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1 Introduction 
Definition of terminology and scope of the report 

•  Description of potential resource limitations 
•  Kinds of problems often encountered in resource-limited environments 
•  Offer criteria used in the selection of an appropriate programming language 

"Performance" has many aspects -- execution speed, code size, data size, memory 
footprint at run time, or time and space consumed by the edit/compile/link process.  It 
could even refer to the time necessary to find and fix code defects.  Most people are 
primarily concerned with execution speed, although code footprint and memory usage 
can be critical for small embedded systems where code is burned into ROM, or where 
ROM and RAM are combined on a single chip. 

Efficiency has been a major design goal for C++ from its earliest days, also the 
principle of "zero overhead" for any feature, which is not used in a program.  It has 
been a guiding principle from the earliest days of C++ that "you don't pay for what 
you don't use".  Language features that are never used in a program should not have a 
cost in extra code size, memory size, or run time.  If there are places where C++ 
cannot guarantee zero overheads for unused features, this paper will attempt to 
document them.  It will also discuss ways in which compiler writers, library vendors, 
and programmers can minimize or eliminate performance penalties, and will discuss 
the trade offs among different methods of implementation. 

Programming for resource-constrained environments is another focus of this paper.  
Typically, it is very small or very large programs that run into resource limits of some 
kind.  Very large programs, such as database servers, may run into limits of disk space 
or virtual memory.  At the other extreme, an embedded application may be 
constrained to run in the ROM and RAM space provided by a single chip, perhaps a 
total of 64K of memory, or even smaller. 

Apart from the issues of resource limits, some programs must interface with system 
hardware on a very low level.  Historically the interfaces to hardware have been 
implemented as proprietary extensions to the compiler (often as macros).  This led to 
the situation that code has not been portable, even for programs written for a given 
environment, because each compiler for that environment has implemented different 
sets of extensions. 
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2 Overheads – C++ Cost of Using 
Features 

Does the C++ language have inherent complexities and overheads, which make it 
unsuitable for performance-critical applications?  For a program written in the C-
conforming subset of C++, will penalties in code size or execution speed result from 
using a C++ compiler instead of a C compiler?  Does C++ code necessarily result in 
"unexpected" functions being called at runtime, or are certain language features, like 
multiple inheritance or templates, just too expensive (in size or speed) to risk using?  
Do these features impose overheads even if they aren't explicitly used? 

•  Overheads from Inheritance 
•  Overheads from Exception Handling 

o Essential elements of all Exception Handling methods 
o Myths and Reality of Exception Handling Overhead 
o Predictability of Exception Handling Overhead 

•  Overheads from RTTI  
•  Overheads from Templates 
•  Overheads from Namespaces: 

Namespaces do not add space or time overheads to code.  They do, 
however, add some complexity to the rules for name lookup, and they 
add more characters to a program's source code (if only "using 
namespace std;").  Their advantage is that they provide a mechanism to 
partition large projects and so avoid name clashes. 

•  Overheads of New-style Casts: 

In addition to the syntax of casts in C, for example: 
int i = (int)3.14159;

Standard C++ adds four additional forms of casting, using syntax that 
looks like function-templates1 for example: 

int i = static_cast<int> ( 3.14159 );

The four syntactic forms are: 

� const_cast<Type>(expression)
� static_cast<Type>(expression)
� reinterpret_cast<Type>(expression)
� dynamic_cast<Type>(expression)

These perform the same functions as the C-style cast, which is still 
recognized, but distinguish between the different purposes for which a 

                                                 
1 Indeed, prototype implementations of the so-called new-style casts were often implemented as 
function-templates. 



Performance TR - Working Paper (DRAFT)  00-0058/N1281  
 
 

 Page 6 of 48 

cast is used.  The syntax of new casts is easier to identify in source 
code, and thus may contribute to programs that are more correct.  If the 
compiler does not provide new-style casts natively, it is possible to 
implement them using template functions. 

The first three forms of new-style cast have no size or speed penalty; 
versus the equivalent C-style cast notation.  dynamic_cast<T> may 
incur some overhead at run time, if the required conversion involves 
using RTTI mechanisms (e.g. cross-casting). 

It should also be pointed out that as in C, a cast may create a temporary 
object of the desired type, so casting can have run time implications. 

•  Compile-time evaluation, like locales in libraries. 

2.1 Overheads from Inheritance 

2.1.1 Overhead examples 
•  Run-time type identification (RTTI),  
•  multiple inheritance,  
•  virtual template member functions,  
•  virtual inheritance  
•  class hierarchies,  
•  Unnecessary costs for empty base,  

2.1.2 RTTI overheads 
•  Typically, a pointer to a type_info object is stored in a class's vtbl.  RTTI can 

only be used with classes, which have at least one virtual function 

•  One typical implementation costs one table per class; enough storage for class 
name ("typeid") plus five words 

•  In other words, something like 40 bytes times the number of classes in the 
application 

•  Often, RTTI is used with dynamic_cast; this requires exception handling 
(EH).  (Some implementations do allow RTTI without EH 

•  Whole-Program Analysis (WPA) can help; there is no need to generate RTTI 
tables for types not tested 

•  How about "partial-program analysis", such as "final"?  "This is my program, 
it's not a library for others"? 

•  Relevance of "Vortex" system?  (See Mike Ball) 

•  Don't forget, the savings for small, embedded applications is multiplied by 
number of devices targeted for the production run. 

•  inline is a PDO; so is usage of non-virtual functions. 

•  Overheads of Inheritance 
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•  A class without any virtual functions is equivalent to a simple C struct 
The size of an object of the class is the sum of the sizes of its data members, 
(plus any padding necessary  

•  Does inheritance by itself add overheads? 
In a typical implementation, data members of a base class will occupy space at 
the beginning of an object of a derived class. This need not cost any more data 
space than the alternate design of creating a data member of the base class 
type. In the simplest case inheritance may save in code size and execution 
speed, since delegating functionality to a member object requires pass-through 
functions in the containing class. Calls to non-virtual functions are resolved at 
compile time, so there is no run time penalty from single inheritance.  

•  Do virtual functions add overheads? 
Calls to virtual member functions are resolved at run time, depending on the 
dynamic type of the object.  In a typical implementation, each object in the 
hierarchy acquires an extra data member, a vptr, pointing to a vtbl listing the 
appropriate version of virtual functions for that class type.  So the cost of 
virtual functions is an extra data pointer per object, plus a vtbl per class. 

At run time, there is a cost of calling the virtual function by indirection 
through the vptr, indexing into the vtbl, and calling a function through a 
pointer.  This cost, in a typical implementation, adds approximately xxx [at a 
guess, 3 - 10] instruction cycles per call, compared with direct calls to a class-
specific function, resolved at compile time.  Alternate mechanisms of 
determining the appropriate function to call, such as an if-statement or 
switch/case block, also have their overheads, however.  If a virtual function is 
called repeatedly inside a tight loop, a possible programmer-directed 
optimization is to determine the runtime type of the object outside the time-
critical section, and use class-specific direct calls inside the loop. 

Question for compiler writers -- Does the vtbl add to code size, or static data 
size? Is there a vtbl per translation unit?  Can we give advice to implementors 
here?  Or to programmers?  Does a base class with all virtual functions defined 
inline result in vtbl bloat?  If the programmer defines at least one virtual 
function out-of-line, does that solve the problem?  Are there special 
considerations when virtual function tables appear in shared libraries? 

•  The principal disadvantage of virtual functions is that they prevent the 
compiler from inlining code, since the type of the object won't be known 
until run time.  

•  Here are my notes on Bjarne's tests: 
o BS – experiments to test overhead of virtual-functions: virtual-

functions on left branch of tree; virtual-functions on right branch 

o Static function calls are slightly faster than ordinary member functions 
(less than 25%) 
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o No significant difference in runtime speed between ordinary function 
calls, virtual function calls, and virtual function calls among different 
branches of MI. 

o Function calls are cheaper than they used to be (compared to inline) 

o Virtual function calls are cheaper relative to ordinary function calls 
than they used to me 

o Tested on three compilers (MS, Borland, EDG (?)) 

o Downcasts cost between three and four function calls. Independent of 
single or multiple inheritance, of which branch of MI, or of depth of 
MI. (looking at the algorithms, it’s probably executing those function 
calls). 

o Cross-casts are more expensive. A cross-cast costs between 6 and 50 
times a single function call, depending on the compiler.  They vary 
with how deep you start and finish in the hierarchy.  Each level adds 
about 60% to overhead. 

o These figures are a lot better than they were a couple of years ago. 

o People should make less use of inlining these days.  

o Later – forcing code out of cache, virtual function call (through a 
pointer) had overhead of 20% compared to plain function call.  Maybe 
even 30% if you do a lot of other work in the loop and in the function 
call and then factor it out.  But still no overhead in MI itself. 

2.1.3 Multiple Inheritance Overheads 
•  Properly implemented, multiple inheritance should have very little extra cost. 

[Bjarne ran some rough experiments at the Hawaii meeting.  IIRC, his stats 
showed that multiple inheritance adds about 3 or 4 cycles to each function 
call, just the cost of indirection.  He found no significant difference in calling 
functions inherited from the 'left' side of the tree vs. the 'right' side of the tree.] 

•  There is "offset adjustment" in virtual calls  

•  Using "thunks" for virtual calls should eliminate any overhead for classes that 
aren't multiply inherited (?)  

•  A pointer to a virtual member function requires an extra adjustment, but it is 
really minor.  

