size(); i++)
 fprintf(stderr, "%s :\t%f seconds\n", v[i].s, v[i].t /CLOCKS_PER_SEC
);

#else

Technical Report on C++ Performance PDTR 18015

Page 176 of 189 Version for PDTR approval ballot

 t = clock();
 for (i = 0; i != n; ++i)
 {
 out << i << ' ';
 }
 v.push_back(T("output integers (sync = false) ", clock() - t));

 out << hex;
 t = clock();
 for (i = 0; i != n; ++i)
 {
 out << i << ' ';
 }
 v.push_back(T("output hex integers (sync = false) ", clock() - t));

 #if defined (CLASSIC)
 out.sync_with_stdio(); // synchronize -- no argument needed
 #else
 out.sync_with_stdio (true);
 #endif

 out << dec;
 t = clock();
 for (i = 0; i != n; ++i)
 {
 out << i << ' ';
 }
 v.push_back(T("output integers (sync = true) ", clock() - t));

 out << hex;
 t = clock();
 for (i = 0; i != n; ++i)
 {
 out << i << ' ';
 }
 v.push_back(T("output hex integers (sync = true) ", clock() - t));

 if (clock() == clock_t(-1))
 {
 cerr << "sorry, clock overflow\n";
 exit(2);
 }

 // output results
 cerr << endl;
 for (i = 0; i < v.size(); i++)
 cerr << v[i].s << " :\t"
 << v[i].t /CLOCKS_PER_SEC
 << " seconds" << endl;
#endif

 return 0;

}

PDTR 18015 Technical Report on C++ Performance

Version for PDTR approval ballot Page 177 of 189

Appendix E: Bibliography
These references may serve as a starting point for finding more information about
programming for performance.

[BIBREF-1] Bentley, Jon Louis

Writing Efficient Programs
Prentice-Hall, Inc., 1982

Unfortunately out of print, but a classic catalogue of techniques that can be
used to optimize the space and time consumed by an application (often by
trading one resource to minimize use of the other). Because this book predates
the public release of C++, code examples are given in Pascal.

“T he rules that we will study increase efficiency by making changes to a
program that often decrease program clarity, modularity, and robustness.
When this coding style is applied indiscriminately throughout a large system
(as it often has been), it usually increases efficiency slightly but leads to late
software that is full of bugs and impossible to maintain. For these reasons,
techniques at this level have earned the name of 'hacks'.... But writing
efficient code need not remain the domain of hackers. The purpose of this
book is to present work at this level as a set of engineering techniques.”

[BIBREF-2] Bulka, Dov, and David Mayhew

Efficient C++: Per formance Programming Techniques
Addison-Wesley, 2000

Contains many specific low-level techniques for improving time performance,
with measurements to illustrate their effectiveness.

"If used properly, C++ can yield software systems exhibiting not just
acceptable performance, but superior software performance.”

[BIBREF-3] C++ ABI Group

C++ ABI for I tanium (Draft)
http://www.codesourcery.com/cxx-abi/abi.html

Although this document contains processor-specific material for the Itanium
64-bit Application Binary Interface, it is intended as a generic specification, to
be usable by C++ implementations on a variety of architectures. It discusses
implementation details of virtual table layout, exception handling support

Technical Report on C++ Performance PDTR 18015

Page 178 of 189 Version for PDTR approval ballot

structures, Run-Time Type Information, name mangling, stack unwinding, and
template instantiation.

[BIBREF-4] Cusumano, Michael A., and David B. Yoff ie

What Netscape Learned from Cross-Platform Software Development
Communications of the ACM, October 1999.

Faster run-time performance brings commercial advantage, sometimes enough
to outweigh other considerations such as portability and maintainabil ity (an
argument also advanced in the Bulka-Mayhew book [BIBREF-2]).

[BIBREF-5] de Dinechin, Christophe

C++ Exception Handling

IEEE Concurrency, October-December 2000

http://www.computer.org/concurrency/pd2000/p4072abs.htm

Reporting error conditions using exception handling can produce more robust
programs, but EH imposes conditions on the generated object code which can
negatively affect performance. The author analyzes the impact of stack-based
or table-based EH techniques and describes a third approach which leaves
scope for compiler optimizations even in the presence of exceptions.

