
X3J16/97-0078
W21/N1116
September 29th 1997
J. Stephen Adamczyk, Edison Design Group
John H. Spicer, Edison Design Group

Proposed Revision to Partial Ordering Rules

1. Introduction
A problem has been found in the partial ordering rules for function templates. The problem is caused by
the fact that partial ordering is currently done only when several function template specializations are
equivalent for overload resolution purposes. The result is that a trivial difference in overload resolution
can result in a much worse function (from the point of view of partial ordering) being chosen. The
example that follows shows a partial case in which the partial ordering rules are never employed because
the nonconst function is better match than the const function in overload resolution. Had the partial
ordering rules been employed the B<T>& function would be preferred to the T& function because the
qualifiers under a reference are ignored.

template <class T> struct B {};
template <class T> int f(T&);
template <class T> int f(const B<T>&);
B<int> bi;
int i = f(bi);

Similar but perhaps even more counterintuitive behavior occurs with member function templates. In this
example, the cv-qualifiers on the implicit this parameter take precedence over the partial ordering based
on the function parameter types:

template <class T> struct B {};
struct A {

template <class T> int f(T);
template <class T> int f(B<T>) const;

};

A a;
B<int> bi;
int i = a.f(bi); // calls A::f(T), should call A::f(B<T>) const;

It important to recall that the partial ordering rules are used not only to select a “more specialized”
version of a function template from a set provided by a given user, but also to permit the overloading of
templates with the same name by different users. For example, if one library declared an operator
template such as:

template <class T> bool operator ==(T&,T&);

That template would make it impossible to ever call another˝template with the signature:

template <class T> bool operator ==(const B<T>&, const B<T>&) ;

2. Proposed Solution
The proposed solution is to move the partial ordering comparisons from the point at which a set of better
matching functions is found to the earlier point at which a set of viable functions has been established
(i.e., from 13.3.3 [over.match.best] to 13.3.2 [over.match.viable].

97-0078/N1116 Proposed Revision to Partial Ordering Rules 2

When the original partial ordering rules were chosen, an important attribute of the rules was that they
compared functions, rather than being another factor used to compare one argument/parameter pair with
another argument/parameter pair. The proposed solution retains˝this attribute.

3. Working Paper Changes
Add the following to the end of 13.3.2 [over.match.viable]:

If the set of viable functions contains function template specializations, the partial ordering rules
described in 14.5.5.2 shall be applied to the set of function templates of which the functions are
specializations. A function template specialization is removed from the set of viable function if
the function template of which it is a specialization is less specialized than another function
template in the set.

Remove the following text from 13.3.3 [over.match.best]:

F1 and F2 are template functions, and the function template for F1˝is more specialized than the
template for F2 according to the partial ordering rules described˝in 14.5.5.2, or, if not that,