•  Virtual base classes add  
[Mike can find literature references] 

2.1.4 Virtual Template Function Overheads 
•  Virtual functions of a template class can create an overhead 
•  Consider a template named facet, which has a virtual member function numput 
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•  Every time facet is instantiated it generates virtual member functions 
•  A bad library implementation could produce hundreds of Kbytes 
•  It's a library modularity issue: putting code into the template when it doesn't 

depend on template parameters, when it could be separate code, may cause 
each instantiation to contain large redundant code sequences.  Suggestion: use 
non-template helper functions.  (Another PDO.) 

2.1.5 Virtual Inheritance Overheads 
[???  No notes]  

2.1.6 Class Hierarchies Overheads 
[???  No notes] 

2.1.7 Unnecessary costs for empty base Overheads 
[???  No notes] 

2.2 Overheads from Exception Handling 

2.2.1 Essential elements of all exception handling 
implementations.  

•  try 
Establish context for associated catch clauses. 

•  catch 
Run-time type information for finding catch clauses at throw time. 

Overlapping but not identical information to that needed by RTTI 
features for thrown types.  Must be able to match derived classes to 
base classes even for types without virtual functions, and to identify 
built-in types such as int.  Conversion from base to derived classes 
(down-casting) not needed. 

•  Cleanup of handled exceptions.  
Exceptions, which are not re-thrown, must be destroyed upon exit of the catch 
block. 

"Magic memory" for exception object must be returned to the exception-
handling system. 

•  Automatic and temporary objects with non-trivial destructors. 
Destructor must be called if an exception occurs after construction and before 
destruction, even if no try/catch is present. 

•  All objects with non-trivial constructor and destructor. 
All completely constructed base classes and sub-objects must be destroyed if 
an exception occurs. 
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•  throw 
"Magic memory" must be allocated to hold a copy of the exception object 
exception object must be copied. 

Closest matching catch clause must be found. 

Intervening destructors must be executed. 

•  Enforcing exception specifications. 
Conformance of thrown type to list of specified types must be checked. 

Unexpected handler must be called if a mismatch is detected. 

A similar mechanism to the one implementing try/catch can be used. 

•  Operator new. 

Corresponding operator delete must be called if an exception is thrown from 
constructor. 

A similar mechanism to the one implementing try/catch can be used. 

Implementations vary in how costs are allocated across these elements.  Two typical 
strategies are the "dynamic" and "static" approaches. 

2.2.1.1 The "dynamic" approach. 
•  try 

Save the execution environment and reference to catch code on EH stack at try 
block entry (by calling setjmp or equivalent). 

•  Automatic and temporary objects with non-trivial destructors. 
Push constructed objects with address of their destructors onto a stack for later 
destruction.  Remove them upon destruction.  Typical implementations use a 
linked list for the stack. 

•  All objects with non-trivial constructor and destructor. 
One known implementation increments a counter for each base class and sub-
object, which is constructed.  If an exception is thrown during construction, 
the counter indicates which parts need to be destroyed. 

•  throw 
Pop objects from the stack and destroy them until a reference to catch code is 
found. 

Restore execution environment of nearest handler (by calling longjmp or 
equivalent). 
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Advantages: simple, portable, and compatible with C backends. 

Disadvantages: stack space and run time costs for try block entry and bookkeeping for 
auto and temporary objects as the EH stack is modified. 

One vendor reports speed impact of about 6% for a C++ to ANSI C translator. 
Another vendor reports that speed and stack space impacts can be greatly reduced by 
fine-tuning the code for saving the execution environment and doing object 
bookkeeping - N.B. these are strictly off-the-cuff estimates. 

2.2.1.2 The "static" approach 
Translator generates read-only tables for locating catch clauses and objects needing 
destruction. 

•  try 
No runtime cost. All bookkeeping pre-computed as a mapping between 
program counter and code to be executed in case of an exception.  Tables 
increase image size but may be moved away from working set to improve 
locality.  Tables can be placed in ROM, and remain swapped out on VM 
systems until an exception is actually thrown. 

•  Automatic and temporary objects with non-trivial destructors. 
No runtime cost, same reasons. 

•  All objects with non-trivial constructor and destructor. 

No runtime cost, same reasons. 

•  throw 
Search tables to locate matching handlers and intervening objects needing 
destruction. 

Advantages: no stack space or run time costs for try/catch and object 
bookkeeping. 

Disadvantages: more difficult to implement. 

One vendor reports a code and data space impact of about 15% for the generated 
tables. This is an upper limit, since in the vendor’s environment there was no need to 
reduce the image size of programs as long as the working set wasn’t increased. N.B. 
these are strictly off-the-cuff estimates. 

2.2.1.3 Exception specifications 
The need to enforce specifications at runtime has costs as described above.  However, 
they can allow optimization of other code by making catch clauses unreachable and 
violations of other exception specifications impossible.  Empty throw specifications 
are especially helpful for optimization. 
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2.2.1.4 The "you don’t pay for what you don’t use" principle 
Exception handling in general imposes costs even if it is not used.  For example, a 
function, which constructs automatic objects and then calls a function, which cannot 
be proven by the compiler not to throw an exception, will incur object bookkeeping 
(in the static approach, data space, in the dynamic approach, runtime and stack space).  
An optimization is available, however, with the static approach: exception tables and 
runtime support code can be stripped at link time if no exceptions are thrown in an 
entire program.  This would eliminate all costs associated with EH. 

2.2.1.5 Other error-handling strategies 
All approaches to error-handling including error-return codes, global error values, 
process termination and ignoring errors have associated costs in run time, data space, 
program correctness maintenance and readability.  In evaluating the costs of 
exception-handling the costs of the alternatives should not be ignored. 

2.2.1.6 Missing stuff 
There were some items discussed in the working group, which we were unable to 
flesh out.  These included: 

•  Advice to implementers, specifically references to literature on EH (e.g. ‘C’ 
Language Translation). 

•  Potential implementation pitfalls. 
•  A comparison of the costs of other strategies. 

2.2.2 Myths and Reality of Exception Handling Overhead 

2.2.2.1 Preliminary remarks 
Exception Handling provides a systematic and robust approach to error handling.  As 
opposed to the traditional C style of indicating run time problems by returning an 
error code, which must be checked at every point a function is invoked, EH isolates 
the rare problem-handling code from the normal flow of program execution.  
Automatic destruction of stack objects when an exception is thrown renders a 
program less likely to leak memory or other resources.  And with EH, once a problem 
is identified, it can't be ignored -- failure to catch and handle an exception results in 
program termination.  

Early implementations of Exception Handling resulted in sizable increases in code 
size.  This led some programmers to avoid it and compiler vendors to provide 
switches to suppress the feature.  In some embedded and resource-constrained 
environments, EH was deliberately excluded. 

It is difficult to discuss about EH overheads without a rough idea about possible 
implementations. 
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Distinguish between: 

•  Try overhead: data and code that must be generated for and/or executed at 
try/catch time (that is getting ready for catching exceptions that may never 
occur): this is actually the true overhead. 

•  Regular function overhead: data and code that must be generated for and/or 
executed by the functions which do not themselves invoke any exception 
related feature (breaking the "pay as you go" principle). 

•  Throw cost: data and code that are generated and executed when throwing an 
exception.  This can hardly be regarded as an overhead!  But there may be 
different implementations, with different cost, the value of which depends on 
various criteria. 

2.2.2.2 Compile-time overhead 
•  Compilation is more difficult, depending on the complexity of the 

implementation 

•  Some compile-time optimizations may become trickier (or even impossible?): 
o we need examples 

2.2.2.3 Run-time Overhead 
Two main strategies: setjmp model and table model.. 

2.2.2.3.1 Space Overhead 
•  The size of the objects does not need any modification  
•  EH implies a (weak) form of RTTI, thus increasing the code size.  
•  Setjmp model implies code generation for try/catch  
•  Table model implies static data generation  
•  Setjmp model implies dynamic data structures to  
•  Handle the jmp_buf environments and their mapping to catches  
•  Register the local objects to be destroyed  
•  Handle the throw specifications of the functions, which have been called 

2.2.2.3.2 Time Overhead 
Setjmp Model 

•  At try/catch time  
•  Stack the jum_buf environments  
•  When calling regular functions  
•  Register the functions that are called (for throw spec checks)  
•  Register the local objects when they are created  
•  During a throw  
•  Find the environment to do a longjmp to (this involves some RTTI-like check)  
•  Destroy the registered local objects  
•  Check the throw specifications of the functions called in-between 
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Table Model 

•  At try/catch time  
•  No overhead at all  
•  When calling regular functions  
•  No overhead at all  
•  During a throw  
•  Go upwards the stack frame, and for each frame  
•  Check in the table whether we have a catch clause for the exception at this 

frame level (this involves some RTTI-like check) and if so execute it  
•  Otherwise,  

o Locate the corresponding function in the static table (O(log F), F being 
the number of functions)  

o Destroy the constructed local objects (the static offsets of which are 
found in the table, the set of which depends on the program counter 
value)  

o Check the throw specification 

2.2.3 Predictability of Exception Handling Overhead 

2.2.3.1 Prediction of throw/catch performance 
In the Embedded C++ rationale (http://www.caravan.net/ec2plus/rationale.html), one 
of the reservations expressed about EH is the unpredictable time that may elapse after 
a throw and before control passes to the catch clause, while automatic objects are 
being destroyed.  It is important in some systems to be able to predict accurately how 
long operations will take. 

