
 Doc No: SC22/WG21/N1466

 J16/03-0049

 Date: 01-Apr-2003

 Project: JTC1.22.32

 Reply to: Daniel Gutson

 danielgutson@hotmail.com

EXPLICITING DEFAULT PARAMETERS

1. THE PROBLEM

C++ has a very simple mechanism for defaulting parameters. However, they are required to be
provided at the end of the signature declaration. Additionally, there is no way to use their value in
the function call when the next parameter va lue is specified.
There is also a problem of ambiguity when overloading functions when their signture differs only
in the “defaulted” parameters.
For graphic purposes, the following notational examples illustrate such sub problems:

Subproblem # 1:
 declaration: function (<non default>, <default>, <non default>) not possible.

Subproblem # 2:
 declaration: function’(<default>, <default>);

 invocation: function’(<default>, <value>); not possible

Subproblem # 3
 declaration: f (<non-default>, <default1>);
 declaration: f(<non-default>, <default2>);

 invocation: f (<non-default>); error:ambiguity.

- Why is the problem important?

- Default values are part of the interface, allowing the user to be abstracted from the value itself.
The situations (subproblems) mentioned above force the user to -somehow- know (and mess) with
the value, breaking such “abstraction” (in fact, subproblem #1 forbids the interface to use default
values in that way).

- the simplicity (and usability) of default parameters is discontinued in th situations mentioned
above, requiring the use of additional code, maintenance overhead, and/or user involvement. (see
the impact analysis of workarounds later in this document).

- Default parameters also contribute to the self documentation of the interface. This aspect is also

discontinued in the mentioned situations.

- Changing the value of a default parameter is straight forward, visible (for the user) and
punctually (locally), not affecting the rest (user’s) code when the user “agrees” to use the functions
providers’ default value.
On the other hand, without using the prototype for default parameters, the change has to be
propagated.

- Common workarounds:

A) Forwarding functions
B) “Named” parameters using structures
C) Constants

The following analysis will be performed for each workaround:

- Implementation cost:
 -from the library interface: Code overhead, additional required elements - structures,
functions,constants-, documentation

-from the user: additional code and knowledge, loose of abstraction

- Change cost (maintenance):
 -of a default value
 -of signature

In order to explain the different workarounds, let’s name”f” a function that has “m” (non def.)
parameters and “n” default parameters. Do note thar the numeric analysys is based in ONE
function. The results should be considered when –as often- an API contains more than one
function.

A) Forwarding functions:
 A technique based on making “f” with all its parameters non default (n+m non default
parameters) and adding “helper” functions overloading F, combining different signatures (with
non default parameters). In their body, the original “f” is called, passing the received parameters
plus constants for those not received. Therefore, the “defaulted” values are in the implementation
of the forwarding functions.
Forwarding functions cover all the possible calling combinations of “f” as far as the type of the
parameters are different.
If n’ is the number of elements of a subset of the n parameters, such as all the parameters of this
subset are of different type (n’ ≤ n), then

2n’ forwarding functions are required if n’<n, or

 2n – 1 forwarding functions, if n’ = n (that is , all parameters are of different types).

Example: n= 3, m=0
F: f(type1, type2, type3)

The 23 –1= 7 forwarding functions prototypes are:
 f();
 f(type 1); f(type 2) ; f(type 3);
 f(type1, type2); f(type1, type3); f(type2, type3).

Assuming Allman’s style, 4 lines per functions are required:
 The header +the opening brace+the (original) “f” call+ the closing brace,
which results in

 additional_code= 4* (2n –1) LOC, without blank lines.

Assuming “K&R” style, 3 lines per forwarding function are required (as far as the opening brace is
placed in the same line of the header), resulting in 3*(2n – 1) additional LOC, without blank lines.

Readability evaluation:

- differentiation relies on type and arity.
- The default values are “hidden” in the fwd. function’ s bodies, and repeated for those

“defaulting” the same parameter.
Each value is repeated 2n-1-1 times.
In order to avoid the impact of updating such number of times when the value changes, it is
also common to centralize these value instances in constants, arriving to the situation of
work around C). In this case, one constant for each def. parameter is provided, resulting in
n additional lines; therefore

 4* (2n – 1) + n additional lines for Allman’s style,
and
 3* (2n – 1) + n for K&R style

Considering that the initial intention was a function capable to receive “default”
parameters, the header file would be overheaded with 2n – 1+n LOC per function, or
3* (2n – 1) + n / 4* (2n – 1) + n LOC if the fwd function are inlined (which is the most
common situation). This additional code is an impact to the readability of the API.

Maintenance Analysis:
Modification of the signature of “f”

- If a type of one of the n parameters is modified, 2n – 1 updates are required in the fwd.
functions, plus the constant declaration, resulting in
2n-1 updates (API only).

- If a parameter is added or removed, all the existing fwd. functions have to be updated (as
far as they call “f” in their body).