[BIBREF-6] Embedded C++ Technical Committee

Embedded C++ Language Specification, Rationale, & Programming Guidelines
http://www.caravan.net/ec2plus

EC++ is a subset of Standard C++ that excludes some significant features of
the C++ programming language, including:

• exception handling (EH)
• run-time type information (RTTI)
• templates
• multiple inheritance (MI)
• namespaces

[BIBREF-7] Glass, Robert L

Software Runaways: Lessons Learned from Massive Software Project Failures
Prentice Hall PTR, 1998.

Written from a management perspective rather than a technical one, this book
makes the point that a major reason why some software projects have been

PDTR 18015 Technical Report on C++ Performance

Version for PDTR approval ballot Page 179 of 189

classified as massive failures is for fail ing to meet their requirements for
performance.

“ Of all the technology problems noted earlier, the most dominant one in our
own findings in this book is that performance is a frequent cause of failure. A
fairly large number of our runaway projects were real-time in nature, and it
was not uncommon to find that the project could not achieve the response
times and/or functional performance times demanded by the original
requirements.”

[BIBREF-8] Gorlen, Keith E., Sanford M. Orlow, and Perry S. Plexico

Data Abstraction and Object Oriented Programming in C++
NIH 1990

Based on the Smalltalk model of object orientation, the “NIH Class Library” ,
also known as the “OOPS Library” , was one of the earliest Object Oriented
libraries for C++. As there were no “standard” classes in the early days of
C++, and because the NIHCL was freely usable because it had been funded by
the US Government, it had a strong influence on design styles in C++ in
subsequent years.

[BIBREF-9] Henrikson, Mats, and Erik Nyquist.

Industrial Strength C++: Rules and Recommendations
Prentice Hall PTR, 1997.

Coding standards for C++, with some discussion on performance aspects that
influenced them.

[BIBREF-10] Hewlett-Packard Corp.

CXperf User's Guide
http://docs.hp.com/hpux/onlinedocs/B6323-96001/B6323-96001.html

Vendors of development tools often provide guidance on programming for
maximum performance. This is one of such documents available.

"This guide describes the CXperf Performance Analyzer, an interactive run-
time performance analysis tool for programs compiled with HP ANSI C (c89),
ANSI C++ (aCC), Fortran 90 (f90), and HP Parallel 32-bit Fortran 77 (f77)
compilers. This guide helps you prepare your programs for profili ng, run the
programs, and analyze the resulting performance data."

Technical Report on C++ Performance PDTR 18015

Page 180 of 189 Version for PDTR approval ballot

[BIBREF-11] Knuth, Donald E.

The Art of Computer Programming, Volume 1, Reissued 3rd Edition
Addison-Wesley

Fundamental Algorithms [1997]
Semi-numerical Algorithms [1998]
Sorting and Searching [1998]

The definitive work on issues of algorithmic efficiency.

[BIBREF-12] Koenig, A., and B. Stroustrup

Exception Handling for C++ (revised)
Proceedings of the 1990 Usenix C++ Conference, pp149-176, San Francisco, April
1990.

This paper discusses the two approaches to low-overhead exception handling.

[BIBREF-13] Koenig, Andrew, and Barbara E. Moo

Performance: Myths, Measurements, and Morals
The Journal of Object-Oriented Programming

Part 1: Myths [Oct ‘99]
Part 2: Even Easy Measurements Are Hard [Nov/Dec ‘99]
Part 3: Quadratic Behavior Will Get You If You Don't Watch Out [Jan ‘00]
Part 4: How Might We Speed Up a Simple Program [Feb ‘00]
Part 5: How Not to Measure Execution Time [Mar/Apr ‘00]
Part 6: Useful Measurements–Finally [May ‘00]
Part 7: Detailed Measurements of a Small Program [Jun ‘00]
Part 8: Experiments in Optimization [Jul/Aug ‘00]
Part 9: Optimizations and Anomalies [Sep ‘00]
Part 10: Morals [Oct ‘00]

Because of the interaction of many factors, measuring the run-time
performance of a program can be surprisingly diff icult.

“T he most important way to obtain good performance is to use good
algorithms.”

PDTR 18015 Technical Report on C++ Performance

Version for PDTR approval ballot Page 181 of 189

[BIBREF-14] Lajoie, Joseé

" Exception Handling: Behind the Scenes."
(Included in C++ Gems, edited by Stanley B. Lippman)
SIGS Reference Library, 1996

A brief overview of the C++ language features which support exception
handling, and of the underlying mechanisms necessary to support these
features.

