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Proposed Addition to C++: Class Namespaces 
 

1.  The Problem 
C++ classes have always been closed, such that once a class definition is ended, it cannot be opened again, and nothing can 
be added to it. We propose allowing classes to be reopened for the purpose of defining member functions, static data 
members, and types already declared in the class definition. We call this reopened class a "class namespace". 

The present situation, and the proposed solution is particularly significant for developers of template classes, who now have 
to repeat a sometimes large and distracting template declaration before each and every out-of-line member definition.  This 
situation creates a ” Catch-22„  for the template implementer:  to move member definitions out of line means a significant 
amount of extra work, especially when template parameters change, but to leave member definitions inline may cause 
unnecessary increases in code size, due to the implicit inlining of those members. 

1.1 Motivating Analogy 
When defining a class in C++, the programmer has the option to place the definition of member functions inline in the 
class, or to place those definitions out of line, or to use a combination of the two techniques. 

 
class a_class 
{ 
public: 
 // declaration, no definition 
 void f(); 
 
 // inline definition 
 void g() 
 { 
 } 
}; 
 
// out of line definition for a_class::f 
void a_class::f() 
{ 
} 
 

With simple classes, the out-of-line syntax is straightforward, if slightly repetitive.  With template classes, and especially 
with nested template classes, the visual noise introduced by re-specifying the class name can become both distracting and 
an impediment to productivity, especially when the template arguments must change.   
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template <class T> class outer 
{ 
 template <class U> class inner 
 { 
  // declaration only, no definition 
  T f(U&); 
 }; 
}; 
 
// out of line definition 
template <class T> 
template <class U> 
T outer<T>::inner<U>::f(U&) 
{ 
} 
 

As the number of template functions or template parameters increases, the overhead of  (and chance for error in) repeating 
the class specifier for each function increases.  For a template with several parameters, it§s not uncommon for the class 
specifier to be larger than the bodies of many of the member functions. Further, the need to repeat the template formal 
parameters with each function opens the door for non-uniformity of implementation, and higher maintenance costs. 

In contrast to class member functions, free-functions declared in namespaces incur no such textual overhead, since 
namespaces can be re-opened at will, while classes are closed. 

 
// in a header file 
namespace outer 
{ 
 namespace inner 
 { 
  // declaration only, no definition 
  void f(); 
  void g(); 
 } 
} 
 
// elsewhere � e.g. in an implementation file 
namespace outer 
{ 
 namespace inner 
 { 
  // definitions 
  void f() 
  { 
  } 
 
  void g() 
  { 
  } 
 } 
} 
 

The ability to re-open a namespace is essential to allow members of a namespace (such as std) to be specified in several 
header files.  As a side-effect, the fact that namespaces can be re-opened saves the programmer the need to use a fully-
qualified name when defining a free-function that was declared in a namespace.  The lack of similar freedom for class 
member implementations is the problem at hand. 
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A solution to this problem would support several of the committee§s goals for improvements in the C++ language:  it would 
improve support for library building, since library authors could concentrate more on the meat of their library, and less on 
the mundane syntax details;  it would improve support for generic programming, by providing a kind of ” generic definition 
space„ , which complements the ” generic declaration space„  which is already available in the language;  it would make C++ 
easier to learn and understand, by simplifying the definition of out-of-line class members. 

2. The Proposal 
The C++ standard  (–7.3/1) defines a namespace as ” an optionally named declarative region„ .  This proposal describes 
” class namespaces„ .  A class namespace is a ” named definitive region„ .  The name of a class namespace name is always 
identical to the name of an existing class definition.  Unlike an ordinary namespace, a class namespace may contain only 
definitions, no declarations. 

The proposal is to allow the ” namespace„  (or scope) of a class to be re-opened for the purpose of adding definitions 
corresponding to existing declarations.  The goal is that given: 

 
class A 
{ 
 return-type f(parameter-list); 
}; 
 

that 
 

namespace class A 
{ 
 return-type f(parameter-list) 
 { 
  // statements 
 } 
} 

 
means exactly the same thing as 

 
return-type A::f(parameter-list) 
{ 
 // statements 
} 

with constructs involving static members (both functions and data) and nested types behaving in an analogous manner. 

2.1 Simple classes 
The proposed extension allows ” class namespaces„  to be re-opened using a ” class namespace definition„ .  The proposed 
syntax follows: 

 
// class definition 
class A 
{ 
 // declarations 
}; 
 
// elsewhere 
// class namespace definition 
namespace class A 
{ 
 // definitions 
} 
 



WG21/N1420= J16/03-0002 page 4 
Proposed Addition to C++: Class Namespaces  

Within a re-opened ” class namespace„ : 

§ no new declarations may appear 	 only definitions of previously declared members are allowed.   
§  Definitions may include member functions, static data members, and member types. 
§  Member functions defined within the re-opened namespace are not implicitly inline (in contrast to members 

defined in the original class declaration).   
§ Member function definitions may include the inline modifier to designate a member function as inline. No 

access specifiers may appear within a class namespace definition.   
§ No virtual or static modifiers may appear within a class namespace definition. 