If a parameter is added (let’s keep n with the old value)
 2n – 1 fwd. functions are updated,
and
 2n fwd. functions are added ((2n+1 – 1)- (2n – 1)),
resulting in:
 2n – 1 LOCs modified (their bodies)
plus
 4*(2n)+1 LOCs added (Allman’s, inlined, plus the new constant)

If the added parameter is non-default (increases m), the existent fwd. functions are
modified:
 2n – 1 LOCs modified (their bodies).

Finally, this technique does not solve sub problem # 3.

B) “Named Parameters” through structures:
 This technique requires a structure per signature.
The idea is to pack all the parameters in the structure, assign their values using projectors (that
return to self reference), and pass the reference of the (temporary) structure to the function.
This technique implies:
- one structure per desired (logical) signature
- the real signature (or the types that the function receives) are inside the structure.
- one projector + one attribute for each logical parameter
- the default values are placed (hidden) in the implementation of the constructor.
- no static checking that all the required parameters were provided. (another version of this
technique is to keep all required parameters as physical parameters in the signature, and pack
only the ‘defaulted’ parameters in the structure).

This technique is commonly used for “large” number of logical parameter. Let’s call ‘n’ this
number.

The following analysis is a simplified version that does snot perform the run time checking in
the signature, and pack only the “defaultable” parameters in the structure.

For Allman’s style, and inlining the methods, the length of the structure is

1 x header
1 x {
1 x constructor:
n x default values initialization
1 x { }

 1 x parameter projector header
 1 x {
5 x n 1 x assignment
 1 x return * this

 1 x }

n x attribute for storing parameters’ value

1 x };

Total= 5 + 7n LOC (without blank lines)

For K&R style

1 x Header {
1 x constructor:
n x def. Values initialization

1 x { }

 1x parameter project header {
 1x assignment
4x n 1x return *this
 1x }

n x attributes
1 x };

Total = 4 + 6n LOCs

Additionally, this technique impacts in readability of the API (as for as the signature and
default values dwell inside the structure), and might decrease the coding productivity as far as
the parameter’s names have to be explicitly keytyped (coded), specially for programmers
familiarized with the signatures (mnemonic).
Example:
 f(structure().parameter1(value1).parameter2.(value2));

If the function receives 3 parameters, and the last was intended to preserve its default value, the
previous line would be written
 f(value1, value 2);
which is clearly faster to type, and less messy to read (specially for the programmer
familiarized with the system).

Finally, this technique represents additional complexity for function overloading (which must
be accomplished with another structure for packing parameters) which also represents an issue
for sub problem # 3.

Changes in the logical signature impact in the structure:

- in the constructor
- in the projectors
- in the attributes

C) Using constants:
 This technique requires constant definition for each parameter to be “defaulted” of each
function.
It is recommended to have a naming convention (extra documentation) for the constant s,
combining the name of the function each constant is intended to value-default, and the
parameter name.
This makes the coding more error prone due to typo errors of misunderstandings, as far as the
user is responsible for explicitly provide the proper constant (representing the default value).
(Specially when many constants are of the same type)

At this point, this proposal exposed some of the workarounds with their implicancies , their
impact to the interfaces and users from a user-API point of view, as well as some maintenance
costs, coding and readability, and how they deal with the 3 exposed subproblems.
This proposal does not intend to invalidate the preceding techniques, but proposes an
altenative preserving the simplicity and ‘spirit’ of the current default-parameters mechanism.

2. THE PROPOSAL

- Allow default parameters before non-default ones in signatures
- Explicit the default value usage through the ‘default’ keyword as parameter in function

invocation statement- optionally followed by <type> for avoiding ambiguities on
overloaded functions-.
 default type_specifieropt
 type_specifier: <type>

2.1. Basic cases

void f(int x = 1, int y=2);

 void use()
 {
 f (default, 3);
 f();
 }

2.2. Advanced cases

- Specifying the type
- Non POD default parameters

- templates

template <class T> T* allocAndClone (
 AllocatorType1 <T> alloc = MyAllocator <T>::instance(),
 T& prototype = T() , size_t size);

template <class T> T* allocAndClone (
 AllocatorType2 <T> alloc = MyAllocator <T>::instance(),
 T& prototype = T() , size_t size);

void process(char t = ‘\n’);
void process(const char* = “end of line”);

void use(void)
{
 MyClonableClass* p;

 p = allocAndClone(
 default<AllocatorType1<MyClonableClass> >,
 default,
 10);

 process(default<char>);
 process(default); // error: ambiguity
 process(default<const char*>);
 process(default<float>); //error
}

3. INTERACTIONS AND IMPLEMENTABILITY

3.1. Interactions

- The type of specification is optional when the defaulted parameters type is unique in the
contex of the overloaded functions;

- When present, the specified type can be also a template with its proper template parameter
(as shown in advanced cases)

3.2. Implementability

- The proposed syntax does not violate compatibility due to its current incorrectness
- An implementation consideration should be taken in the case of an invocation in the context

of a template, which can specify the template parameter as type specification, as far as information
on default parameter values should be also available at template instantiation phase.

Example:

 template <class T> void doCall()
 {

 f(default<T>);
 }