I don't know how to address this issue. I don't see how it's different from estimating 
the time taken to destroy automatic objects at the end of a scope. But then I don't 
know anything about embedded programming. 

Another reservation in the EC++ rationale concerned the memory footprint of the 
necessary data structures.  

2.2.3.2 Empty throw spec considerations 
Can empty throw specs help a compiler produce more optimal code? 

It should reduce overhead to zero, if called functions cannot throw 

And some current compilers are able to do this, when given an empty throw spec 
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However, a poor implementation can produce worse code when it produces an extra 
try-catch for functions that don't need it. 

Example: 
int g() throw();

void f() {
int n = g(); --->
// Rewritten like this …
// int n;
// try {
// n = g();
// } catch (...) {
// terminate();
// }

}

2.2.3.3 Comparisons between "Table" model and "Longjmp" model 
Some implementations support both the "Table" model and the "Longjmp" model, 
such as Edison Design Group (?) or Cygnus (?).  Maybe some comparisons could be 
made from their generated code. 

Table Model 

•  Discuss implementation complexity. 
•  Some of the job is front-end, parsing the language. 
•  Most of the job is back-end, building tables, intermediate representations, 1-2 

man-months (?). 
•  Another cost of EH is its interaction with optimization levels.  Often it 

increases the bug level of the higher optimization levels. 
•  Another factor is predictability. Especially for small to medium embedded 

apps, it's important to be able to estimate resources.  What assistance can we 
give with ability to make accurate estimates for time and space? 

2.2.4 How do we characterize application areas? 
Embedded Systems: 

We consider there are the following types of consumer based application 
areas.  

o small 
use single chips(include ROM/RAM in a chip).  For example: Engine 
Control for Automobile  

o medium 
use external ROM/RAM, the size is limited  

o large 
use external ROM/RAM, the size is unlimited 
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SCALE RAM ROM TIMING 

small 
(engine control) 32K 

256K 
(program code 
128K) 

Minimum cycle of 
engines (3msec) 
(ex. 10000rpm, 4cylinders) 

medium 
(digital handy 
VCR) 

1M 
(program data 
32K) 

256K-512K 1 refresh time (8msec for the 
vertical) 

large 
(PDA) 2M(minimum) 2M(minimum) N.A. (depend on user's sense)

Servers: 
We consider there are the following types of server application areas. 

o Small 
32 MB RAM (?)  

o medium 
256 MB RAM (?)  

o large 
(?) 

In server applications, the performance-critical resources are typically speed 
(transactions per second?), and working-set size (which also impacts 
throughput speed). 

2.3 Overheads from Templates 

2.3.1 Template overheads 
•  Do templates cause code bloat? 

Template classes or functions will generate a new instantiation of code every 
time a different argument type (or combination of types) is used in the 
program.  This can potentially lead to an unexpectedly large code size.  A 
typical way to cause this problem is to create a number of Standard Library 
containers to hold pointers of various types.  Each type causes an extra set of 
code to be instantiated. 

In an experiment [run by Tom Plum in Hawaii] a program instantiating 100 
instances of std::list of pointers to a single type was compared with a second 
program instantiating list<T*> for 100 different types of T.  These programs 
were compiled with a number of different compilers and command-line 
options.  With one compiler, the second program produced code over 19 times 
as large as the first program.  With a different compiler, the first program was 
larger by a factor of less than 3. 
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I still have all the numbers in my notes, if anyone wants them, but it would 
probably be better to run a new series of carefully controlled experiments. 

It is possible for the compiler or linker to perform this optimization 
automatically [albeit with longer build times], but without tool support, 
optimization can also be performed by the Standard Library implementation or 
by the application programmer. If the compiler supports partial specialization 
and member template functions [hope I've got that accurate], the library 
implementor can partially specialize containers of pointers to use a single 
underlying instantiation for void *.  This technique is described in C++PL 3rd 
edition [and has been implemented by H--- H---- in the M---- library, with 
excellent results].  As a programmer-directed optimization, it is possible to 
write a template class called, perhaps, plist<T>, containing a list<void *> 
member to which all operations are delegated.  Source code must then refer to 
plists rather than Standard lists, so the technique is not transparent, but it is 
workable. 

2.3.2 Templates vs Inheritance 
•  Any non-trivial program needs to deal with data structures and algorithms. 

Because data structures and algorithms are so fundamental, it's important that 
their use be as simple and error-free as possible.  

•  The template containers in the Standard C++ Library are based on principles 
of generic programming, rather than the "object oriented" approach used in 
other languages such as Smalltalk.  An early set of foundation classes for C++, 
called the National Institutes of Health Class Library, was based on a class 
hierarchy in the Smalltalk tradition. 

[See Data Abstraction and Object Oriented Programming in C++, by Keith 
Gorlen, et al., 1990. As there were no "standard" C++ classes in the early 
days, and because NIHCL was freely usable, having been funded by the US 
Government, it had a lot of influence on design styles in C++ in subsequent 
years.] 

Of course, this was before compilers could handle complicated uses of 
templates.  

•  In the NIH library, all classes in the tree inherit from a root Object class, 
which defines interfaces for identifying the real class of an object, comparing 
objects, and printing objects.  [The Object class itself inherits from class 
NIHCL, which encapsulates some static data members used by all classes.]  
Most of these functions are virtual, and must be overridden by derived classes.  
The hierarchy also includes a Class class, to provide a library implementation 
of RTTI (which was not then part of the language).  The Collection classes, 
themselves derived from Object, can hold only other objects derived from 
Object which implement the necessary virtual functions. 
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Here is a portion of the hierarchy tree from NIHCL (taken from the README 
file): 

NIHCL - Library Static Member Variables and Functions
Object - Root of the NIH Class Library Inheritance Tree

Bitset - Set of Small Integers (like Pascal's type SET)
Class - Class Descriptor
Collection - Abstract Class for Collections

Arraychar - Byte Array
ArrayOb - Array of Object Pointers
Bag - Unordered Collection of Objects
SeqCltn - Abstract Class for Ordered, Indexed

Collections
Heap - Min-Max Heap of Object Pointers
LinkedList - Singly-Linked List
OrderedCltn - Ordered Collection of Object

Pointers
SortedCltn - Sorted Collection

KeySortCltn - Keyed Sorted Collection
Stack - Stack of Object Pointers

Set - Unordered Collection of Non-Duplicate Objects
Dictionary - Set of Associations

IdentDict - Dictionary Keyed by Object
Address

IdentSet - Set Keyed by Object Address
Float - Floating Point Number
Fraction - Rational Arithmetic
Integer - Integer Number Object
Iterator - Collection Iterator
Link - Abstract Class for LinkedList Links

LinkOb - Link Containing Object Pointer
LookupKey - Abstract Class for Dictionary Associations

Assoc - Association of Object Pointers
AssocInt - Association of Object Pointer with

Integer
Nil - The Nil Object
Vector - Abstract Class for Vectors

BitVec - Bit Vector
ByteVec - Byte Vector
ShortVec - Short Integer Vector
IntVec - Integer Vector
LongVec - Long Integer Vector
FloatVec - Floating Point Vector
DoubleVec - Double-Precision Floating Point Vector

•  Thus the KeySortCltn class, roughly equivalent to std::map, is seven layers 
deep in the hierarchy: 

NIHCL
Object

Collection
SeqCltn

OrderedCltn
SortedCltn

KeySortCltn

•  Because a linker cannot know which virtual functions will be called at 
runtime, it typically includes the functions from all levels of the hierarchy in 
the executable program.  This can lead to code bloat without templates. 
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•  There are other performance disadvantages to "object oriented" collection 
classes.  One of these is that primitive types cannot be inserted into the 
collections.  These must be replaced with classes in the Object hierarchy, 
which are programmed to have similar behavior to primitive arithmetic types, 
such as Integer and Float.  This circumvents processor optimizations for 
arithmetic operations on primitive types. It is also difficult to provide exact 
duplicates of arithmetic behavior through class member functions and 
operators. 

•  Because C++ has compile-time type checking, providing type-safe containers 
for different contained data types requires code to be duplicated, for the same 
reason that template containers are instantiated multiple times.  To avoid this 
duplication of code, the NIHCL collections hold pointers to the base Object 
class, a generic type.  However, this is not type safe, and requires run-time 
checks to ensure objects are type compatible with the contents of the 
collections.  It also leads to many more dynamic memory allocations, which 
can hinder performance. 

•  Because classes to be used with the NIHCL must inherit from Object and 
implement a number of virtual functions, this solution is intrusive on the 
design of classes from the domain.  The C++ Standard Library containers do 
not impose such requirements on their contents.  [A class used in a container 
must be Assignable and CopyConstructable; often it additionally needs to 
have a default constructor and implement operator== and operator<.]  The 
obligation to inherit from class Object often means that using Multiple 
Inheritance becomes necessary for this reason alone, since domain classes may 
have their own hierarchical organization. 

•  The C++ Standard Library lays out a set of principles for combining data 
structures and algorithms from different sources.  Inheritance-based libraries 
from different vendors, where the algorithms are member functions of the 
containers, can be difficult to integrate and difficult to extend. 

Templates can provide powerful facilities for evaluation at compile-time.  Doing more 
of the work at compile time means less work at run time. 

Hints can be exchanged between the compiler and the library, to select a more 
efficient specialization, or to select linkage with a reduced-footprint version of the 
library.  In C, it's possible to optimise printf this way: 

When you see printf, if __crt_float is defined, then invoke printf_float, else invoke 
printf_int.  Defining a float f; has the side effect of defining __crt_float. 
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3 Performance – Techniques & 
Strategies 

Description of current approaches 

•  Code generation control, including memory placement, initialization 
characteristics, et al. 

