
- 1 -

Safe Exceptions and Compiler Security Checks

Brandon Bray (branbray@microsoft.com)

SC22/WG21/N1462 = J16/03-0045

Brandon Bray
Program Manager
Microsoft Visual C++ Compiler

Safe Exceptions and Compiler
Security Checks

April 2, 2003

Agenda

• Under the Hood of Security Checks
• Technical Background
• How Cookies Work
• Common Misconceptions
• Safe Exceptions
• Walking Through Exploits
• Reacting to an Attack

- 2 -

Safe Exceptions and Compiler Security Checks

Brandon Bray (branbray@microsoft.com)

SC22/WG21/N1462 = J16/03-0045

SQL Slammer Takes
Down Root Server

Buffer overruns are expensive

Study: Code Red Costs

Top $2 billion

New Apache worm starts to spread

Flaw leaves Linux computers vulnerable
In Search of the World's
Costliest Computer Virus

(UPnP, Code Red, Apache
Chunked Encoding Exploit)

Code Red Virus 'Most
Expensive in History of
Internet'

Buffer overruns are studied

• Buffer overruns were once documented!
• Learn simple exploits in an hour
• Every security book covers the subject
• Education on buffer overruns is naïve
• Most time is spent on preventing buffer overruns

• Testing and code review is a sieve; what if some slip
through?

- 3 -

Safe Exceptions and Compiler Security Checks

Brandon Bray (branbray@microsoft.com)

SC22/WG21/N1462 = J16/03-0045

Visual C++’s Goal

• Make a program withstand an attack even in the
presence of a buffer overrun

• We are far from this goal

Transform a buffer overrun from
an extremely bad security danger

to an unacceptable nuisance

What is a buffer overrun?

• The ability to arbitrarily corrupt memory
• Overflows lead to arbitrary code
• Underflows lead to denial of service
• Problem is usually isolated to C and C++

00 00 00 00
00 00 00 00
2A 00 00 00int x = 42;

char zip[6];
strcpy(zip, userinput);
printf("x = %i\n", x);

- 4 -

Safe Exceptions and Compiler Security Checks

Brandon Bray (branbray@microsoft.com)

SC22/WG21/N1462 = J16/03-0045

Anatomy of the stack

• x86 stacks grow downward
• A buffer overrun on the stack

can always rewrite the:
• Return address
• Frame pointer
• EH frame

Previous function’s
stack frame

Return address

EH frame

Callee save
registers
Garbage

Local variables and
locally declared
buffers

Frame pointer

Function arguments

Types of exploits

• Stack smashing
• Register hijacking
• Local pointer subterfuge
• V-Table hijacking
• C++ EH clobbering
• SEH clobbering
• Multistage attacks
• Parameter pointer subterfuge

Previous function’s
stack frame

Return address

EH frame

Callee save
registers
Garbage

Local variables and
locally declared
buffers

Frame pointer

Function arguments

- 5 -

Safe Exceptions and Compiler Security Checks

Brandon Bray (branbray@microsoft.com)

SC22/WG21/N1462 = J16/03-0045

Exploit difficulty

• Stack smashing is always possible
• Not every exploit is always possible

• Attacking a code address is easiest
• Attacking a data address is harder
• Exploiting scalar data (not a base for memory

indirection) is the hardest

Pointer

Subterfuge

Stack

Smashing

Register

Hijacking

Unsafe APIs

• Many historical APIs of the C standard library are
bad
• strcpy has no knowledge of the array size
• strncpy cannot validate the array size

• Many more unsafe APIs exist

• Static analysis tools are helpful
• Impossible to guarantee a safe API

- 6 -

Safe Exceptions and Compiler Security Checks

Brandon Bray (branbray@microsoft.com)

SC22/WG21/N1462 = J16/03-0045

Run-time checks overview

• In VC6 it is /GZ, in VC7 it is /RTC1
• There are three kinds of run-time checks

• /RTCs does stack checks
• /RTCu finds unitialized variables
• /RTCc catches conversions that truncate information

• /RTC1 is an alias for /RTCsu
• Compiler injects code into the program
• Not intended for production code

Run-time checks details

• What does /RTCs do?
• Fills the whole stack with 0xCCCCCCCC
• Pads all multibyte or address taken variables with four

to seven bytes
• Finds mismatched calling conventions

• What does /RTCu do?
• Finds positive cases of C4701 warning

- 7 -

Safe Exceptions and Compiler Security Checks

Brandon Bray (branbray@microsoft.com)