[BIBREF-15] Lakos, John

Large-Scale C++ Software Design
Addison-Wesley, 1996

Scalabil ity is the main focus of this book, but scaling up to large systems
inevitably requires performance issues to be addressed. This book predates
the extensive use of templates in the Standard Library.

[BIBREF-16] Levine, John R.

Linkers & Loaders
Morgan Kaufmann Publishers, 2000

This book explains the mechanisms which enable static and dynamic linking
to create executable programs from multiple translation units.

[BIBREF-17] Lippman, Stanley B.

Inside the C++ Object Model

Explains typical implementations and overheads of various C++ language
features, such as multiple inheritance and virtual functions. A good in-depth
look at the internals of typical implementations.

[BIBREF-18] Liu, Yanhong A., and Gustavo Gomez

Automatic Accurate Cost-Bound Analysis for High-Level Languages
IEEE Transactions on Computers, Vol. 50, No. 12, December 2001

This paper describes a language-independent approach to assigning cost
parameters to various language constructs, then through static analysis and
transformations automatically calculating the cost bounds of whole programs.
Example programs in this article are written in a subset of Scheme, not C++.
The article discusses how to obtain cost bounds in terms of costs of language
primitives, though it does not really discuss how to obtain such costs.

Technical Report on C++ Performance PDTR 18015

Page 182 of 189 Version for PDTR approval ballot

However, it includes a list of references to other resources discussing how to
perform respective measurements for different hardware architectures and
programming languages.

“ It is particularly important for many applications, such as real-time systems
and embedded systems, to be able to predict accurate time bounds and space
bounds automatically and efficiently and it is particularly desirable to be able
to do so for high-level languages.”

[BIBREF-19] Meyers, Scott

Effective C++: 50 Specific Ways to Improve Your Programs and Design
Second Edition, Addison-Wesley, 1997.

More Effective C++: 35 New Ways to Improve Your Programs and Designs
Addison-Wesley, 1995.

Effective STL : 50 Specific Ways to Improve Your Use of the Standard Template
Library
Addison-Wesley, 2001.

In keeping with the philosophy of the Standard Library, this book carefully
documents the performance implications of different choices in design and
coding, such as whether to use std::map::operator[] or
std::map::insert .

“T he fact that function pointer parameters inhibit inlining explains an
observation that long-time C programmers often find hard to believe: C++ 's
sort virtually always embarrasses C's qsort when it comes to speed. Sure,
C++ has function and class templates to instantiate and funny-looking
operator() functions to invoke while C makes a simple function call, but all
that C++ 'overhead' is absorbed during compilation... It's easy to verify that
when comparing function objects and real functions as algorithm parameters,
there's an abstraction bonus.”

[BIBREF-20] Mitchell , Mark

Type-Based Alias Analysis
Dr. Dobbs’ Journal, October 2000.

Some techniques for writing source code that is easier for a compiler to
optimize.

“ Although C++ is often criti cized as being too slow for high-performance
applications, ... C++ can actually enable compilers to create code that is even
faster than the C equivalent.”

PDTR 18015 Technical Report on C++ Performance

Version for PDTR approval ballot Page 183 of 189

[BIBREF-21] Moss, Darren G.

Embedded Systems Conference Proceedings

Efficient C/C++ Coding Techniques
Boston, 2001
http://www.esconline.com/db_area/01boston/304.pdf

The objective of this entire treatment is to determine if the speed and size
disadvantages of C/C++ can be minimized for a range of
compiler/microprocessor platforms. This study resoundly [sic] says: yes. The
assembly output of common C/C++ constructs demonstrate that the correct
selection of coding techniques does guide the compiler to produce efficient
code.

[BIBREF-22] Musser, David R., Gil lmer J. Derge, and Atul Saini

STL T utorial and Reference Guide, Second Edition: C++ Programming with the
Standard Template L ibrary
Addison-Wesley, 2001.

Among the tutorial material and example code is a chapter describing a class
framework for timing generic algorithms.

[BIBREF-23] Noble, James, and Charles Weir

Small Memory Software: Patterns for Systems with L imited Memory
Addison-Wesley, 2001

A book of design patterns illustrating a number of strategies for coping with
memory constraints.

