
Doc No: J16/99-0039, WG21/N1215
Date: October 22, 1999
Reply to: Stephen D. Clamage,
stephen.clamage@sun.com

Exit Processing Order

This paper addresses Library Working Group issue 3: atexit registration during atexit()
call is not described.

Example 1: (C and C++)

#include <stdlib.h>
void f1() { }
void f2() { atexit(f1); }

int main()
{

atexit(f2); // the only use of f2
return 0;

}

At program exit, f2 gets called due to its registration in main. Running f2 causes f1 to be
newly registered during the exit processing. Is this a valid program? If so, what are its semantics?

Neither the C89 standard nor the C++ standard says directly whether you can register a function
with atexit during exit processing.

Both standards say that functions are run in reverse order of their registration. Since f1 is
registered last, it ought to be run first, but by the time it is registered, it is too late to be first. If the
program is valid, the standards are self-contradictory about its semantics.

Example 2: (C++ only)

 void F() { static T t; ... } // type T has a destructor

 int main()
 {
 atexit(F); // the only use of F
 }

Function F registered with atexit has a local static variable t, and F is called for the first time
during exit processing. A local static object is initialized the first time control flow passes through
its definition, and all static objects are destroyed during exit processing. Is the code valid? If so,
what are its semantics?

Section 18.3 "Start and termination" says that if a function F is registered with atexit before a
static object t is initialized, F will not be called until after t’s destructor completes.

N1215 - 2 - J16/99-0039

In example 2, function F is registered with atexit before its local static object t could possibly
be initialized. On that basis, F must not be called by exit processing until after t’s destructor
completes. But the destructor cannot be run until after F is called, since otherwise the object could
not be constructed in the first place. If the program is valid, the standard is self-contradictory about
its semantics.

The new C9X standard requires stack-like behavior in its section 7.20.4.2:
First, all functions registered by the atexit function are called, in the reverse order of
their registration, except that a function is called after any previously registered functions
that had already been called at the time it was registered.

The corresponding sentence in C++ 18.3/8 should be modified to say the same thing.

Example 1 is thus fully defined: Since f2 had already been called at the time f1 is registered, f1
is run after f2, but before any previously registered functions are run.

Example 2 is more complicated. Suppose F is first called during exit processing, and is perhaps
called more than once. In particular, F might be called from the destructor of some static object.

Possible semantic choices:
1. Retain the “destruction in the reverse order of construction” property for non-local static

objects. A local static object is destroyed at the same time it would be if a function calling its
destructor were registered with atexit at the completion of its constructor.

2. If a function called during exit processing uses a local static object, the results are undefined.
3. Remove the requirement to interleave functions registered with atexit and static destructors.

After all registered functions have been run, all static objects are destroyed. If during
destruction of a static object, one or more functions are registered with atexit, they are run
in reverse registration order after completion of the destructor.

Variations on these semantic choices:
A. Relax the requirements on local static objects to apply only to local static objects having non-

trivial destructors (12.4).
B. If the flow of control passes through the definition of a local static object after the object has

been destroyed as a result of exit processing, the object is reinitialized.

Consequences of the choices:
1. Consistent handling of local static objects, easy to explain, and with no extra implementation

difficulties. It is possible to get undefined behavior if a function is called again after its local
static object is destroyed.

2. This is the status quo, since standard is self-contradictory about local static objects. It would
be nice to provide some guarantees, however, so programmers have some control over object
creation and destruction.

3. If we had recognized this problem before releasing the standard, #3 might be a good choice.
But it changes the semantics of existing programs, and some C++ vendors have already
implemented the current rule in their products.

A. Superficially attractive, it makes special cases, and makes different guarantees about lifetime
of storage depending of the definition of destructors.

N1215 - 3 - J16/99-0039

B. Might prevent some program crashes, but static objects typically record program state
changes. If the object is destroyed and re-created, the program could run but produce
nonsensical results.

Recommendation:

Option 1 above, without variations. Change section 18.3/8
from:

First, objects with static storage duration are destroyed and functions registered by calling
atexit are called. Objects with static storage duration are destroyed in the reverse order
of the completion of their constructor. (Automatic objects are not destroyed as a result of
calling exit().) Functions registered with atexit are called in the reverse order of
their registration. A function registered with atexit before an object obj1 of static
storage duration is initialized will not be called until obj1’s destruction has completed. A
function registered with atexit after an object obj2 of static storage duration is
initialized will be called before obj2’s destruction starts.

to:
First, objects with static storage duration are destroyed and functions registered by calling
atexit are called. Non-local objects with static storage duration are destroyed in the
reverse order of the completion of their constructor. (Automatic objects are not destroyed
as a result of calling exit().) Functions registered with atexit are called in the
reverse order of their registration, except that a function is called after any previously
registered functions that had already been called at the time it was registered. A function
registered with atexit before a non-local object obj1 of static storage duration is
initialized will not be called until obj1’s destruction has completed. A function registered
with atexit after a non-local object obj2 of static storage duration is initialized will be
called before obj2’s destruction starts. A local static object obj3 is destroyed at the
same time it would be if a function calling the obj3 destructor were registered with
atexit at the completion of the obj3 constructor.