•  #pragma, other language modifications 
•  Application of measurement results in making choices 
•  Transforming virtual calls into non-virtual calls 
•  Alternatives to exception handling 
•  Effects of restrictions upon character types 
•  Characterization of performance guarantees 
•  Coding style can Affect Performance 

3.1 Programmer Directed Optimisations 
Programmers are sometimes surprised when their programs call functions they haven't 
specified, maybe even haven't written.  Understanding what a C++ program is doing 
is important for optimisation. 

•  Shift expensive computations from the most time-critical parts of a program to 
the least time-critical parts (often, but not always, program start-up).  

•  Whenever possible, compute values and catch errors at translation time rather 
than run time.  

•  Know what functions the C++ compiler silently generates and calls.  Simply 
defining a variable of some class type may invoke a potentially expensive 
constructor function.  As a general principle, don't define a variable before you 
are ready to initialise it.  This prevents initialising the variable twice.  

•  In constructors, prefer initialisation of data members to assignment.  These are 
the steps taken to construct a variable of class type: first, any initialisations 
specified in the member initialisation list are performed.  Next, other members 
of class type (but not primitive types) are initialised by their default 
constructor, if one is available.  Only then is the body of the constructor 
executed.  

•  Passing arguments to a function by value [e.g. void f(T x) ] is cheap for 
built-in types, but potentially expensive for class types, since the copy 
constructor may be non-trivial.  Passing by address [e.g. void f(T* x) ] is 
light-weight, but changes the way the function is called, and exposes the 
passed object to modification by the called function.  Passing by reference-to-
const [e.g. void f(T const& x) ] combines the safety of passing by 
value with the efficiency of passing by address.  But be careful not to create 
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unnecessary temporary objects, by using an argument, which must be 
converted to the type of the function parameter.  

•  Unless you need automatic type conversions, make all one-argument 
constructors explicit.  This will prevent calling them accidentally.  
Conversions can still be done by specifying them in the code, without 
performance penalty.  

•  Understand how and when the compiler generates temporary objects. Often 
small changes in coding style can prevent the creation of temporaries, with 
beneficial effects on run time speed and memory footprint. Temporary objects 
may be generated when passing parameters to functions, returning values from 
functions, or initialising objects.  Sometimes it is helpful to widen a class's 
interface with functions that take different data types to prevent automatic 
conversions (such as adding an overload on char * to a function which takes a 
std::string parameter).  

•  Rewriting expressions can reduce or eliminate any need for temporary objects. 
If a, b, and c are objects of class T: 

T a; // inefficient: don't create an object
// before its initialization is really

a = b + c; // inefficient: (b + c) creates a
// temporary object and then assigns it
// to a

T a( b ); a += c; // no temporary objects created

•  Use the return value optimization to give the compiler a hint that temporary 
objects can be eliminated.  The trick is to return constructor arguments instead 
of objects, like this: 

const Rational operator * ( Rational const & lhs,
Rational const & rhs )

{
return Rational( lhs.numerator() * rhs.numerator(),

lhs.denominator() * rhs.denominator() );
}

Less carefully written code might create a local Rational variable to hold the 
result of the calculation, then use the assignment operator to copy it to a 
temporary variable holding the return value, then copy that into a variable in 
the calling function.  But with these hints, the compiler is able to construct the 
return value directly into the variable, which is specified to receive it. 

•  Prefer pre-increment and -decrement to postfix operators.  Postfix operators 
(i++) copy the existing value to a temporary object, increment the internal 
value, and then return the temporary.  Prefix operators (++i) increment the 
value and return a reference to it. With objects such as iterators, creating 
temporary copies is expensive compared to built-in ints.  

•  Use direct initialization ( T a(b); ) rather than copy initialization ( T a = b; ). 
The latter syntax may create a temporary object, but the former does not.  



Performance TR - Working Paper (DRAFT)  00-0058/N1281  
 
 

 Page 23 of 48 

•  Dynamic memory allocation and deallocation can be a bottleneck.  Consider 
writing class-specific operator new() and operator delete() functions, 
optimized for objects of a specific size.  It may be possible to recycle blocks of 
memory instead of releasing them back to the heap when an object goes out of 
scope. 

•  The Standard string class is not a lightweight component. Because it has a lot 
of functionality, it comes with a certain amount of overhead (and because 
Standard Library container classes throw C++ strings, not C-style string 
literals, this overhead may be included in a program inadvertently).  In many 
applications, strings are created, stored, and referenced, but never changed.  
As an extension, or as a programmer-directed optimization, it might be useful 
to create a lighter-weight unchangeable-string class.  

•  Reference counting is widely used as an optimization technique.  In a single-
threaded application, it can prevent making unnecessary copies of objects.  But 
in multi-threaded situations, the overhead of locking the shared data 
representation may add unnecessary overheads. 

An old rule of thumb is that there is a trade-off between program size and execution 
speed -- that techniques such as declaring code inline can make the program larger 
but faster.  But now that processors make extensive use of on-board cache and 
instruction pipelines, the smallest code is often the fastest as well. 

Compilers typically use a heuristic process in optimising code, and it may be different 
for small and large programs.  Therefore, it is difficult to recommend any techniques, 
which are guaranteed to improve performance in all environments.  It is vitally 
important to measure a performance-critical application in the target environment and 
concentrate on improving performance where bottlenecks are discovered. 

3.2 ROM-ability 
ROM-ability is important for embedded programs whose code and data must be 
stored in ROM.  Objects without const-qualifier can be modified.  Both ROM and 
RAM area must be allocated for such objects, if they have constant initialisation.  The 
definition of ROM-able object here is an object that needs only ROM area. 

The embedded programs whose memories are very tight require the compilers to 
identify strictly ROM-able objects and allocate ROM area only for them. 

3.2.1 ROM-able objects 
The following objects should be ROM-able: 

3.2.1.1 <User-defined objects> 
The const-qualified objects that are initialised with constant expressions.  Examples: 

•  The aggregate (IS 8.5.1) object with static storage duration (3.7.1) whose 
initialisers are all constants 

static const int tab[] = {1,2,3};
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•  Scalar type objects with external linkage  
Although scalar type objects with internal linkage are ROM-able, if they are 
not used for initialization or assignment of pointer/reference variables, only 
values are used at the time of compilation, i.e., object data areas are not 
allocated. 

Therefore, it is not expected to allocate data area for such objects even in 
ROM area [Note: Objects which are const-qualified and are not explicitly 
declared to be extern have internal linkage(7.1.5.1)]. 

extern const int a = 1; // extern linkage
const int b = 1; // internal linkage
const int *c = &b; // variable b should be allocated
const int tbsize = 256; // it is expected that tbsize is not

// allocated at run-time
char ctb[tbsize];

•  String literals 
String literals are const-qualified array of char (IS 2.13.4), and so they are 
ROM-able.  But when it is used as the initializer of a character array, and the 
variable to be initialized is not a const-qualified array of char, it is not ROM-
able. 

const char *str1 = "abc"; // ROM-able
char str2[] = "abc"; // not ROM-able

3.2.1.2 <Compiler-generated objects> 
•  Virtual function tables 

If the virtual function of a class becomes static after linkage, it is expected that 
the table is ROM-able. 

•  Jump tables for switch statements 
If a jump table is generated to implement switch statement, the table is 
expected to be ROM-able. 

•  Type identification tables 

When a table is generated to identify RTTI types, the table is expected to be 
ROM-able. 

•  Exception tables 
When exception handling is implemented by a static table, it is expected that 
the table is ROM-able. 

•  Reference to constants 
If a constant expression is specified as the initialiser for a const-qualified 
reference, a temporary object is generated (8.5.3). 
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This temporary object is expected to be allocated to ROM. 
const double & a = 2.0; // interpreted as follows
static const double tb = 2.0; // tb can be in ROM
const double & b = tb;

•  Initialisers for aggregate objects with automatic storage duration 
If all initialisers for an aggregate object that has automatic storage duration are 
constant expressions, a temporary object that has the value of the constant 
expressions and a code that copies the value of the temporary object to the 
aggregate object may be generated. 

This temporary object is expected to be allocated to ROM. 
void test() {

struct A {int a,b,c;};
A a = {1,2,3}; // may be interpreted as:
static const A tb = {1,2,3}; // tb can be in ROM
A b = tb;

}

•  constants generated during code generation 
Some constants such as integer constants, floating point constants and address 
constants may not be the part of instruction code but the data. These data are 
stored in memory and loaded when they are used. 

They are expected to be allocated to ROM. 
void test() {

double a;
a += 1.0; // may be interpreted as:
static const double t = 1.0; // t can be in ROM
const double *tp = &t;
a += *tp;

}

3.2.2 Constructors and ROM-able objects 
Even though constant expressions are specified as the initialisers for all the members 
of const qualified class object that has user-declared constructors (12.1), the 
initialisation will be done dynamically in general.  But in this case, because the 
initialisation can be done statically by analysing the constructors, the optimisation so 
as to allocate the class object to ROM is expected to be implemented. 

class A { public:
int a;
A(int v) : a(v) { }

};
const A tab[2] = {1,2};

3.2.3 Guide for Users 
Even though constant expressions are specified as the initialisers for all the members 
of const qualified class object that has constructors, the initialisation will be done 
dynamically in general. 
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Note that such class object may not be expected to ROM. 
class A { public:

int a;
A(int v) : a(v) { }

};
const A tab[2] = {1,2}; // A(int) may be used for initialisation

A class object which has private member, destructor, base-class or virtual function 
should not be initialised statically (8.5.1).  Also, a class object that has non-POD type 
members will be initialised dynamically (IS 12.6.1). 

class complex {
// ...

public:
complex(double);
// ...