“ But what is small memory software? Memory size, li ke riches or beauty, is
always relative. Whether a particular amount of memory is small or large
depends on the requirements the software should meet, on the underlying
software and hardware architecture, and on much else. A weather-calculation
program on a vast computer may be just as constrained by memory limits as a
word-processor running on a mobile phone, or an embedded application on a
smart card. Therefore:

Small memory software is any software that doesn’ t have as much memory as
you’d like!”

Technical Report on C++ Performance PDTR 18015

Page 184 of 189 Version for PDTR approval ballot

[BIBREF-24] Prechelt, Lutz

Technical Opinion: Comparing Java vs. C/C++ Eff iciency Differences to
Interpersonal Differences
Communications of the ACM, October 1999.

This article compares the memory footprint and run-time performance of 40
implementations of the same program, written in C++, C, and Java. The
difference between individual programmers was more significant than the
difference between languages.

“T he importance of an efficient technical infrastructure (such as
language/compiler, operating system, or even hardware) is often vastly
overestimated compared to the importance of a good program design and an
economical programming style.”

[BIBREF-25] Quiroz, César A.

Embedded Systems Conference Proceedings

Using C++ Efficiently In Embedded Applications
San Jose, CA, Nov. 1998
http://esconline.com/db_area/98fall/pdf/401.pdf

[BIBREF-26] Saks, Dan

C++ Theory and Practice
C/C++ Users Journal

Standard C++ as a High-Level Language? [Nov ‘99]
Replacing Character Arrays with Strings, Part 1 [Jan ‘00]
Replacing Character Arrays with Strings, Part 2 [Feb ‘0]

These articles are part of a series on migrating a C program to use the greater
abstraction and encapsulation available in C++. The run-time and executable
size are measured as more C++ features are added, such as standard strings,
IOStreams, and containers.

“ A seemingly small change in a string algorithm [such as reserving space for
string data, or erasing the data as an additional preliminary step,] might
produce a surprisingly large change in program execution time.”

The conclusion is that you should “program at the highest level of abstraction
that you can afford” .

PDTR 18015 Technical Report on C++ Performance

Version for PDTR approval ballot Page 185 of 189

[BIBREF-27] Saks, Dan

Embedded Systems Conference Proceedings

Reducing Run-Time Overhead in C++ Programs
San Francisco, March 2002
http://www.esconline.com/db_area/02sf/405.pdf

Representing and Manipulating Hardware in Standard C and C++
San Francisco, March 2002
http://www.esconline.com/db_area/02sf/465.pdf

Programming Pointers
Embedded Systems Programming

Placing Data into ROM [May 1998]
Placing Data into ROM with Standard C [Nov. 1998]
Static vs. Dynamic Initialization [Dec. 1998]
Ensuring Static Initialization in C++ [March 1999]

[BIBREF-28] Schill ing, Jonathan

Optimizing Away C++ Exception Handling
ACM SIGPLAN Notices, August 1998

This article discusses ways to measure the overhead, if any, of the exception
handling mechanisms. A common implementation of EH incurs no run-time
penalty unless an exception is actually thrown, but at a cost of greater static
data space and some interference with compiler optimizations. By identifying
sections of code in which exceptions cannot possibly be thrown, these costs
can be reduced.

“T his optimization produces modest but useful gains on some existing C++
code, but produces very significant size and speed gains on code that uses
empty exception specifications, avoiding otherwise serious performance
losses.”

Technical Report on C++ Performance PDTR 18015

Page 186 of 189 Version for PDTR approval ballot

[BIBREF-29] Stepanov, Alex

The Standard Template L ibrary

Byte Magazine, October 1995, also at

http://www.byte.com/art/9510/sec12/art3.htm

The originator of the Standard Template Library discusses the emphasis on
eff iciency which motivated its design.

[H]ow do you know that a generic algorithm is efficient? An algorithm is
called relatively efficient if it's as efficient as a nongeneric version written
in the same language, and it's called absolutely efficient if it's as efficient as a
nongeneric assembly language version.

For many years, I tried to achieve relative efficiency in more advanced
languages (e.g., Ada and Scheme) but failed. My generic versions of even
simple algorithms were not able to compete with built -in primitives. But in
C++ I was finally able to not only accomplish relative efficiency but come
very close to the more ambitious goal of absolute efficiency. To verify this, I
spent countless hours looking at the assembly code generated by different
compilers on different architectures.

