
 Document Numbers: J16/97-0049
 WG21/N1087
 Date June 24, 1997
 Reply to: Sandra Whitman
 whitman@tle.ene
t.dec.com
 Judy Ward
 j_ward@decc.ene
t.dec.com

 C LIBRARY NAMES and the STD NAMESPACE

PREFACE

We submitted CD2-17-003 "Remove C library names from namespace std"
to
the Library Issues list for CD2. Our motivation was that although we
understand the value of placing the standard C library names into
namespace std we continued to see problems with this approach. Since
the Nashua standards meeting we reviewed this requirement again.
This
paper details five issues we keep encountering. We realize that they
may seem like implementation details which have no place for
discussion by a standards body. Our belief is that they that exist
across platforms and will cause many vendors to be unwilling or
unable
to meet the "putting C names into namespace std" requirement. We
welcome feedback on solutions for these items.

INTRODUCTION

Currently CD-2 of the ANSI C++ Standard states (Clause 17, Annex D)
that the C++ Standard library will provide 18 ISO C library headers
in
a <cname> form which brings ISO C names into the namespace std and a
<name.h> form which bring ISO C names into both the std and global
namespace (excluding macros).

Using <stdlib.h> as an example, a conforming implementation would
allow a user to write:

 #include <stdlib.h>
 main() {
 abort(); // or std::abort()
 }

 or:

 #include <cstdlib>
 // the user's abort function
 void abort() {;}
 main() {
 std::abort(); // C library abort
 }

>From an physical perspective, this is what the C headers need to
accomplish:

 // <stdlib.h>
 namespace std {
 void abort();

 // ...
 }
 using std::abort();

 // <cstdlib>
 namespace std {
 void abort();
 // ...
 }

Of course no implementation is this simple. The purpose of this
document is to discuss the complicated (sometimes subtle) issues
inherent in meeting the requirement that C names are put into the std
namespace. This might explain why no current vendor (that we know
of)
actually meets the requirement.

A summary of major issues we encountered is:

 1. Non-ISO C names in ISO C headers cause problems for
 a conforming implementation.
 2. Names reserved to an implementation starting with __
 or _Capital cause problems for a conforming implementation.
 3. C++ does not provide a complete solution for replacing
 "masking" macros.
 4. Synchronizing the C/C++ library interface in an
 environment where the two are independent will always
 be a problem.
 5. ISO C library headers are not always ISO C compliant.

ISSUE 1. Existing C headers contain non-ISO C names.

ISO C library headers (as specified by ISO/IEC 9899:1990 Programming
Languages C (Clause 7) or ISO/IEC:1990 Programming Languages-C
Amendment 1: C Integrity, (Clause 7)) contain non-ISO C names for
compatibility, operating system dependencies, conformance to
additional standards/ specifications e.g. POSIX, XPG4/2 (X/Open Issue
4 Version 2), reentrancy requirements etc.

Using the C library header <stdlib.h> as an example, when compiling
in
any mode which does not conform to strict ISO C we will end up
polluting either the std namespace, global namespace, or both.

If we simply place the contents of the C library <stdlib.h> into
namespace std and compile in a mode other than one that conforms to
strict ISO C we pollute the std namespace with names not specified by
ISO C. For example <stdlib.h> on Visual C++ V5.0 contains several
non-ISO C names including swab() for compatibility. If we simply
place the contents of the C library <stdlib.h> into namespace std and
compile the program below (for example) in some type of non-ISO C
conformance mode, it would not compile because swab() would no longer
be in the global namespace.

 #include <cstdlib>
 int main () {
 char dst[5];
 swab ("abc",dst,2);
 return 0;
 }

If we do using statements on non ISO C names we'd pollute the global
namespace as well.

If we use a more refined technique and only place ISO C names into
namespace std i.e. if we do something like this:

 namespace std {extern void abort __((void));}
 namespace std {extern int atexit __((void (*)(void)))}

for each ISO C name then the global namespace gets polluted when
compiling in some type of non-ISO C conformance mode.

If we only bring ISO C names into the std namespace when compiling
for
strict ISO C compliance (i.e. when compiling for a mode which only
makes ISO C names visible) we still have problems. A C++ program
relying on standard C++ behavior coded using (for example)

 std::abort

will not compile in a non ISO C mode (since ISO C names will not be
brought into namespace std in this case) if it ever needed to make
use
of any extensions.

ISSUE 2. ISO C headers contain names defined by the implementation

Identifiers that begin with an underscore and either an uppercase
letter or another underscore are always reserved for any use (ISO/IEC
9899:1990 7.1.3). In a strict ISO C mode an implementation is free
to
make use of __, _Capital names. Frequently ISO C macros are defined
in terms of these type of implementation defined names. If the
contents of a C library header is placed into namespace std, then the
C++ version of the headers need to make implementation defined names
available in the global namespace if they are referenced in the
definition of macros. How will C++ keep informed of each C
implementation defined name of this sort ?

Consider for example stderr, stdin and stdout. According to ISO/IEC
9899:1990 (7.9.1) these macros are defined in <stdio.h> as expression
of type "pointer to FILE" that point to the FILE objects associated,
respectively, with the standard error, input, and output streams. On
Digital UNIX they are defined to be:

 #define stdin (&_iob[0])
 #define stdout (&_iob[1])
 #define stderr (&_iob[2])

Neither of the programs below would compile if the contents of the C
library version of <stdio.h> were included in namespace std without a
using std::_iob statement somewhere so that ::_iob is defined from
both <cstdio> and <stdio.h>.