};
class X { public:

int i;
complex c;

};
const X x = {99,77.7}; // complex(double) is applied for X.c
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4 Embedded Systems – Special Needs 
4.1 BASIC I/O HARDWARE ADDRESSING 

4.1.1 Scope 
As the C language has matured over the years various extensions for doing basic I/O 
hardware register addressing have been added to address limitations and weaknesses 
in the language, and today almost all C compilers for freestanding environments and 
embedded systems support direct access to I/O hardware registers from the C source 
level.  However, these extensions have not been consistent across dialects.  As a 
growing number of C++ compiler vendors are now entering the same market, the 
same I/O driver portability problems become apparent for C++. 

This Technical Report is a step towards codifying common existing practice in the 
market and providing a single uniform syntax for basic I/O hardware register 
addressing. 

4.1.2 Rationale 
Ideally, it should be possible to compile C or C++ source code, which operates 
directly on I/O hardware, registers with different compiler implementations for 
different platforms and get the same logical behaviour at runtime.  As a simple 
portability goal the driver source code for a given I/O hardware should be portable to 
all processor architectures where hardware itself can be connected. 
The problem areas are the same for C and C++, and the standardization method 
proposed is applicable for both languages. 

4.1.3 Standardization objectives 

4.1.3.1 Basic requirements 
A standardization method for basic I/O hardware addressing must be able to fulfil 
three requirements at the same time: 

•  The standardized syntax must not prevent compilers from producing machine 
code with absolutely no overhead compared to the code produced by the 
existing non-standardized solutions.  This speed requirement is essential in 
order to get widespread acceptance from the market 

•  The I/O driver source code modules should be completely portable to any 
processor system (from 8-bit systems and up) without needing any 
modification to the driver source code itself.  I.e. the syntax should promote 
I/O driver source code portability across different execution environments 

•  The syntax should provide an encapsulation of the underlying access 
mechanisms to allow different access methods, different processor 
architectures, and different bus systems to be used with the same I/O driver 
source code 



Performance TR - Working Paper (DRAFT)  00-0058/N1281  
 
 

 Page 28 of 48 

I.e. the standardization method should separate the characteristics of the I/O 
register itself from the characteristics of the underlying execution environment 
(processor architecture, bus system, addresses, alignment, endian, etc.) 

4.1.3.2 New perception of I/O registers simplifies the syntax 
standardization. 

There have been several different attempts to create an international standard for the 
general syntax for basic I/O operations over the years, but these all failed to meet the 
special requirements of the embedded market and the market for freestanding 
environments. 

The major reason for this is twofold: 1) that I/O registers have usually been treated as 
another type of “memory” and 2) that I/O register access has been thought of as 
something related to processor busses and address ranges. 

The I/O standardization method used here overcomes these limitations by treating I/O 
registers as individual objects with individual properties which are fixed and 
independent of both the compiler implementation and the surrounding processor 
system.   
It is worth noting that although the overall aim in standardizing basic I/O hardware 
addressing is to promote portability of library source code, the major challenge is to 
provide a standardized solution which does not reduce execution performance, 
especially with respect to speed and code size overheads. 

It is important to keep in mind that standardized I/O access does not mean 
standardized hardware.  The goal is to standardize the syntax for I/O operations, not 
their platform functionality. 

4.1.3.3 Typical I/O register characteristics  
An I/O register has a fixed size and endian, which are independent of how standard C 
types are implemented by different compiler vendors and independent of the access 
methods supported by different processor architectures and bus systems. 

Most important is the fact that I/O registers do not usually behave like memory cells.  
I/O registers have special individual characteristics: 

•  write-only (Unidirectional) 
•  read-only (Unidirectional) 
•  read-once (New data at each read) 
•  write-once (Each write triggers a new event) 
•  read-write (Bi-directional, but read != write) 
•  read-modify-write (Memory like) 

Individual bits in an I/O register may have individual characteristics.  Only true read-
modify-write registers behave like memory cells.  The above list also shows that the 
default should be that I/O registers be treated as volatile data types. 
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4.1.3.4 Access method encapsulation 
Since processor architectures and hardware platforms ARE different, standardization 
must also provide a method of separating the description of the hardware differences 
and addressing methods from the source-code.  The standardization method should 
encapsulate descriptions of hardware differences, e.g. in a separate header file. 

The best way to encapsulate differences in allowed I/O access methods, and at the 
same time to create a uniform syntax for I/O access, is by using a few standardized 
I/O functions (or class member functions).  This corresponds to the way encapsulation 
is done in the spirit of C/C++.  (The functions may be implemented as in-line 
functions, macros, or templates for speed optimisation.) 

4.1.3.5 Reduced basic operation set  
Normally, arithmetic operations on I/O registers cannot be performed or have no 
logical meaning.  Often read-modify-write operations on I/O registers are prohibited 
by the actual hardware.  Operators like: +=, -=, *=, /=, >>=, <<=, ++, --, etc. are only 
meaningful where the I/O register and the bus architecture both allow read-modify-
write operations.  These natural access limitations make it obvious that a standard 
only has to define functions for the most basic operations on I/O registers. 

A standardization method must define basic read and write operations as a minimum.  
In addition, the iohw header includes functions for the most common I/O register 
operations: set, clear, and invert for one or more register bits. 

The programmer can build all other arithmetic and logical operations on top of these 
few basic I/O access operations. 

4.1.3.6 Handling of intrinsic types 
With many existing processor architectures, I/O register access often requires the use 
of special machine instructions to operate on special I/O address ranges. 

This means that an extension of the type system is needed so that I/O registers can be 
accessed from the C/C++ source level.  If a function-syntax is used for standardized 
I/O access, all use of processor and platform specific I/O access types 
(implementation specific types) will be limited to the implementation of these basic 
I/O functions and to the definition of the access type for a register object. 

In this way, the language can define a basic I/O hardware addressing syntax that is 
portable to any processor system, without extending the type system defined by the 
C/C++ standard. 

It is worth noting that although a function syntax makes basic I/O hardware 
addressing functions look like traditional library functions (API functions), the main 
underlying intention is to create a portable way of extending the type system with 
compiler (processor and platform) specific access types. 
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4.2 Basic concepts 

4.2.1 Simple conceptual model for I/O registers 
The I/O syntax standardization method creates a conceptually simple model for I/O 
registers: 

Symbolic name for I/O port = I/O register object definition. 

Example: 
#include <iohw>
unsigned char mybuf[10];
//..
iowr8(MYPORT1, 0x8); // write single register
for (int i = 0; i < 10; i++)

mybuf[i] = iordbuf8(MYPORT2, i); // read register array

The programmer only sees the characteristics of the I/O register itself.  The 
underlying platform, bus architecture, and compiler implementation do not matter 
during driver programming.  The underlying system hardware may later be changed 
without modifications to the I/O driver source code being necessary. 

4.2.2 The access_type parameter 
A new access_type type is used by the standardized I/O functions. 

Example: 
uint_8t iord8(access_type); // Read from I/O register
void iowr8(access_type, uint_8t); // Write to I/O register

The access_type parameter represents or references a complete description of how 
the I/O hardware register should be addressed in the given hardware platform.  It is 
an abstract type with a well-defined behaviour. 
The implementation of access_types will be processor and platform specific.  The 
definition of an I/O register object may or may not require a memory instantiation, 
depending on how a compiler vendor has chosen to implement access_types.  For 
maximum performance, this could be a simple definition based on compiler specific 
address range and type qualifiers, in which case no instantiation of an access_type 
object would be needed in data memory. 

Footnote: This use of an abstract type is similar to the philosophy behind the well-
known FILE type.  Some general properties for FILE and streams are defined in the 
standard, but the standard deliberately avoids telling how the underlying file system 
should be implemented or initialised. 

4.2.3 Exact sized data types 
The data parameter and return parameters used in the I/O functions are integer data 
types with an exact (minimum) bit precision. 

I/O registers have a fixed size independent of how a compiler implements the standard 
integer types.  Data values for use with I/O registers should therefore always have an 
exact (minimum) size independent of the compiler implementation. 



Performance TR - Working Paper (DRAFT)  00-0058/N1281  
 
 

 Page 31 of 48 

Another reason for the exact-sized types is to allow the programmer to decide what 
precision is needed by the application.  A programmer can then do code optimisation 
without the risk of running into the portability problems which exist with the old int 
and long types. 

For instance, with smaller processor architectures it is often very performance 
expensive, with respect to execution speed and code size, if a program uses integer 
data types with a precision greater than needed by the application.  Fixed sized data 
types are therefore a performance issue and not just related to I/O.   

The exact-sized data types are currently defined in the header file <stdint.h> 
(ISO/IEC 99 Programming Language C).  It is suggested that these types be adopted 
by C++. 

4.2.4 I/O initialisation 
With respect to the standardization process, it is important to make a clear distinction 
between I/O hardware (chip) related initialisation and platform related initialisation.  
Typically, three types of initialisation are related to I/O: 

•  I/O hardware (chip) initialisation. 
•  I/O selector initialisation. 
•  I/O access initialisation. 

Here only I/O access initialisation (3) is relevant for basic I/O hardware addressing. 