I found that efficiency and generality were not mutually exclusive. In fact,
quite the reverse is true. If a component is not efficient enough, it usually
means that it's not abstract enough. This is because efficiency and
abstractness both require a clean, orthogonal design.

[BIBREF-30] Stroustrup, Bjarne

The C++ Programming Language, Special 3rd Edition
Addison-Wesley, 2000

This definitive work from the language’s author has been extensively revised
to present Standard C++.

[BIBREF-31] Stroustrup, Bjarne

The Design and Evolution of C++
Addison-Wesley, 1994

The creator of C++ discusses the design objectives that shaped the
development of the language, especially the need for efficiency.

“T he immediate cause for the inclusion of inline functions ... was a project
that couldn't afford function call overhead for some classes involved in
real-time processing. For classes to be useful in that application, crossing the
protection barr ier had to be free. [...]

PDTR 18015 Technical Report on C++ Performance

Version for PDTR approval ballot Page 187 of 189

Over the years, considerations along these lines grew into the C++ rule that it
was not sufficient to provide a feature, it had to be provided in an affordable
form. Most definitely, affordable was seen as meaning 'affordable on
hardware common among developers' as opposed to 'affordable to
researchers with high-end equipment' or 'affordable in a couple of years when
hardware will be cheaper'.”

[BIBREF-32] Stroustrup, Bjarne

Learning Standard C++ as a New Language
C/C++ Users Journal, May 1999

http://www.research.att.com/~bs/papers.html
http://www.research.att.com/~bs/cuj_code.html

This paper compares a few examples of simple C++ programs written in a
modern style using the standard library to traditional C-style solutions. It
argues briefly that lessons from these simple examples are relevant to large
programs. More generally, it argues for a use of C++ as a higher-level
language that relies on abstraction to provide elegance without loss of
eff iciency compared to lower-level styles.

“ I was appalled to find examples where my test programs ran twice as fast in
the C++ style compared to the C style on one system and only half as fast on
another. ... Better-optimized libraries may be the easiest way to improve both
the perceived and actual performance of Standard C++ . Compiler
implementers work hard to eliminate minor performance penalties compared
with other compilers. I conjecture that the scope for improvements is larger in
the standard library implementations.”

[BIBREF-33] Sutter, Herb

Exceptional C++
Addison-Wesley, 2000.

This book includes a long discussion on minimizing compile-time
dependencies using compiler firewalls (the PIMPL idiom), and how to
compensate for the space and run-time consequences.

[BIBREF-34] Tribolet, Chuck, and John Palmer

Embedded Systems Conference Proceedings
available on CD from http://www.esconline.com

Technical Report on C++ Performance PDTR 18015

Page 188 of 189 Version for PDTR approval ballot

Embedded C and C++ Compiler Evaluation Methodology
Fall 1999
http://www.esconline.com/db_area/99fall/443.pdf

“ Be aggressive about trying compiler options. The compilers each have many
options, and it is important to arr ive at the best set of the options for each
compiler.... A thorough tweaking of compiler options will frequently generate
an improvement on the order of 30% over an initial decent set of options. If
the initial set is truly abysmal, the improvement could be in excess of 100%.”

[BIBREF-35] Veldhuizen, Todd

Five compilation models for C++ templates
Proceedings of the 2000 Workshop on C++ Template Programming

http://www.oonumerics.org/tmpw00

This paper describes a work in progress on a new C++ compiler. Type
analysis is removed from the compiler and replaced with a type system library,
which is treated as source code by the compiler.

“ By making simple changes to the behavior of the partial evaluator, a wide
range of compilation models is achieved, each with a distinct trade-off of
compile-time, code size, and execution speed.... This approach may solve
several serious problems in compili ng C++ : it achieves separate compilation
of templates, allows template code to be distributed in binary form by
deferr ing template instantiation until run-time, and reduces the code bloat
associated with templates.”

[BIBREF-36] Vollmann, Detlef

Exception Handling Alternatives
Published by ACCU – Overload, Issues 30 and 31 (February 1999)

http://www.accu.org/c++sig/public/Overload.html
http://www.vollmann.ch/en/pubs/cpp-excpt-alt.html

This article shows some pros and cons of the C++ exception handling
mechanism and outlines several possible alternative approaches.

