
J16/97-0089 = WG21/N1127
September 3, 1997
Dan Saks & William M. Miller

Relaxing Restrictions on Operators new and delete

This document is a revision of J16/97-0056R1 = WG21/N1094, which was distributed in the post-London mailing. It differs from
that document only in the addition of a proposed modification in 3.7.3 [basic.stc.dynamic], addressing the concern that was
raised in London regarding the linkage conflict between a static allocation or deallocation function and its automatically-

predeclared counterpart.

In comment Ireland 1, the Irish National body requested the removal of the restriction
against operators new and delete being declared static or inline . Although
there was no explicit requirement in the comment that these operators be allowed in
namespace scope, it seemed more consistent to relax that restriction as well. The
following proposal implements these changes.

In 3.7.3 [basic.stc.dynamic], replace the first half of paragraph 2 (through the list of
implicitly-declared functions) with the following:

The library provides default definitions for the global allocation and
deallocation functions. Some global allocation and deallocation functions are
replaceable (18.4.1). Replacements of these functions are subject to the
requirements of the One Definition Rule (3.2); a global definition of one of
these functions replaces the corresponding version provided in the library
(17.3.3.4).

The following allocation and deallocation functions (18.4) are implicitly
declared in global scope in each translation unit of a program:

void* operator new(std::size_t) throw(std::bad_alloc);
void* operator new[](std::size_t) throw(std::bad_alloc);
void operator delete(void*) throw();
void operator delete[](void*) throw();

That is, a reference to one of these functions from a point at which no
corresponding declaration is visible is treated as if the function were declared in
global scope with external linkage. [Example:

// no declaration of operator new(std::size_t)
void f() {
 int* p = new int; // uses global operator new
}

// Error: already (implicitly) declared with external linkage:
static void* operator new(std::size_t) throw(std::bad_alloc) {
 // ...
}

// Internal linkage fine, no preceding use or declaration:
static void* operator new[](std::size_t) throw(std::bad_alloc) {
 // ...
}

void g() {
 int* q = new int[10]; // uses static operator new[]
}

—end example]

In 3.7.3.1 [basic.stc.dynamic.allocation], change the first sentence in paragraph 1 from:

An allocation function shall be a class member function or a global function; a
program is ill-formed if an allocation function is declared in a namespace scope
other than global scope or declared static in global scope.

to:

An allocation function may be a class member or a function at namespace
scope; a program is ill-formed if an allocation function is declared inline and
not static in global namespace scope.

In 3.7.3.2 [basic.stc.dynamic.deallocation], change the first sentence in paragraph 1
from:

Deallocation functions shall be class member functions or global functions; a
program is ill-formed if deallocation functions are declared in namespace scope
other than global scope or declared static in global scope.

to:

A deallocation function may be a class member function or a function at
namespace scope; a program is ill-formed if a deallocation function is declared
inline and not static in global namespace scope.

In 5.3.4 [expr.new], add following the first sentence of paragraph 1:

The type of that object is the allocated type.

In the same section, replace paragraphs 9 through 11 with the following:

A new-expression obtains storage for the object by calling an allocation
function (3.7.3.1). If the new-expression terminates by throwing an exception,
it may release storage by calling a deallocation function (3.7.3.2). If the
allocated type is a non-array type, the allocation function’s name is operator
new and the deallocation function’s name is operator delete . If the
allocated type is an array type, the allocation function’s name is operator
new[] and the deallocation function’s name is operator delete[] .

A new-expression passes the amount of space requested to the allocation
function as the first argument of type std::size_t . That argument shall be
no less than the size of the object being created and may be greater than the
size of the object being created only if the object is an array. If present, the
new-placement supplies additional arguments to the allocation function call.

An implementation shall provide default definitions for the global allocation
functions (3.7.3, 18.4.1.1, 18.4.1.2). [Note: a C++ program can provide
alternative definitions of these functions (17.3.3.4), and/or class-specific
versions (12.5).]

