
 n1096

 Doc. No.: 97-0058=N1096
 Date: 1997-07-17
 Project: Programming Language C++
 Reply to: Nathan Myers <ncm@cantrip.org>
 Dietmar Kuehl <dk@asgard.in-berlin.de>

Clarifications of Locale Money and Time Formats

This document addresses issues 22-021, 22-030, 22-031, and 22-034
as found in 97-0036=N1074 (Library Issues List for CD2 - Version 6).

[Replace 22.2.6.3 (lib.locale.moneypunct) paragraph 1 with:]

The moneypunct<> facet defines monetary formatting parameters used
by money_get<> and money_put<>. A monetary format is a sequence
of four components, specified by a _pattern_ value _p_, such
that the _part_ value _static_cast<part>(p.field[i])_ determines
the _i_th component of the format. [footnote: an array of _char_
rather than of _part_ is specified for _pattern::field_ purely
for efficiency.] In the _field_ member of a _pattern_ object,
each value _symbol_, _sign_, _value_, and either _space_ or
none appear exactly once. The value _none_, if present, is
not first; the value _space_, if present, is neither first nor
last.

Where _none_ or _space_ appears, whitespace is permitted in the
format, except where _none_ appears at the end, in which case no
whitespace is permitted. The value _space_ indicates that at least
one space is required at that position. Where _symbol_ appears,
the sequence of characters returned by _curr_symbol()_ is permitted,
and may be required. Where _sign_ appears, the first (if any) of
the sequence of characters returned by _positive_sign()_ or
_negative_sign()_ (respectively as the monetary value is non-negative
or negative) is required. Any remaining characters of the sign
sequence are required after all other format components. Where
value appears, the absolute numeric monetary value is required.

The format of the numeric monetary value is a decimal number

 value ::= units [decimal-point [digits]] |
 decimal-point digits

if _frac_digits()_ returns a positive value, or

 value ::= units

otherwise. The symbol _decimal-point_ indicates the character
returned by _decimal_point()_. The other symbols are defined as
follows:

 units ::= digits [thousands-sep units]
 digits ::= adigit [digits]

In the syntax specification, the symbol _adigit_ is any of the
values _ct.widen(c)_ for _c_ in the range ['0','9']. _ct_ is
a reference of type _const ctype<charT>&_ obtained as described
in the definitions of _money_get<>_ and _money_put<>_. The symbol
thousands-sep is the character returned by _thousands_sep()_.
The space character used is the value _ct.widen(' ')_. Whitespace
characters are those characters _c_ for which _ct.is(ct.space,c)_
returns _true_. The number of digits required after the decimal
point (if any) is exactly the value returned by _frac_digits()_.

 Page 1

 n1096

The placement of thousands separator characters (if any) is
determined by the value returned by _grouping()_, defined
identically as the member _numpunct<>::do_grouping()_.

[Eliminate the first four sentences (up to "in any order.") of
the Returns: clause of members do_pos_format and do_neg_format
(22.2.6.3.2, lib.locale.moneypunct.virtuals, paragraph 7).]

[Eliminate the last sentence of the Returns: clause of the definition
of do_positive_sign() and do_negative_sign() (paragraph 5 of the same
section).]

[Replace the Effects: clause of money_put<>::do_put (22.2.6.2.2,
lib.locale.money.put.virtuals, paragraph 1) with:]

Effects: Writes characters to _s_ according to the format specified
by a _moneypunct<charT,intl>_ facet reference _mp_ and the character
mapping specified by a _ctype<charT>_ facet reference _ct_ obtained
from the locale returned by _str.getlocale(), and _str.flags()_.
The argument _units_ is transformed into a sequence of wide characters
as if by

 ct.widen(buf1,buf1+sprintf(buf1,"%.0lf",units),buf2)

for character buffers _buf1_ and _buf2_.
If the first character in _digits_ or _buf2_ is equal to
ct.widen('-'), then the pattern used for formatting is the
result of _mp.neg_format()_; else _mp.pos_format()_. Digit
characters are written, interspersed with any thousands separators
and decimal point specified by the format, in the order they appear
(after the optional leading minus sign) in _digits_ or _buf2_.
In _digits_, only the optional leading minus sign and the immediately
subsequent digit characters (as classified according to _ct_) are used;
any trailing characters (including digits appearing after a non-digit
character) are ignored. Calls _str.width(0)_.

[Replace the Notes: clause of money_put<>::do_put (22.2.6.2.2,
lib.locale.money.put.virtuals, paragraph 2) with:]

Notes: The currency symbol is generated if and only if _(str.flags() &
str.showbase)_ is true. If the number of characters generated for the
specified format is less than the value returned by _str.width()_
on entry to the function, then copies of _fill_ are inserted as
necessary to pad to the specified width. For the value _af_ equal
to _(str.flags() & str.adjustfield)_, if _(af_ ==_str.internal)_
is true, the fill characters are placed where _none_ or _space_
appears in the formatting pattern; otherwise, if (_af_ == str.left)
is true, they are placed after the other characters; otherwise, they
are placed before the other characters. [Note: it is possible, with
some combinations of format patterns and flag values, to produce
output which cannot be parsed back in using _num_get<>::get_.]