PDTR 18015 Technical Report on C++ Performance

Version for PDTR approval ballot Page 189 of 189

[BIBREF-37] Will iams, Stephen

Embedded Programming with C++
Originally published in the Proceedings of the Third USENIX Conference on Object-
Oriented Technologies and Systems, 1997

http://www.usenix.org/publications/library/proceedings\
/coots97/williams.html

Describes experience in programming board-level components in C++,
including a library of minimal run-time support functions portable to any
board.

“ We to this day face people telli ng us that C++ generates inefficient code that
cannot possibly be practical for embedded systems where speed matters. The
criticism that C++ leads to bad executable code is ridiculous, but at the same
time accurate. Poor style or habits can in fact lead to awful results. On the
other hand, a skill ed C++ programmer can write programs that match or
exceed the quality of equivalent C programs written by equally skill ed C
programmers.

The development cycle of embedded software does not easily lend itself to the
trial-and-error style of programming and debugging, so a stubborn C++
compiler that catches as many errors as possible at compile-time significantly
reduces the dependence on run-time debugging, executable run-time support
and compile/download/test cycles.

This saves untold hours at the test bench, not to mention strain on PROM
sockets.”

	Contents
	1 INTRODUCTION
	1.1 Glossary
	1.2 Typical Application Areas
	1.2.1 Embedded Systems
	1.2.2 Servers

	2 LANGUAGE FEATURES: OVERHEADS AND STRATEGIES
	2.1 Namespaces
	2.2 Type Conversion Operators
	2.3 Classes and Inheritance
	2.3.1 Representation Overheads
	2.3.2 Basic Class Operations
	2.3.3 Virtual Functions
	2.3.3.1 Virtual functions of class templates

	2.3.4 Inlining
	2.3.5 Multiple Inheritance
	2.3.6 Virtual Base Classes
	2.3.7 Type Information
	2.3.8 Dynamic Cast

	2.4 Exception Handling
	2.4.1 Exception Handling Implementation Issues and Techniques
	2.4.1.1 The "Code" Approach
	2.4.1.1.1 Space Overhead of the "Code" Approach
	2.4.1.1.2 Time Overhead of the "Code" Approach

	2.4.1.2 The "Table" Approach
	2.4.1.2.1 Space Overhead of the "Table" Approach
	2.4.1.2.2 Time Overhead of the "Table" Approach

	2.4.2 Predictability of Exception Handling Overhead
	2.4.2.1 Prediction of throw/catch Performance
	2.4.2.2 Exception Specifications

	2.5 Templates
	2.5.1 Template Overheads
	2.5.2 Templates vs. Inheritance

	2.6 Programmer Directed Optimizations
	2.6.1 General Considerations
	2.6.2 Object Construction
	2.6.3 Temporary Objects
	2.6.4 Function Inlining
	2.6.5 Object-Oriented Programming
	2.6.6 Templates
	2.6.7 Standard Library
	2.6.8 Additional Suggestions
	2.6.9 Compilation Suggestions

	3 CREATING EFFICIENT LIBRARIES
	3.1 The Standard IOStreams Library - Overview
	3.1.1 Executable Size
	3.1.2 Execution Speed
	3.1.3 Object Size
	3.1.4 Compilation Time

	3.2 Optimizing Libraries - Reference Example: "An Efficient Implementation of Locales and IOStreams"
	3.2.1 Implementation Basics for Locales
	3.2.2 Reducing Executable Size
	3.2.3 Preprocessing for Facets
	3.2.4 Compile-Time Decoupling
	3.2.5 Smart Linking
	3.2.6 Object Organization
	3.2.7 Library Recompilation

	4 USING C++ IN EMBEDDED SYSTEMS
	4.1 ROMability
	4.1.1 ROMable Objects
	4.1.1.1 User-Defined Objects
	4.1.1.2 Compiler-Generated Objects

	4.1.2 Constructors and ROMable Objects

	4.2 Hard Real-Time Considerations
	4.2.1 C++ Features for which Timing Analysis is Straightforward
	4.2.1.1 Templates
	4.2.1.2 Inheritance
	4.2.1.2.1 Single Inheritance
	4.2.1.2.2 Multiple Inheritance
	4.2.1.2.3 Virtual Inheritance