I/O hardware initialisation is a natural part of a hardware driver and should always be 
considered as a part of the I/O driver application itself.  This initialisation is done 
using the standard functions for basic I/O hardware addressing.  I/O hardware 
initialisation is therefore not a topic for this standardization process. 

I/O selector initialisation is used when, for instance, the same I/O driver code needs to 
service multiple I/O hardware chips of the same type. 

One solution is to define multiple access_type objects, one for each of the hardware 
chips, and then have the access_type passed to the driver functions from a calling 
function.   

I.e. Instead of the usual (platform dependent) I/O selector initialisation, it now 
becomes a matter of selecting between standardized access_type objects. 

Note, this means that it is important that a standardization method does not prevent a 
compiler implementation from generating efficient code for access_type parameter 
passing.  (This is an area, which typically creates performance problems with 
implementations for C99 compilers).  Apart from this performance issue, I/O selector 
initialization is not a problem with respect to basic I/O hardware addressing. 

I/O access initialization concerns the initialization and definition of access_type 
objects.   

This process is implementation defined.  It depends both on the platform and 
processor architecture and on which underlying access methods are supported by an 
iohw implementation. 
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With most freestanding environments and embedded systems the platform hardware is 
well defined, so all access_types for I/O registers used by the program can be 
completely defined at compile time.  For such platforms, standardized I/O access 
initialization is not a standardization issue. 

With larger processor systems I/O hardware is often allocated dynamically at runtime.  
Here the access_type information can only be partly defined at compile time.  Some 
platform software dependent part of it must be initialized at runtime. 

When designing the access_type object a compiler implementer should therefore 
make a clear distinction between static information and dynamic information − i.e. 
what can be defined and initialized at compile time and what must be initialized at 
runtime.   

Depending on the implementation method and depending on whether the access_type 
objects need to contain dynamic information, the access_type object may or may not 
require an instantiation in data memory.  If more of the information is static, a better 
execution performance can usually be achieved. 

4.3 The <iohw> header  

4.3.1 Overview 
The header file <iohw> defines a number of functions which: 

•  Support the most common fixed register sizes. 
o 8-bit, 16-bit, 32-bit, 64-bit or 1-bit (logical) 

•  Support the most basic I/O register operations. 
o Read, Write,  
o Bit-set (Or) in register, bit-clear (And) in register, bit-invert (Xor) in 

register. 
o Single register objects, register array objects. 

•  Define new abstract types for I/O register referencing: access_type(s) 

•  Provide a uniform encapsulation method for hardware and platform 
differences. 

•  Provide a uniform header file name.  <iohw> 
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4.3.2 Single register access 
The I/O access functions defined here are for operations on a single register object.  
The functions are defined for 8-, 16-, 32-, 64- and 1-bit register sizes: 

/* Read operations */
uint_8t iord8(access_type_8);
uint_16t iord16(access_type_16);
uint_32t iord32(access_type_32);
uint_64t iord64(access_type_64);
bool iord1(access_type_1);

/* Write operations: */
void iowr8(access_type_8, uint_8t);
void iowr16(access_type_16, uint_16t);
void iowr32(access_type_32, uint_32t);
void iowr64(access_type_64, uint_64t);
void iowr1(access_type_1, bool);

/* AND operations (Clear group of bits) */
void ioand8(access_type_8, uint_8t);
void ioand16(access_type_16, uint_16t);
void ioand32(access_type_32, uint_32t);
void ioand64(access_type_64, uint_64t);
void ioand1(access_type_1, bool);

/* OR operations (Set group of bits) */
void ioor8(access_type_8, uint_8t);
void ioor16(access_type_16, uint_16t);
void ioor32(access_type_32, uint_32t);
void ioor64(access_type_64, uint_64t);
void ioor1(access_type_1, bool);

/* XOR operations (Invert group of bits) */
void ioxor8(access_type_8, uint_8t);
void ioxor16(access_type_16, uint_16t);
void ioxor32(access_type_32, uint_32t);
void ioxor64(access_type_64, uint_64t);
void ioxor1(access_type_1, bool);

The one-bit functions (ioxxx1) access a single bit in a register.  The access_type_1 
parameter defines both how to access the I/O register and the position of the bit in the 
register. 

4.3.3 Register array access 
This refers to I/O functions for operations on I/O register array objects.  It could be 
I/O circuitry with internal buffers or multiple registers, e.g. a peripheral chip with a 
linear hardware buffer. 



Performance TR - Working Paper (DRAFT)  00-0058/N1281  
 
 

 Page 34 of 48 

The index parameter is offset in the buffer (or register array) starting from the I/O 
location specified by access_type, where element 0 is the first element located at the 
address defined by access_type, and element n+1 is located at a higher physical 
address than element n. 

/* Read operations on hardware buffers */
uint_8t iordbuf8(access_type_8, unsigned int index);
uint_16t iordbuf16(access_type_16, unsigned int index);
uint_32t iordbuf32(access_type_32, unsigned int index);
uint_64t iordbuf64(access_type_64, unsigned int index);

/* Write operations on hardware buffers */
void iowrbuf8(access_type_8, unsigned int index, uint_8t dat);
void iowrbuf16(access_type_16, unsigned int index, uint_16t dat);
void iowrbuf32(access_type_32, unsigned int index, uint_32t dat);
void iowrbuf64(access_type_64, unsigned int index, uint_64t dat);

/* AND operations on hardware buffers (Clear group of bits)*/
void ioandbuf8(access_type_8, unsigned int index, uint_8t dat);
void ioandbuf16(access_type_16, unsigned int index, uint_16t dat);
void ioandbuf32(access_type_32, unsigned int index, uint_32t dat);
void ioandbuf64(access_type_64, unsigned int index, uint_64t dat);

/* OR operations on hardware buffers (Set group of bits) */
void ioorbuf8(access_type_8, unsigned int index, uint_8t dat);
void ioorbuf16(access_type_16, unsigned int index, uint_16t dat);
void ioorbuf32(access_type_32, unsigned int index, uint_32t dat);
void ioorbuf64(access_type_64, unsigned int index, uint_64t dat);

/* XOR operations on hardware buffers (Invert group of bits) */
void ioxorbuf8(access_type_8, unsigned int index, uint_8t dat);
void ioxorbuf16(access_type_16, unsigned int index, uint_16t dat);
void ioxorbuf32(access_type_32, unsigned int index, uint_32t dat);
void ioxorbuf64(access_type_64, unsigned int index, uint_64t dat);

In addition to these I/O function definitions, iohw.h must also contain definitions for 
access_types and must define the fixed sized types (perhaps by including <stdint.h>) 

4.3.4 Common function syntax for C and C++ 
It would be beneficial, especially in the market for freestanding environments and 
embedded systems, if source code for I/O hardware drivers could be written so that 
the driver code can be compiled with both C and C++ compilers.  In this market C 
compilers are still dominant. 

With a C-like syntax for basic I/O hardware access, users could benefit from a broader 
range of source library products from third party vendors.  A common syntax would 
also ensure a smoother transition in this market from C to C++. 

Therefore, it is recommended that the same C function syntax for basic I/O hardware 
addressing be used with both C and C++. 

Note that it is only the standardized function interfaces that need to be C-like.  iohw 
and access_type implementations for C and C++ may be very different in both 
performance and the number of access methods supported.  An implementation for 
C++ can still take advantage of templates, classes and other advanced C++ features. 
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Appendix A: Implementing the iohw 
header 

(A guide for implementers) 

A.1 Purpose 
The iohw header defines standardized function syntax for basic I/O hardware 
addressing.  This header should normally be created by the compiler vendor. 

The idea behind the standardized syntax is that the source code looks the same 
independent of where the I/O register is located in the hardware and independent of 
the underlying method used to address the I/O hardware register.   

While this standardized function syntax for basic I/O hardware addressing provides a 
simple, easy-to-use method for a programmer to write portable and hardware-
platform-independent I/O driver code, nevertheless the iohw header implementation 
itself may require careful consideration to achieve an efficient implementation. 

This chapter gives some guidelines for implementers on how to implement the iohw 
header in a relatively straightforward manner given a specific processor and bus 
architecture. 

Recommended steps 

Briefly, the recommended steps for implementing the iohw header are: 

•  Get an overview of all the possible and relevant ways the I/O register 
hardware is typically connected with the given bus hardware architectures, and 
get an overview of the basic software methods typically used to address such 
I/O hardware registers. 

•  Define a number of I/O functions, macros and access_types which support the 
relevant I/O access methods for the given compiler market. 

•  Provide a way to pick the right I/O function at compile time and generate the 
right machine code based on the access_type type or the access_type value. 

A.1.1 Compiler considerations 
In practice, an implementation will often require that very different machine code is 
generated for different I/O access cases.  Furthermore, with some processor 
architectures, I/O hardware access will require the generation of special machine 
instructions not used otherwise when generating code for the traditional C, C++ 
memory model. 

Selection between different code generation possibilities must be determined solely 
by the access_type declaration for each I/O register.  Whenever possible this access 
method selection should be implemented, so it is done entirely at compile time in 
order to avoid any runtime or machine code overhead. 
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For a compiler vendor, of course, selection between code generation possibilities can 
always be implemented by supporting different intrinsic access_type types and 
keywords designed specially for the given processor architecture and additional to the 
traditional types and keywords defined by the language. 

However, with a conforming C++ compiler, an efficient and all-round implementation 
of the iohw header can usually be made using template functionality.  A template 
solution allows the number of compiler specific intrinsic I/O types or intrinsic I/O 
functions to be minimized or even removed completely, depending on the processor 
architecture. 