[Replace the Effects: clause of money_get<>::do_get (22.2.6.1.2,
lib.locale.money.get.virtuals, paragraph 1) with:]

Effects: Reads characters from _s_ to parse and construct a monetary
value according to the format specified by a _moneypunct<charT,intl>_
facet reference _mp_ and the character mapping specified by a
ctype<charT> facet reference _ct_ obtained from the locale
returned by _str.getloc()_, and _str.flags()_. If a valid
sequence is not recognized, sets the argument _err_ to
(err|str.failbit) and does not change _units_ or _digits_;
otherwise, it does not change _err_. Uses the pattern returned
by _mp.neg_format()_ to parse all values. The result is returned
as an integral value stored in _units_, or as a sequence of digits

 Page 2

 n1096

possibly preceded by a minus sign (as produced by _ct.widen(c)_
where c is '-' or in the range ['0','9']) stored in _digits_.
[Example: the sequence $1,056.23 in a common U.S. locale would
yield, for _units_, 105623, or for _digits_, "105623".]
 If _mp.grouping() indicates no thousands separators are permitted,
any such characters are not read, and parsing is terminated at the
point where the first appears. Otherwise, thousands separators are
optional; if present, they are checked for correct placement only
after all format components have been read.
 Where _space_ or _none_ appear in the format pattern, except at
the end, optional whitespace (as recognized by _ct.is_) is consumed
after any required space. If _(str.flags() & str.showbase)_ is
false, the currency symbol is optional and is consumed only if
other characters are needed to complete the format; otherwise, the
currency symbol is required.
 If the first character (if any) in the string _pos_ returned by
_mp.positive_sign()_ or the string _neg_ returned by
_mp.negative_sign()_ is recognized in the position indicated by
sign in the format pattern, it is consumed and any remaining
characters in the string are required after all other format
components. [Example: If showbase is off, then for a _neg_
value of "()" and a currency symbol of "L", in "(100 L)" the
"L" is consumed; but for _neg_ "-", the "L" in "-100 L" is not
consumed. --end example] If _pos_ or _neg_ is empty, the sign
component is optional, and if no sign is detected the result is
given the sign corresponding to the source of the empty string.
Otherwise, the character in the indicated position must match the
first character of _pos_ or _neg_, and the result is given the
corresponding sign. If the first character of each of _pos_ and
neg are equal, or if both strings are empty, the result is given
a positive sign.
 Digits in the numeric monetary component are extracted and
placed in _digits_, or into a character buffer _buf1_ for conversion
to produce a value for _units_, in the order they appear, preceded
by a minus sign if and only if the result is negative. The value
units is produced as if by
[footnote: the semantics here are different from _ct.narrow_]

 for (int i=0; i<n; ++i)
 buf2[i] = src[find(atoms, atoms+sizeof(src), buf1[i]) - atoms];
 buf2[n] = 0;
 sscanf(buf2, "%Lf", &units);

where _n_ is the number of characters placed in _buf1_, _buf2_
is a character buffer, and values _src_ and _atoms_ are defined
as if by:

 static const char src[] = "0123456789-";
 charT atoms[sizeof(src)];
 ct.widen(src, src+sizeof(src)-1, atoms)

[In the prototype declarations in the definition of time_put::put
(22.2.5.3.1, lib.locale.time.put.members), add the formal parameter
name str for the arguments of type ios_base&.]

[Replace the Effects: clause of the definition of time_put::put
(22.2.5.3.1, lib.locale.time.put.members, paragraph 1) as follows:]

Effects: The first form steps through the sequence from
pattern to _pat_end_, identifying characters that are part
of a format sequence. Each character not part of a format
sequence is written to _s_ immediately, and each format sequence,
as it is identified, results in a call to do_put; thus, format
elements and other characters are interleaved in the output in
the order in which they appear in the pattern.
Format sequences are identified by converting each character _c_

 Page 3

 n1096

to a char value as if by _ct.narrow(c,0)_, where _ct_ is a reference
to _ctype<charT>_ obtained from _str.getloc()_. The first character
of each sequence is equal to '%', followed by an optional modifier
character _mod_
[footnote: Although Standard C defines no modifiers, most vendors do.]
and a format specifier character _spec_ as defined for the function
strftime. If no modifier character is present, _mod_ is 0. For
each valid format sequence identified, calls _do_put(s,str,fill,t,
spec,mod)_.
 The second form calls _do_put(s,str,fill,t,format,modifier)_.

[Add to the end of the Effects: clause of the definition of
time_put<>::do_put (22.2.5.3.2, lib.locale.time.put):]

... except that the sequence of characters produced for those
specifiers described as depending on the C locale are instead
implementation-defined. [footnote: implementors are encouraged
to refer to other Standards (such as POSIX) for these definitions.]

 Page 4