SC22/WG21/N1462 = J16/03-0045

A retail solution

• Return address hijacking is always available and
the easiest to exploit

• Idea: put a speed bump between the locally
declared buffer and the return address

• All of this is done with the /GS switch
• Windows builds with /GS
• Visual Studio builds with /GS
• .NET Developer Platform builds with /GS

Demonstration: Security Checks

In this demonstration, you will learn how
to:

• Recompile code with /GS
• React to buffer overrun

- 8 -

Safe Exceptions and Compiler Security Checks

Brandon Bray (branbray@microsoft.com)

SC22/WG21/N1462 = J16/03-0045

Stack layout in VC++ .NET
Function prolog:

Previous function’s
stack frame

Return address

EH frame

Callee save
registers
Garbage

Local variables and
locally declared
buffers

Frame pointer

Function arguments

Cookie

sub esp,24h

mov eax,dword ptr

[___security_cookie (408040h)]

xor eax,dword ptr [esp+24h]

mov dword ptr [esp+20h],eax

mov ecx,dword ptr [esp+20h]

xor ecx,dword ptr [esp+24h]

add esp,24h

jmp __security_check_cookie

4010B2h)

Function epilog:

Stack layout in VC++ 2003
Function prolog:

Previous function’s
stack frame

Return address

EH frame

Callee save
registers
Garbage

Frame pointer

Function arguments

Cookie

sub esp,24h

mov eax,dword ptr

[___security_cookie (408040h)]

mov dword ptr [esp+20h],eax

mov ecx,dword ptr [esp+20h]

add esp,24h

jmp __security_check_cookie

4010B2h)

Function epilog:
Locally declared
buffers
Local variables

• Requires optimized build

- 9 -

Safe Exceptions and Compiler Security Checks

Brandon Bray (branbray@microsoft.com)

SC22/WG21/N1462 = J16/03-0045

When do we need a cookie?

• Not every function is vulnerable
• Cookie is put on the stack only when a local object

contains a buffer where:
• Buffer has more than four bytes of storage
• Buffer elements are one or two bytes each

What is this cookie?

• Generated by the function
__security_init_cookie

• Original stored in the variable
__security_cookie

• Cookie is random (at least 20 bits)
• Cookie is per image and generated at load time
• Cookie is the size of a pointer

- 10 -

Safe Exceptions and Compiler Security Checks

Brandon Bray (branbray@microsoft.com)

SC22/WG21/N1462 = J16/03-0045

Common problems

• Calling _CRT_INIT while security checked
functions are live
• Only temporary workarounds exist

DllEntryPoint(...) {
char buf[10]; // triggers security check

...
_CRT_INIT();
...

}

• Predictable cookie when no CRT init
• Solved with Windows Server 2003 and VC7.1

Performance impact
• Expect less than a 2% degradation
• Most application did not notice anything
• With both VC7 and VC7.1 the improvements in

optimization far outweigh the cost of security
checks

• Each security check is nine instructions

“The perf hit hasn’t shown up for us. There was no
test hit associated with the change. The only cost
we’ve had associated with this is getting ourselves
to build with /GS.

– IIS6 Developer

- 11 -

Safe Exceptions and Compiler Security Checks

Brandon Bray (branbray@microsoft.com)

SC22/WG21/N1462 = J16/03-0045

Security checks philosophy

• It is NOT okay to knowingly have buffer overruns in
your code!

• Faulty code is the program’s fault, not the fault of
security checks architecture

• /GS is an insurance policy
• /GS attempts to protect you from some of the

unprotected buffers you missed
• Both VC7 and VC7.1 have limited abilities

Armchair critics

• Just use good functions
• My code is perfect
• It is a trade for denial of service
• STL solves the problem
• The real problem is not solved
• More avenues of attack exist
• Image size explodes
• Bad code is tolerated and encouraged

- 12 -

Safe Exceptions and Compiler Security Checks

Brandon Bray (branbray@microsoft.com)

SC22/WG21/N1462 = J16/03-0045

How exceptions work

• Windows controls EH dispatch
• EH frames have function

pointers

Previous function’s
stack frame

Return address

EH frame
Locally declared
buffers
Local variables

Frame pointer

Function arguments

Cookie FS:[0]