For compilers not supporting templates (such as C compilers) other implementation 
methods must be used.  In any case, at least the most basic iohw functionality can be 
implemented efficiently using a mixture of macros, in-line functions and intrinsic 
types or functions.  Full feature iohw implementations will usually require direct 
compiler support (or extensions to the language). 

The considerations described in the following are generally applicable to both C and 
C++ compilers.  However, in this document it is primarily C++ template-based 
solutions that are used in the implementation examples.   

A.2 Overview of I/O hardware connection options 
The various ways an I/O register can be connected to processor hardware are 
primarily determined by combinations of the following three hardware characteristics: 

•  The bit width of the logical I/O register 
•  The bit width of the data-bus of the I/O chip 
•  The bit width of the processor-bus 

A.2.1 Multi-addressing and I/O register endian 
If the width of the logical I/O register is greater than the width of the I/O chip data 
bus, an I/O access operation will require multiple consecutive addressing operations. 

The I/O register endian information describes whether the MSB or the LSB byte of 
the logical I/O register is located at the lowest processor bus address. 

(Note that the I/O register endian has nothing to do with the endian of the underlying 
processor hardware architecture). 
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Table: Logical I/O register / I/O chip addressing overview 
 

I/O chip bus widths 
 

8-bit chip bus 
 

16-bit chip bus 
 

32-bit chip bus 
 

64-bit chip bus 

 
Logical  I/O 

register widths 

 
LSB-MSB 

 
MSB-LSB 

 
LSB-MSB 

 
MSB-LSB 

 
LSB-MSB 

 
MSB-LSB 

 
LSB-MSB 

 
MSB-LSB

 
8-bit register 

 
direct  

 
n.a. 

 
n.a. 

 
n.a. 

 
16-bit register 

 
r8{0-1} 

 
r8{1-0} 

 
Direct 

 
n.a. 

 
n.a. 

 
32-bit register 

 
r8{0-3} 

 
r8{3-0} 

 
r16{0-1} 

 
r16{1-0} 

 
Direct 

 
n.a. 

 
64-bit register 

 
r8{0-7} 

 
r8{7-0} 

 
r16{0,3} 

 
r16{3,0} 

 
R32{0,1} 

 
r32{1,0} 

 
Direct 

(For byte-aligned address ranges) 

A.2.2 Address Interleave 
If the size of the I/O chip data bus is less than the size of the processor data bus, 
buffer register addressing will require the use of address interleave. 

Example: 
If the processor architecture has a byte-aligned addressing range and a 32-bit 
processor data bus, and an 8-bit I/O chip is connected to the 32-bit data bus, then three 
adjacent registers in the I/O chip will have the processor addresses: 

<addr + 0>, <addr + 4>, <addr + 8>

This can also be written as  
<addr + interleave*0>, <addr+interleave*1>, <addr+interleave*2>

where interleave = 4. 

Table: Interleave overview: (bus to bus interleave relations) 
 

Processor bus widths 
 

I/O chip bus 
widths  

8-bit bus 
 

16-bit bus 
 

32-bit bus 
 

64-bit bus 
 

8-bit chip bus 
 

Interleave 1 
 

interleave 2 
 

Interleave 4 
 

interleave 8 
 

16-bit chip bus 
 

n.a. 
 

interleave 2 
 

Interleave 4 
 

interleave 8 
 

32-bit chip bus 
 

n.a. 
 

n.a. 
 

Interleave 4 
 

interleave 8 
 

64-bit chip bus 
 

n.a. 
 

n.a. 
 

n.a. 
 

interleave 8 
(For byte-aligned address ranges) 
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A.2.3 I/O connection overview:  
The two tables above can be combined and will then show all relevant cases for how 
I/O hardware registers can be connected to a given processor hardware bus. 

Table: Interleave between adjacent I/O registers in buffer (all cases).   
 

Chip bus 
 

Processor data bus width 
 
width=8 

 
width=16 

 
width=32 

 
width=64 

 
I/O  

Register 
width 

 
Bus 

width 

 
LSB 
MSB 

 
No. 
Opr.  

size 1 
 

size 2 
 

size 4 
 

size 8 
 

8-bit 
 

8-bit 
 

n.a. 
 

1 
 

1 
 

2 
 

4 
 

8 
 

LSB 
 

2 
 

2 
 

4 
 

8 
 

16 
 

8-bit 
 

MSB 
 

2 
 

2 
 

4 
 

8 
 

16 16-bit 

 
16-bit 

 
n.a. 

 
1 

 
n.a. 

 
2 

 
4 

 
8 

 
LSB 

 
4 

 
4 

 
8 

 
16 

 
32 

 
8-bit 

 
MSB 

 
4 

 
4 

 
8 

 
16 

 
32 

 
LSB 

 
2 

 
n.a. 

 
4 

 
8 

 
16 

 
16-bit 

 
MSB 

 
2 

 
n.a. 

 
4 

 
8 

 
16 

32-bit 

 
32-bit 

 
n.a. 

 
1 

 
n.a. 

 
n.a. 

 
4 

 
8 

 
MSB 

 
8 

 
8 

 
16 

 
32 

 
64 

 
8-bit 

 
LSB 

 
8 

 
8 

 
16 

 
32 

 
64 

 
LSB 

 
4 

 
n.a. 

 
8 

 
16 

 
32 

 
16-bit 

 
MSB 

 
4 

 
n.a. 

 
8 

 
16 

 
32 

 
LSB 

 
2 

 
n.a. 

 
n.a. 

 
8 

 
16 

 
32-bit 

 
MSB 

 
2 

 
n.a. 

 
n.a. 

 
8 

 
16 

64-bit 

 
64-bit 

 
n.a. 

 
1 

 
n.a. 

 
n.a. 

 
n.a. 

 
8 

(For byte-aligned address ranges) 

A.2.4 Generic buffer index 
The interleave distance between two logically adjacent registers in an I/O register 
array can be calculated from: 

•  The size of the logical I/O register in bytes 

•  The processor data bus width in bytes 

•  The chip data bus width in bytes 
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Conversion from I/O register index to address offset can be calculated using the 
following generic formula: 

Address_offset = index *
sizeof( logical_IO_register ) *
sizeof( processor_data_bus ) /
sizeof( chip_data_bus )

where a byte-aligned address range is assumed, the widths are a whole number of 
bytes, the width of the logical_IO_register is greater than or equal to the width of the 
chip_data_bus, and the width of the chip_data_bus is less than or equal to the 
processor_data_bus. 

A.3 Exact sized data types 
I/O registers have exact bit widths, which are independent of the compiler integer 
implementations and the integer types supported by the processor hardware. 

An iohw implementation should therefore define exact width types for at least 8, 16, 
32 and 64-bit registers.  The definition should map the exact width integer types to an 
unsigned integer type of a matching width given by the compiler implementation (and 
optional compilation modes). 

The exact width types can be defined directly in the iohw header.  Alternatively, the 
iohw can include the C99 standard header stdint.h. 

Example: 
// Definition of exact sized data types for the compiler.
// (In C99 these types are defined by the header stdint.h)
#define uint8_t unsigned char
#define uint16_t unsigned short
#define uint32_t unsigned long
#define uint64_t unsigned long long

A.3.1 Other register sizes 
The most common widths of I/O chip busses and I/O registers are 2^N.  However, if 
other bus and I/O register widths are native for a given processor architecture (for 
instance 24 bits) a vendor is free to extend an iohw implementation and incorporate 
functions for any odd-sized register widths along the line: iord24(..), iowr24(..), etc.2 

                                                 
2 As such processor-specific I/O registers are hardly ever used in other platforms, cross-platform 
portability will seldom be an issue for driver code which uses such iord24(..), iowr24(..) functions. 



Performance TR - Working Paper (DRAFT)  00-0058/N1281  
 
 

 Page 40 of 48 

A.4 Implementation of the access type parameter: 
The number of I/O access functions, which must be implemented in order to cover all 
connection cases, depends on how the access type parameter is constructed.  As 
shown in the following table an implementation can, with advantage, have at least the 
processor bus width as a separate parameter: 

Table: Number of access functions for each access method. 
 
Data bus widths supported by processor 

 
8-bit 

 
8–16-bit 

 
8–32-bit 

 
8–64-bit 

 
Total number of access cases 

 
7 

 
19 

 
34 

 
50 

 
Number of access functions to implement when using a 
processor bus size parameter 

 
7 

 
12 

 
15 

 
16 

 

The possible I/O chip connections can be described with a single parameter, which 
combines information about the I/O chip data bus width and the I/O register endian.  
The possible I/O register to bus connections can therefore be completely specified 
using only two parameters:  

•  A bus parameter, which specifies access relations between the I/O chip data 
bus and the processor data bus 

•  A multi-addressing and endian parameter, which specifies access relations 
between the logical I/O register and the I/O chip data bus 

Example 1:  
Definition of general I/O register connection types: 

typedef enum {bw8 = 1, bw16 = 2, bw32 = 4, bw64 = 8} bus_t;
typedef enum {chip8, chip8l, chip8h, chip16, chip16l, chip16h,

chip32, chip32l, chip32h, chip64} chip_t; 
 

Example 2: 
Possible I/O register connections with the processor H8/300H (supporting only an 
8-bit and a 16-bit processor data bus) 

typedef enum bus_t {
bw8 = 1, bw16 = 2

} bus_t;
typedef enum chip_t {

chip8, chip8l, chip8h, chip16, chip16l, chip16h
} chip_t;
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Example 3: 
Template implementation of access_type for direct addressing of memory-mapped 
I/O registers: 

typedef uint32_t address_t; // Address range type.