In the same section, add the following after paragraph 12:

If the new-expression begins with a unary :: operator, the allocation
function’s name is looked up in the global scope. Otherwise, if the allocated
type is a class type T or an array thereof, the allocation function’s name is
looked up in the scope of T. If this lookup fails to find the name, or if the
allocated type is not a class type, the allocation function’s name is looked up in
the context of the new-expression following the normal rules for name lookup
(3.4.1), ignoring member functions that might be found in lexically-enclosing
class scopes. [Note: Argument-dependent name lookup (3.4.2) is not
performed.] Overload resolution (13.3) selects the appropriate allocation
function.

In the same section, replace paragraphs 17 through 19 with the following:

If any part of the object initialization described above [Footnote: This may
include evaluating a new-initialization and/or calling a constructor.]
terminates by throwing an exception and a suitable deallocation function can be
found, the deallocation function is called to free the memory in which the
object was being constructed, after which the exception continues to propagate
in the context of the new-expression. If no unambiguous matching deallocation
function can be found, propagating the exception does not cause the object’s
memory to be freed. [Note: this is appropriate when the called allocation
function does not allocate memory; otherwise, it is likely to result in a memory
leak.]

If a new-expression calls a deallocation function, it passes the value returned
from the allocation function call as the first argument of type void* . If
present, the new-placement supplies additional arguments to the deallocation
function call.

If the new-expression begins with a unary :: operator, the deallocation
function’s name is looked up in the global scope. Otherwise, if the allocated
type is a class type T or an array thereof, the deallocation function’s name is
looked up in the scope of T. If this lookup fails to find the name, or if the
allocated type is not a class type or array thereof, the deallocation function’s
name is looked up in the context of the new-expression following the normal
rules for name lookup (3.4.1), ignoring member functions that might be found
in lexically-enclosing class scopes. Overload resolution (13.3) is applied to
select the appropriate deallocation function.

A declaration of placement operator delete matches the declaration of a
placement operator new if it has the same number of parameters and, after
parameter transformations (8.3.5), all parameter types except the first are
identical. If the deallocation function selected by overload resolution does not
match the placement operator new called by the new-expression or if the
lookup for the deallocation function was ambiguous, no deallocation function
will be called and the memory in which the object was being constructed will
not be freed before the exception is propagated.

In the same section, delete paragraph 21.

In section 5.3.5 [expr.delete], delete paragraph 9 and change the last sentence of
paragraph 8 from:

When the keyword delete in a delete-expression is preceded by the unary
:: operator, the global deallocation function is used to deallocate the storage.

to:

Selection of the deallocation function to be called when deleting a class object
or array thereof is described in 12.5. For non-class objects and arrays of non-
class objects, if the keyword delete in a delete-expression is preceded by the
unary :: operator, the deallocation function’s name is looked up in the global
scope; otherwise, the name is looked up in the context of the delete-expression
following the normal rules for name lookup (3.4.1), ignoring member functions
that might be found in lexically-enclosing class scopes. If the result of the
lookup is ambiguous or inaccessible, or if the lookup selects a placement
deallocation function, the program is ill-formed.

In section 12.5 [class.free], delete paragraphs 1-3 and replace paragraphs 7 and 8 with
the following:

If a delete-expression begins with a unary :: operator, the deallocation
function’s name is looked up in the global scope. Otherwise, if the delete-
expression is used to deallocate an object whose static type has a virtual
destructor, the deallocation function is the one found by the lookup at the
definition of the dynamic type’s virtual destructor (12.4). [Footnote: A similar
lookup is not needed for the array version of the delete operator because 5.3.5
requires that in this situation, the static type of the delete-expression-s
operand be the same as its dynamic type.] Otherwise, if the delete-expression
is used to deallocate an object of class T or array thereof, the static and
dynamic types of the object shall be identical and the deallocation function’s
name is looked up in the scope of T. If this lookup fails to find the name, the
name is looked up in the context of the delete-expression following the normal
rules for name lookup (3.4.1), ignoring member functions that might be found
in lexically-enclosing class scopes. If the result of the lookup is ambiguous or
inaccessible, or if the lookup selects a placement deallocation function, the
program is ill-formed.