Next EH Frame

State Index
&C++ EH Thunk
&Next EH Link
Saved ESP

C++ EH Frame

Callee save
registers
Garbage

All exception attacks

• Sequence of events
• Cause a buffer overrun and overwrite the EH frame
• The address of the handler points to an arbitrary

address
• Cause an exception to occur
• The operating system follows the FS:[0] link to find the

address of the handler
• Windows passes control to the handler

- 13 -

Safe Exceptions and Compiler Security Checks

Brandon Bray (branbray@microsoft.com)

SC22/WG21/N1462 = J16/03-0045

How Code Red worked

• All the attack code was on the stack
• Windows XP will not dispatch to the stack

• The exception handler was actually an instruction,
CALL EBX, in msvcrt.dll
• EBX stored an address on the stack
• Windows XP clears out some registers
• This would have stopped Code Red
• Not all registers can be cleansed

Safe exceptions overview

• Visual C++ 2003 creates a table with a list of all
the handlers in the compiland

• Before dispatching to any handler, Windows
checks against the list

• If the address is not in the data list, the process
terminates

• Check to see if an image is safe:

D:\>dumpbin /loadconfig /headers t.exe

...

00406CC0 Safe Exception Handler Table

5 Safe Exception Handler Count

- 14 -

Safe Exceptions and Compiler Security Checks

Brandon Bray (branbray@microsoft.com)

SC22/WG21/N1462 = J16/03-0045

SEH specific attacks

• SEH handler is always
_except_handler3

• A scope table stores the
specific code for __finally,
__except

• Attack will try to spoof the
scope table

SEH Frame

State Index
&Scope Table
&_except_handler3
&Next EH Link
X Pointer
Saved ESP

&__except/__finally

Parent Index
&__except Filter

More Triples

SEH validation in VC2003
• SEH handler enforces the following:

• Scope table is in read only memory
• Checks the shape of the scope table
• Parent indexes must be sound

• If the validation fails, the handler tells Windows to
terminate the process

- 15 -

Safe Exceptions and Compiler Security Checks

Brandon Bray (branbray@microsoft.com)

SC22/WG21/N1462 = J16/03-0045

Stack smashing (VC .NET)

#define BUFLEN 4

void vulnerable(void) {
wchar_t buf[BUFLEN];
int val;

val = MultiByteToWideChar(
CP_ACP, 0, "1234567",
-1, buf, sizeof(buf));

printf("%d\n", val);
}

Previous function’s
stack frame
Return address

val

buf

Cookie

Garbage

Garbage
with invalid cookie

Attack Code

Hijacked EIP

Stack smashing (VC2003)

#define BUFLEN 4

void vulnerable(void) {
wchar_t buf[BUFLEN];
int val;

val = MultiByteToWideChar(
CP_ACP, 0, "1234567",
-1, buf, sizeof(buf));

printf("%d\n", val);
}

Previous function’s
stack frame
Return address

val

buf

Cookie

Garbage

Garbage
with invalid cookie

Attack Code

Hijacked EIP

- 16 -

Safe Exceptions and Compiler Security Checks

Brandon Bray (branbray@microsoft.com)

SC22/WG21/N1462 = J16/03-0045

buf

Garbage

V-Table hijacking (VC .NET)

class Vulnerable {
public:
int value;
Vulnerable() {value=0;}
virtual ~Vulnerable()
{value=-1;}

};

void vulnerable(char* str) {
Vulnerable vuln;
char buf[20];
strcpy(buf, str);

}

Previous function’s
stack frame
&str

Cookie
&Vulnerable V-Table

Return Address

vuln
Garbage

Attack Code

&Hijacked V-Table
Hijacked V-Table

V-Table hijacking (VC2003)

class Vulnerable {
public:
int value;
Vulnerable() {value=0;}
virtual ~Vulnerable()
{value=-1;}

};

void vulnerable(char* str) {
Vulnerable vuln;
char buf[20];
strcpy(buf, str);

}

buf

Garbage

Previous function’s
stack frame
&str

Cookie

&Vulnerable V-Table

Return Address

vuln

Garbage
with invalid cookie

Attack Code

- 17 -

Safe Exceptions and Compiler Security Checks

Brandon Bray (branbray@microsoft.com)

