
Doc. no. WG21/N1388
J16/02-0046

Date: 07 September 2002
Reply-To: Gabriel Dos Reis

INRIA Sophia Antipolis
2004 route des Lucioles — BP 79
06902 Sophia-Antipolis — France
Fax: 334 92 38 79 78
Email: gdr@acm.org

Enhancing Numerical Support

1 Introduction

C++ support for numerical computations, mostly for the basic algebraic
datatypes, is suboptimal and somehow inefficient when compared to com-
peting languages like Fortran or C99. Even more, wordings in the Stan-
dard are insufficient to facilitate inter-operation with those languages. The
present paper makes proposals to address some of the pressing issues.

2 Complex numbers

2.1 Issues

2.1.1 std::complex<> over-encapsulated

The standard library <complex> component suffers from some form of
over-abstraction described in the document [2]. In a nutshell, the issues are

� absence of explicit layout decription,

� no way to access individual parts as lvalues.

The absence of explicit description of std::complex<T> layout makes
it imposible to reuse existing software developed in traditional languages
like Fortran or C with unambigous and commonly accepted layout as-
sumptions. There ought to be a way for practitioners to predict with confi-
dence the layout of std::complex<T>wheneverT is a numerical datatype.

The absence of ways to access individual parts of a std::complex<T>
object as lvalues unduly promotes severe pessimizations. For example, the
only way to change, independently, the real and imaginary parts is to write
something like

1

2

complex<T> z;
// ...
// set the real part to ’r’
z = complex<T>(r, z.imag());
// ...
// set the imaginary part to ’i’
z = complex<T>(z.real(), i);

At this point, it seems appropriate to recall that a complex number is,
in effect, just a pair of numbers with no particular invariant to maintain.
Existing practice in numerical computations has it that a complex number
datatype is usually represented by Cartesian coordinates. Therefore the
over-encapsulation put in the specification of std::complex<> is not jus-
tified.

2.1.2 Why can’t there be a complex key?

Practice with std::complex<> and the associative containers occasion-
ally reveals artificial and distracting issues with constructs resembling:

std::set<std::complex<double> > s;

The main reason for the above to fail is the absence of an approriate def-
inition for std::less<std::complex<T> >. That in turn comes from
the definition of the primary template std::less<> in terms of opera-
tor<. The usual argument goes as follows: Since there is no ordering over
the complex field compatible with field operations it makes little sense to de-
fine a function operator<operating on the datatype std::complex<T>.
That is fine. However, that reasoning does not carry over to std::less<T>
which is used, among other things, by associative containers as an ordering
useful to meet complexity requirements.

2.2 Proposed resolutions

2.2.1 std::complex<>made concrete

The document [2] proposed to adopt C99 definition for std::complex<>
in addition of the notion of Enhanced POD. In this paper, I propose an al-
ternate resolution that solves the layout issue without the Core Language
extension of Enhanced POD. Add the following requirements to 26.2 as
26.2/4:

If z is an lvalue expression of type cv std::complex<T> then

— then expression reinterpret_cast<cv T(&)[2]>(z)
is well-formed; and

Enhancing Numerical support WG21/N1388

3

— reinterpret_cast<cvT(&)[2]>(z)[0]designates the
real part of z; and

— reinterpret_cast<cvT(&)[2]>(z)[1]designates the
imaginary part of z.

Moreover, if a is an expression of pointer type cv complex<T>*
and the expression a[i] is well-defined for an integer expres-
sion i then

— reinterpret_cast<cvT*>(a)[2 � i]designates the real
part of a[i]; and

— reinterpret_cast<cv T*>(a)[2 � i+1] designates the
imaginary part of a[i].