2.2 Template classes 
The ” class namespace„  of a class template may be re-opened: 

 
template <class T> class A 
{ 

// declarations 
}; 
 
// elsewhere 
template <class T> 
namespace class A 
{ 
 // definitions 
} 

2.3 Specialization 
The ” class namespace„  of  a class template specialization (full or partial) may be re-opened: 

 
// full specialization 
template <> class A<void*> 
{ 
 // declarations 
}; 
 
// partial specialization 
template <class T> class A<T*> 
{ 

// declarations 
}; 
 
// elsewhere 
 
// add definitions to a full specialization 
template<> 
namespace class A<void*> 
{ 
 // definitions 
} 
 
// add definitions to a partial specialization 
template <class T>  
namespace class A<T*> 
{ 

// definitions 
} 

2.5 Nested classes 
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The ” class namespace„  of a nested class may be re-opened: 

 
template <class T> class outer 
{ 
 template <class U> class inner 
 { 
  // declarations 
 }; 
}; 
 
// elsewhere 
template <class T>  
namespace class outer 
{ 

template <class U>  
namespace class inner 
{ 
 // definitions 
} 

} 
 
// equivalent 
template <class T> 
template <class U> 
namespace class outer<T>::inner 
{ 
 // definitions 
} 
 

The nested class namespace must match a class previously declared in the enclosing class. 

2.6 Incomplete nested classes 
The definition of an incomplete nested class may be given inside a class namespace. 

class outer 
{ 
 class inner; 
}; 
 
namespace class outer 
{ 
 class inner 
 { 
  // declarations and definitions 
 }; 
} 
 
namespace class outer::inner 
{ 

// definitions 
} 

 
Note that when an incomplete nested class is defined within a class definition namespace that declarations may appear 
within that definition.  These declarations, of course, belong to the namespace of the inner class (that§s being defined) and 
not to the re-opened class definition namespace of the outer class.  From the viewpoint of the re-opened class, only 
definitions appear. 
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2.7 Legal Scopes 
A class namespace definition may appear in the same scopes that a namespace definition may appear: in namespace scope 
or in global scope.  A class namespace definition may also appear within another class namespace definition. 

2.8 Applicable Types 
The following types may be ” re-opened„  using a class namespace definition: 

§ A complete class type 
§ A complete class template  

 
Example: 

struct X 
{ 
 struct Y; 
}; 
 
// legal 
namespace struct X 
{ 
 // illegal � Y is incomplete 
 namespace struct Y 
 { 
 } 
} 
 
// illegal � Y is incomplete 
namespace struct X::Y 
{ 
} 
 
struct X::Y 
{ 
}; 
 
// legal � X::Y is now complete 
namespace struct X::Y 
{ 
} 
 
namespace struct X 
{ 

// legal � X::Y is now complete 
 namespace struct Y 
 { 
 } 
} 

3. Interactions and Implementability 
3.1 Interactions 
The proposed feature is intended to be a natural simplification of existing C++ syntax 	 one whose meaning is readily 
apparent to both new and experienced C++ programmers.  Interactions with the rest of the language are minimal, as the 
proposal adds new syntax only 	 no new types are created, and no new semantics are attached to any existing language 
construct. 

The proposed feature does not interact with legacy code at all, since no well-formed program can contain the token 
sequence namespace class under the current language rules. 
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This is a generally useful extension, particularly for authors and maintainers of template libraries.  Under the proposal, a 
parity between class definitions and the definitions of their member functions is created.  Rather than repeatedly specifying 
the class when defining member functions, a single specification will suffice for any sized group of member definitions. 
3.2 Implementability 
No sample implementation is available at this time, but it§s not anticipated that the proposal should be difficult to 
implement.  The proposal does not introduce new lexical elements, and it combines existing tokens in ways that are always 
erroneous under the current language rules.  A proof-of-concept could be implemented as a standalone translator 	 
accepting the proposed syntax and emitting ISO 14882:1998(E) compliant syntax. 

3.3 Alternative Designs 
Some participants in the newsgroup thread that led to this proposal suggested that instead of overloading the namespace 
keyword, that a new keyword, such as implement be added instead. 

This proposal favors the use of the namespace keyword for two reasons: 

1. It avoids adding another keyword. 
2. The proposed extension is semantically very close to the current usage of the namespace keyword and should be 

easy to grasp by existing and new C++ programmers. 

 

Some readers of this proposal question whether it§s necessary to prohibit all forms of declarations within a class 
namespace.  This proposal favors prohibiting all declarations since doing so retains the meaning of a class definition as it 
exists in the current language.  However, arguments can be made for allowing certain kinds of declarations to appear within 
a re-opened class namespace: 

• Typedefs.   
• Private, non-virtual functions. 
• Private, static functions. 
• Previously undeclared overrides of inherited virtual functions. 

If any declarations were allowed in a re-opened class namespace, the visibility of those declarations would need to be 
specified.  For example: 

 
class A 
{ 
}; 
 
namespace class A 
{ 
 // public? private? protected? 
 typedef int size_type; 
} 
 
A::size_type s; // legal? 

The least troublesome interpretation would be that declarations added to a class within a class namespace are visible only in 
the block in which they appear.  Doing otherwise would require that public/private/protected modifiers be allowed within 
the class namespace block, and would create a situation where the interfaces exposed by a class differ depending on the 
point of use.  A class defined in a header file, and implemented using class namespaces in two separate translation units 
would have 3 different interfaces:  that defined by the class, that defined by the class namespace in one translation unit, and 
that defined by the class namespace in the other translation unit.  This is A Bad Thing. 
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