SC22/WG21/N1462 = J16/03-0045

Pointer subterfuge (VC .NET)

void vulnerable(
char* buf, int cb)

{
char name[8];
void (*func)() = foo;

memcpy(name, buf, cb);
(func)();

}

name

Garbage

Previous function’s
stack frame
cb

Return address
Cookie

&buf

&foo

Garbage

Attack Code

&Attack Code

Pointer subterfuge (VC2003)

void vulnerable(
char* buf, int cb)

{
char name[8];
void (*func)() = foo;

memcpy(name, buf, cb);
(func)();

} name

Garbage

Previous function’s
stack frame
cb

Return address
Cookie

&buf

&foo

Garbage
with invalid cookie

Attack Code

- 18 -

Safe Exceptions and Compiler Security Checks

Brandon Bray (branbray@microsoft.com)

SC22/WG21/N1462 = J16/03-0045

Garbage

Cookie
&pch

buf

EH clobbering (VC .NET)

int vulnerable(char* str) {
char buf[8];
char* pch = str;
strcpy(buf, str);
return *pch == '\0';

}

int main(
int argc, char* argv[]) {
__try {
vulnerable(argv[1]);

} __except(2) { return 1; }
return 0;

}

Return address

Previous function’s
stack frame
&argv

Return address
SEH frame

argc

&str

Garbage

Garbage

0xBFFFFFFF

Hijacked EH frame

Attack Code

EH clobbering (VC2003)

int vulnerable(char* str) {
char buf[8];
char* pch = str;
strcpy(buf, str);
return *pch == '\0';

}

int main(
int argc, char* argv[]) {
__try {
vulnerable(argv[1]);

} __except(2) { return 1; }
return 0;

}

Garbage

Cookie

&pch

buf

Return address

Previous function’s
stack frame
&argv

Return address
SEH frame

argc

&str

Garbage
with invalid cookie

Hijacked EH frame

Attack Code

- 19 -

Safe Exceptions and Compiler Security Checks

Brandon Bray (branbray@microsoft.com)

SC22/WG21/N1462 = J16/03-0045

The main handler
void __cdecl __security_error_handler(
int code, void *data)

{
if (user_handler != NULL) {
__try {
user_handler(code, data);

} __except (EXCEPTION_EXECUTE_HANDLER) {}
} else {
// ...prepare outmsg...
__crtMessageBoxA(
outmsg,
"Microsoft Visual C++ Runtime Library",
MB_OK|MB_ICONHAND|
MB_SETFOREGROUND|MB_TASKMODAL);

}
_exit(3);

}

Installing a user handler

• Defined in stdlib.h
void __cdecl report_failure(
int code, void * unused)

{
if (code == _SECERR_BUFFER_OVERRUN)
printf("Buffer overrun detected!\n");

}

void main()
{
_set_security_error_handler(
report_failure);

...more code...
}

- 20 -

Safe Exceptions and Compiler Security Checks

Brandon Bray (branbray@microsoft.com)

SC22/WG21/N1462 = J16/03-0045

What to do in a user handler

• Do not raise exceptions
• Do not call DebugBreak
• Do not longjmp
• Hook up to error reporting
• Just print your own message
• Do not trust any data in the process

Rewriting the main handler

• DO NOT replace the function
__security_error_handler

• Many smart people have tried and failed
• This is tricky and it has to be right

• Use _set_security_error_handler

• Do not avoid terminating the program
• Nothing can be trusted
• The only safe thing to do is terminate the entire process

- 21 -

Safe Exceptions and Compiler Security Checks

Brandon Bray (branbray@microsoft.com)

SC22/WG21/N1462 = J16/03-0045

Exploitations still available

• Parameter pointer subterfuge
• Two stage attacks
• Local objects with buffers
• Heap attacks

Hardware support

• Windows tracks execute, writable permissions for
each page of memory

• x86 does not enforce execution in PTE
• IA64 and AMD64 do enforce these

• Stack is not executable
• Some security checks on 64-bit needed
• Visual C++ does not yet have /GS for 64-bit

• x86 may enforce permissions someday

- 22 -

Safe Exceptions and Compiler Security Checks

Brandon Bray (branbray@microsoft.com)

SC22/WG21/N1462 = J16/03-0045

Questions