The first set of requirements makes it possible to efficiently access in-
dividual parts of a std::complex<T>; such accesses are then easily en-
coded in the library by having real() and imag() return references and
not values. Example:

template<typename T>
inline T& real(complex<T>& z)
{
return reinterpret_cast<T(&)[2]>(z)[0];

}
template<typename T>
inline const T& real(const complex<T>& z)
{
return reinterpret_cast<const T(&)[2]>(z)[0];

}
template<typename T>
inline T& imag(complex<T>& z)
{
return reinterpret_cast<T(&)[2]>(z)[1];

}
template<typename T>
inline const T& imag(const complex<T>& z)
{
return reinterpret_cast<const T(&)[2]>(z)[1];

}

This solution has been tested with all current major implementations of the
standard library and shown to be working — one particular implementa-
tion seems to be checking array bounds in a reinterpret_cast; that im-
plementation however accepts pointer arithmetic and behaves as expected.

Enhancing Numerical support WG21/N1388

4

2.2.2 std::complex<>keying associative containers

To resolve the ordering issue mentioned in section 2.1.2 I propose to add
the following partial specializations:

template<typename T>
struct less<complex<T> >

: binary_function<complex<T>, complex<T>, bool> {
bool operator()(const complex<T>& z,

const complex<T>& w) const
{

return less<T>()(real(z), real(w))
|| (!less<T>()(real(w), real(z))

&& less<T>()(imag(z), imag(w)))
}

};
template<typename T>
struct less_equal<complex<T> >

: binary_function<complex<T>, complex<T>, bool> {
bool operator()(const complex<T>& z,

const complex<T>& w) const
{

return !less<T>()(w, z);
}

};
template<typename T>
struct greater<complex<T> >

: binary_function<complex<T>, complex<T>, bool> {
bool operator()(const complex<T>& z,

const complex<T>& w) const
{

return less<T>()(w, z);
}

};
template<typename T>
struct greater_equal<complex<T> >

: binary_function<complex<T>, complex<T>, bool> {
bool operator()(const complex<T>& z,

const complex<T>& w) const
{

return !less<T>()(z, w);
}

};

Enhancing Numerical support WG21/N1388

5

3 Numerical array

3.1 A const and a value issue

Consider the following program:

#include <iostream>
#include <ostream>
#include <vector>
#include <valarray>
#include <algorithm>
#include <iterator>
template<typename Array>
void print(const Array& a)
{
using namespace std;
typedef typename Array::value_type T;
copy(&a[0], &a[0] + a.size(),

ostream_iterator<T>(std::cout, " "));
}

template<typename T, unsigned N>
unsigned size(T(&)[N]) { return N; }

int main()
{
double array[] = { 0.89, 9.3, 7, 6.23 };
std::vector<double> v(array, array + size(array));
std::valarray<double> w(array, size(array));
print(v); // #1
std::cout << std::endl;
print(w); // #2
std::cout << std::endl;

}

While the call numbered #1 succeeds, the call numbered #2 fails be-
cause the const version of the member function valarray<T>::operator[](size_t)
returns a value instead of a const-reference. That seems to be so for no ap-
parent reason, no benefit. Not only does that defeats users’ expectation but
it also does hinder existing software (written either in C or Fortran) integra-
tion within programs written in C++. This issue is also described in section
1 of the document [1].

3.2 Proposed resolution

There is no reason why subscripting an expression of type valarray<T>
that is const-qualified should not return a const T&. Not returning a non-

Enhancing Numerical support WG21/N1388

REFERENCES 6

reference creates more problems than it solves any supposed concern. I
propose to change the member function

T valarray<T>::operator[](size_t) const

to

const T& valarray<T>::operator[](size_t) const

This proposal increases usability within C++, software reuse and inter-
operability with existing libraries written in languages like Fortran and
C99.

This proposal is already implemented and used in the GNU implemen-
tation of the C++ standard library.

Acknowledgments

I would like to thank Benjamin Kosnick (bkoz@redhat.com) for helpful
comments and encouragments in preparing this paper. I’m also grateful
to contributors of the French speaking usenet group fr.comp.lang.c++
for testing and commenting on the sample code shown in the proposal de-
scribing std::complex<> layout.

References

[1] AFNOR, Fixing valarray for Real World Use, document
WG21/N1246.

[2] R.W. Grosse-Kunstleve & D. Abrahams, Predictable data layout for cer-
tain non-POD types, document WG21/N1356.

Enhancing Numerical support WG21/N1388

