
 Doc No: X3J16/97-0085 WG21/N1123
 Date: September 30th, 1997
 Project: Programming Language C++
 Ref Doc:
 Reply to: Josee Lajoie
 (josee@vnet.ibm.com)

 How should the keyword 'template' be added to the syntax?
 ===

 A) Adding 'template' to the C++ grammar

 Core 3 noticed that the current C++ grammar does not support the use of
 the template keyword in all the places where subclause 14.2 says it is
 allowed. For example, the following cases are not allowed by the
 grammar:
 In qualified-ids:
 A<T>::template B<X>::template C<Y>

 In pseudo-destructor-calls:
 p->A::template B<T>::~B();

 After discussions with Bill Gibbons, John Spicer, Anthony Scian and
 myself, it seems that we cannot come to an agreement as to how to fix
 this.

 Here are the two approaches that are under consideration:

 A.1) allow the template keyword in the template-name production, i.e.

 template-name
 template(opt) identifier

 This is a simple grammar fix but it allows the 'template' keyword in
 many more contexts than that currently allowed by chapter 14. The
 solution would be to prohibit the 'template' keyword to appear in
 these additional contexts by adding additional semantics rules in the
 WP.

 A.2) apply the grammar change higher up in the grammar, to allow the
 keyword template only in the places that are already allowed by the
 text in chapter 14. This means that a greater number of grammar
 rules must be changed and there is the possibility that we did not
 cover all cases.

 2.1) Add "template" to the *middle* of the grammar rule for
 nested-name-specifier, as in:

 nested-name-specifier:
 class-or-namespace-name :: nested-name-specifier opt
 | class-or-namespace-name :: template nested-name-specifier

 so that any "template" keyword before the final (unqualified) name
 is not part of the "nested-name-specifier", but is associated with
 the unqualified name - as it is now.

 This allows the following:
 A<T>::template B<X>::template C<Y>

 2.2) Change the grammar for pseudo-destructor-name to say:

 pseudo-destructor-name:
 ::opt nested-name-specifier opt type-name :: ~ type-name
 | ::opt nested-name-specifier template template-id :: ~ type-name
 ::opt nested-name-specifier opt ~ type-name

 This allows:

 p->A::template B<T>::~B();

 2.3) Change the grammar for simple-type-specifier to say:

 simple-type-specifier:
 ::opt nested-name-specifier opt type-name
 | ::opt nested-name-specifier template template-id

 2.4) Change the grammar for elaborated-type-specifier to say:

 elaborated-type-specifier:
 class-key ::opt nested-name-specifier opt identifier
 enum ::opt nested-name-specifier opt identifier
 typename ::opt nested-name-specifier identifier
 | typename ::opt nested-name-specifier template opt template-id

 In the discussions in the small group, Bill, Josee (and I believe John
 as well) preferred 2). Anthony strongly disagreed with 2) and preferred
 1) because of the possibility that the changes proposed by 2) are not
 sufficient and will need future repairs.

 B) Additional clarifications needed:

 B.1) We need syntax to allow:
 friend class A<T>;

 and if the following is well-formed:
 class A<T>::template B<T> *ptr;

 we need syntax to allow this as well.

 Solution 1)
 To allow both, the first line in the elaborated specifier rule
 should be changed to read:
 class-key ::opt nested-name-specifier opt template opt identifier

 Solution 2)
 Add the following grammar rule to support "friend class A<T>;"

 member-declaration:
 friend class-key ::opt nested-name-specifier opt identifier
 < template-argument-list >
 friend class-key ::opt nested-name-specifier template identifier
 < template-argument-list >

 Solution 2) does not allow the declaration of "ptr" though, so, if
 the declaration of ptr should be allowed, Solution 1) should be
 preferred.

 B.2) Are the keywords 'typename' and 'template' allowed in
 base-specifier and mem-initializer-id?

 Solution 1):

 "template" should be prohibited in these cases, just as it is
 currently the case for "typename", and the compiler should assume
 that any name followed by a '<' is a template name.

 Solution 2):
 "template" should be allowed in these cases (though not required)
 following the nested-name-specifier.

 B.3) There is a related bug in the grammar; the production for
 default arguments for template template parameters:

 type-parameter:
 ...
 template < template-parameter-list > class identifier opt =
 template-name

 does not allow member templates to be default template template
 arguments. This seems to be an oversight. I think it should read,
 for A.1):

 type-parameter:
 ...
 template < template-parameter-list > class identifier opt
 = ::opt nested-name-specifier opt template-name

 or for A.2):

 type-parameter:
 ...
 template < template-parameter-list > class identifier opt
 = ::opt nested-name-specifier opt template-name
 template < template-parameter-list > class identifier opt
 = ::opt nested-name-specifier template template-name

 (Note that A.1 does not fix this new problem, it just makes it
 possible to fix it in a slightly simpler way. So the existence of
 this new problem does *not* imply that Anthony's proposal might
 cover cases we had not thought of.)