	4.2.1.3 Virtual functions

	4.2.2 C++ Features for Which Real-Time Analysis is More Complex
	4.2.2.1 Dynamic Casts
	4.2.2.2 Dynamic Memory Allocation
	4.2.2.3 Exceptions

	4.2.3 Testing Timing

	5 HARDWARE ADDRESSING INTERFACE
	5.1 Introduction to Hardware Addressing
	5.1.1 Basic Standardization Objectives
	5.1.2 Terminology
	5.1.3 Overview and Principles
	5.1.4 The Abstract Model
	5.1.4.1 The Module Set

	5.1.5 Information Required by the Interface User
	5.1.6 Hardware Register Characteristics
	5.1.7 Hardware Register Designators
	5.1.8 Accesses to Individual Hardware Registers
	5.1.9 Hardware Register Buffers
	5.1.10 Hardware Groups
	5.1.11 Direct and Indirect Designators
	5.1.12 Operations on Hardware Groups
	5.1.12.1 Acquiring Access to a Hardware Register in a Group
	5.1.12.2 Mapping Indirect Designators

	5.2 The <iohw.h> Interface for C and C++
	5.2.1 I/O registers
	5.2.2 I/O groups
	5.2.3 I/O group functions
	5.2.3.1 The iogroup_acquire and iogroup_release functions
	5.2.3.2 The iogroup_map function

	5.2.4 I/O register access functions
	5.2.4.1 The iord functions
	5.2.4.2 The iordbuf functions
	5.2.4.3 The iowr functions
	5.2.4.4 The iowrbuf functions
	5.2.4.5 The ioor, ioand, and ioxor functions
	5.2.4.6 The ioorbuf, ioandbuf, and ioxorbuf functions

	5.3 The <hardware> Interface for C++
	5.3.1 The Class Template register_access
	5.3.2 The Class Template register_buffer
	5.3.3 Header "stdint.h"
	5.3.4 The struct hw_base
	5.3.5 Common Address Holder Types
	5.3.5.1 The Class Template static_address
	5.3.5.2 The Class dynamic_address

	5.3.6 Basic Hardware Register Designator Traits Classes
	5.3.6.1 Traits Class platform_traits
	5.3.6.2 Traits Class register_traits

	APPENDIX A: GUIDELINES ON USING THE <HARDWARE> INTERFACE
	A.1 Usage Introduction
	A.2 Using Hardware Register Designator Specifications
	A.2.1 Using address_holders
	A.2.2 Traits Specifications

	A.3 Hardware Access
	A.3.1 Indexed Access
	A.3.2 Initialization of register_access

	APPENDIX B: IMPLEMENTING THE IOHW INTERFACES
	B.1 General Implementation Considerations
	B.1.1 Recommended Steps
	B.1.2 Compiler Considerations

	B.2 Overview of Hardware Device Connection Options
	B.2.1 Multi-addressing and Device Register Endianness
	B.2.2 Address Interleave
	B.2.3 Device Connection Overview
	B.2.3.1 Generic Buffer Index

	B.3 Hardware Register Designators for Different Device Addressing Methods
	B.4 Atomic Operation
	B.5 Read-Modify-Write Operations and Multi-Addressing
	B.6 Initialization
	B.7 Intrinsic Features for Hardware Register Access
	B.8 Implementation Guidelines for the <hardware> Interface
	B.8.1 Annotated Sample Implementation
	B.8.1.1 Common Definitions - struct hw_base
	B.8.1.2 Access Traits Classes
	B.8.1.3 The Interface register_access and register_buffer
	B.8.1.4 Actual Access Implementation
	B.8.1.5 Usage and Overhead

	APPENDIX C: A <HARDWARE> IMPLEMENTATION FOR THE <IOHW.H> INTERFACE
	C.1 Implementation of the Basic Access Functions
	C.2 Buffer Functions
	C.3 Group Functionality
	C.4 Remarks

	APPENDIX D: TIMING CODE
	D.1 Measuring the Overhead of Class Operations
	D.2 Measuring Template Overheads
	D.3 The Stepanov Abstraction Penalty Benchmark
	D.4 Comparing Function Objects to Function Pointers
	D.5 Measuring the Cost of Synchronized I/O

	APPENDIX E: BIBLIOGRAPHY