// Define an access_type template for direct addressing, combining
// IO register width, I/O address, processor bus width, chip bus width
// and endian

template<class T, address_t address, bus_t buswidth,
chip_t chiptype>

class IO_MM { };

// Use of access_type in I/O register declarations made by user
// (normally placed in a separate platform dependent header file)

// An 8-bit register in an 8-bit chip using 8-bit processor bus mode
typedef IO_MM<uint8_t, 41000, bw8, chip8> PORT1;
// a 32-bit register in an 8-bit chip using 16-bit processor bus mode
typedef IO_MM<uint32_t, 41800, bw16, chip8l> PORT2;

A.4.1 Access_types for different processor busses 
If the processor architecture has multiple different addressing ranges (i.e. it requires 
different sets of machine instructions for the different busses), each addressing range 
should have its own set of access_type specifications. 

Example: 
The 80x86 processor architecture has two addressing ranges: the normal memory 
bus with memory-mapped I/O and a separate bus for I/O only.  Implementations 
for the 80x86 processor family will therefore require at least two sets of 
access_type specifications. 

typedef uint32_t address_t; // Memory-mapped address range
typedef uint16_t io_addr_t; // IO-mapped address range

template <class T, address_t address, bus_t buswidth,
chip_t chiptype>

class IO_MM { };
template <class T, io_addr_t address, bus_t buswidth,

chip_t chiptype>
class IO_IOM { };

A.4.2 Access_types for different I/O addressing methods 
An implementer should consider the following typical addressing methods: 

•  Address is defined at compile time 

•  The address is a constant.  This is the simplest case and also the most common 
case with smaller architectures 

•  Base address initiated at runtime 
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•  Variable base address + constant offset.  I.e. the access_type must contain an 
address pair (address of base register + offset address). 

The user-defined base address is normally initialized at runtime (by some 
platform-dependent part of the program).  This also enables a set of I/O driver 
functions to be used with multiple instances of the same I/O hardware 

•  Indexed bus addressing  

•  Also called orthogonal or pseudo-bus addressing.  It is a common way to 
connect a large number of I/O registers to a bus, while still only occupying a 
few addresses in the processor address space 

•  This is how it works: First the index address (or pseudo-address) of the I/O 
register is written to an address bus register located at a given processor 
address.  Then the data read/write operation on the pseudo-bus is done via the 
following processor address.  I.e. the access_type must contain an address pair 
(the processor address of indexed bus, and the pseudo-bus address (or index) 
of the I/O register itself). 

This access method also makes it particularly easy for a user to connect 
common I/O chips, which have a multiplexed address/data bus, to a processor 
platform with non-multiplexed busses using a minimum amount of glue logic.  
The driver source code for such an I/O chip is then automatically made 
portable to both types of bus architecture 

•  Access via user-defined access driver functions 

•  These are typically used with larger platforms and with small single chip 
processors (e.g. to emulate an external bus).  In this case the access_type must 
contain pointers or references to access functions, 

The access driver solution makes it possible to connect a given I/O driver 
source library to any kind of platform hardware and platform software using 
the appropriate platform-specific interface functions 

In general, an implementation should always support the simplest addressing case; 
whether it is the constant address or base address method that is used will depend on 
the processor architecture.  Apart from this, an implementer is free to add any 
additional cases required to satisfy a given market. 

Because of the different number of parameters required in an access_type 
specification and because of the different parameter ranges used, it is often convenient 
to define a number of different access_type formats for the different access methods. 

For the same reasons it is often convenient to implement the iord1, iowr1, ioor1, 
ioand1, and ioxor1 functions so that they use their own access_type format, simply 
because of the extra parameters needed to specify the bit position in the register. 
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Example: 
// Define types used in access_type declarations
typedef uint32_t address_t; // Memory mapped address range
typedef uint8_t sub_address_t; // Sub address on indexed bus
typedef uint16_t io_addr_t; // User I/O driver address
typedef uint8_t bit_pos_t; // Bit position in register

// Define access_type template for direct addressing
template <class T, address_t address, bus_t buswidth,

chip_t chiptype>
class IO_MM { };

// Define access_type template for addressing via base register
template <class T, address_t * base, address_t offset,

bus_t buswidth, chip_t chiptype>
class IO_MM_BASE { };

// Define access_type template for indexed bus addressing
template <class T, address_t address, sub_address_t idx,

bus_t buswidth, chip_t chiptype>
class IO_MM_IDX { };

// Define access_type for user-supplied access driver functions
template<class T, io_addr_t address,

T iord ( io_addr_t address),
void iowr( io_addr_t address, T val)>

class IO_MM_DRV { };

// Define access_type for direct addressing of bit in register
template<class T, address_t address, bit_pos_t bitpos,

bus_t buswidth, chip_t chiptype>
class IO_MM_BIT { };

A.4.3 Detection of read / write violations in I/O registers 
The access_type specification can be extended with an extra parameter, which makes 
it possible to detect illegal use of an I/O register at compile time.   

The minimal parameter set for a read / write limitation specification would be: 

•  Defined as Read-only register 

•  Defined as Write-only register 

•  Defined as Read-modify-Write register (behaves like a RAM cell) 

Table: Allowed operations on different I/O register types: 
 
 

 
iowrxx 

 
iordxx 

 
Ioorxx 

 
ioandxx 

 
ioxorxx 

 
Read-Write 

 
Yes 

 
Yes 

 
Yes 

 
Yes 

 
Yes 

 
Write-only 

 
Yes 

 
No 

 
No 

 
No 

 
No 

 
Read-only 

 
No 

 
Yes 

 
No 

 
No 

 
No 
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The not-allowed cases should generate some kind of error message at compile time.  
With a template implementation of iohw, the compiler will usually at least complain 
that no matching template function can be found for the not-allowed cases. 

Example: 
// Define type to validate I/O register access
enum rw_t // Access mode type
{

read, // Read only access
write, // Write only access
read_write // Read, Write or Read-Modify-Write access

};

// Define access_type template for direct addressing
template <class T, address_t address, bus_t buswidth,

chip_t chiptype, rw_t access>
class IO_MM { };

// User declaration of I/O registers in platform (normally placed in a
// separate platform dependent header file)
typedef IO_MM <uint8_t, 10800, bw8, chip8, write> WR_PORT;
typedef IO_MM <uint8_t, 20800, bw8, chip8, read> RD_PORT;
typedef IO_MM <uint8_t, 30800, bw8, chip8, read_write> RDWR_PORT;

// User code
uint8_t myval;
myval = iord8(RD_PORT); // ok
myval += iord8(RDWR_PORT); // ok
iowr8(WR_PORT,myval); // ok
iowr8(RDWR_PORT,0x45); // ok

myval = iord8(WR_PORT); // Illegal, generate compile time error
iowr8(RD_PORT,0x55); // Illegal, generate compile time error

A.5 Other implementation considerations 

A.5.1 Atomic operation 
It is an iohw implementation requirement that in each I/O function a given (partial) 
I/O register is addressed exactly once during a read or a write operation and exactly 
twice during a read-modify-write operation.   

It is an iohw implementation recommendation that each I/O function be implemented 
so that the I/O access operation becomes atomic whenever possible.   

However, atomic operation is not guaranteed to be portable across platforms for read-
modify-write operations (ioorxx, ioandxx, ioxorxx) or for multi-addressing cases.   

The reason for this is simply that many processor architectures do not have the 
instruction set features required for assuring atomic operation.   

A.5.2 Read-modify-write operations in multi-addressing cases. 
Read-modify-write operations should, in general, do a complete read of the I/O 
register, followed by the operation, followed by a complete write to the I/O register.   
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It is therefore recommended that an implementation of multi-addressing cases should 
not use read-modify-write machine instructions during partial register addressing 
operations.   

The rationale for this restriction is to use the lowest common denominator of multi-
addressing hardware implementations in order to support as wide a range of I/O 
hardware register implementation as possible. 

For instance, more advanced multi-addressing I/O register implementations often take 
a snap-shot of the whole logical I/O register when the first partial register is being 
read, so that data will be stable and consistent during the whole read operation.  
Similarly, write registers are often made double-buffered so that a consistent data set 
is presented to the internal logic at the time when the access operation is completed by 
the last partial write.   

Such hardware implementations often require that each access operation is completed 
before the next access operation is initiated. 

A.6 Typical implementation optimization possibilities 
Pre-calculation of constant expressions 
All constant expressions should be solved at compile time.  Using inline functions, 
both interleave factors and constant buffer indexes should therefore be folded into the 
address value(s) used in the machine code.   

Therefore, the following two I/O write statements should result in exactly the same 
machine code: 

iowr8(PORT1,0x33);
iowrbuf8(PORT1, 0, 0x33);

An implementation can take advantage of this, because the number of I/O functions 
that have to be implemented can be reduced with no efficiency penalty using simple 
macro definitions like: 

#define iowr8(access_type,val) iowrbuf8(access_type,0,(val))

Multi-addressing and endian 
Typical candidates for platform dependent optimization are I/O functions for the 
multi-addressing cases (logical I/O register width > I/O chip bus width) where the 
width of the chip data bus matches the width of the processor data bus.  In these cases, 
multi-byte access can often use data types directly supported by the processor for 
either the LSB or MSB endian functions.  The other endian functions can often be 
implemented efficiently using one load or store operation plus one or more register 
swap operations. 
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