 #include <cstdio> #include <stdio.h>
 int main () { or int main () {
 if (std::feof(stdin)); if
(std::feof(stdin));
 return 0; if (feof(stdin));
 } return 0;
 }

Enumeration via using std::xxx is impractical for each name reserved
to the implementation. Suppliers of C++ headers can look to ISO C
for

ISO C names. Names reserved for use by an implementation are not as
easily determined. Keeping current with such names would create a
long-term maintenance problem. A "using namespace std" statement
anywhere in a <cname> or <name.h> header would be unacceptable since
it would force pollution of the global namespace with every name in
namespace std whether this was desired or not. So for example in
code
like that below everything in <vector> would be forced into the
global
namespace if <stdlib.h> did a "using namespace std".

 #include <vector>
 #include <stdlib.h>

ISSUE 3. ISO C functions implemented as macros

Currently CD-2 of the ANSI C++ Standard states that names defined as
functions in C shall be defined as functions in C++ (Clause
17.3.1.2).
So what happens to ISO C functions that are implemented as macros ?

A <cname> header could blindly #undef every ISO C function found in
its corresponding <name.h> header (making sure to avoid an #undef on
any function that was actually #defined to another function
prototype). This would deny C++ users the benefits of any C macros
(especially for performance). This is probably unacceptable for
performance reasons.

Clause 17 footnote 152 states in reference to disallowing "masking"
macros in C++ that "The only way to achieve equivalent "inline"
behavior in C++ is to provide a definition as an extern inline
function."

According to ISO/IEC 9899:1990 7.1.7 Use of library functions, "Any
macro definition of a function can be suppressed locally by enclosing
the name of the function in parentheses...". Thus the C language
provides a standard way of distinguishing between a macro and a
function and a user can select one or the other. If we replace
masking macros with inline functions for C++ how is a C++ user going
to distinguish between an inline and external function ?

In C macros can provide users with a speed/space trade off. Users
requiring speed select macros; those requiring space may select
library functions. This flexibility is lost when a macro is replaced
by an inline function in C++. Using an inline function permanently
embeds code into a run-time image. This has compatibility
implications which a user will no longer have the option of avoiding.

ISSUE 4. C library verses C++ library independence

Supporting the C++ C library headers as they are currently defined
requires synchronization with the underlying C library headers.
Assuming strict ISO C conforming C library headers, C++ still needs
to
be aware of the C library implementation defined names used by ISO C
macros as well as the C masking macros supported on specific
platforms
which need replacing with inline functions. There is no guarantee
that the C and C++ library headers are provided together. Ensuring
that versions of C++ C library headers are coordinated with their C
library counterparts adds an extra layer of complexity. In addition
what about the relationship between the C++ headers for C library

facilities and emerging C standards like C9x ? The burden of this
support is not limited to C++ compiler/library vendors. It will
impact any independent C++ library/tool vendor and operating system
provider all of which will need to ensure that the correct C/C++
header interfaces are in place.

One option is to provide private C++ copies of the C++ C library
headers which do not interact in any way with the underlying C
library
headers. In this case the C++ headers contain their own C
definitions. However there is a risk associated with providing C++ C
library headers which are isolated from the C versions they
represent.

ISSUE 5. Working around C library bugs

Although deviations from ISO C in the underlying C headers is not the
concern of the ANSI C++ standard this issue is a reality which
further
clouds implementing C library headers in C++.

ISO C headers may contain names outside their namespace. For example
in Visual C++ V5.0 <wchar.h> contains the definition of FILE which it
should not. Name pollution in the underlying ISO C headers becomes a
problem in the C++ versions of these headers as well.

A more difficult problem is that ISO C headers may contain nested
namespaces. Nested namespaces occur when one ISO C header includes
another ISO C header. ISO C does not strictly allow nested header
inclusion but it does occur in practice. On Sun, HP, and Digital
UNIX
platforms <wchar.h> includes the ISO C header <stdio.h>. From the
perspective of any independent C++ library/tool vendor this would
need
to be considered when providing a conforming set of C++ headers until
the C headers were corrected.

We tried to avoid problems with nested namespaces using a C++ C
library header implementation which makes use of three sets of
headers
(c++std-lib-4547). Using <stdlib.h> as example, this implementation
requires:

 1) <cstdlib> which includes the C library version of <stdlib.h>
 in the std namespace e.g.

 namespace std {
 # include "C/stdlib.h"
 }

 2) a C++ version of <stdlib.h> which includes <cstdlib> and
 makes the appropriate ISO C names available in the std
 namespace e.g.

 #include <cstdlib>
 using std::abort;
 using std::rand;
 ...

 3) the underlying C library version of <stdlib.h>

Using this approach, here's an example of nested namespaces:

 #include <cwchar>
 namespace std {
 #include "C/<wchar.h>"
 ...
 #include <stdio.h> // picks up C++/<stdio.h>
 #include <cstdio>
 namespace std {
 #include "C/<stdio.h> // nested namespaces

Aside from preventing nested namespaces we need to ensure that even
when C library headers have nested include files that C library names
are consistently brought into the correct namespace. Basically this
means that we need to guarantee that any program that includes a
<cname> version of a header directly or indirectly brings those names
into namespace std and that any program that includes a <name.h>
version of a header directly or indirectly (except via a direct
inclusion of a <cname> header) brings those names into both the std
and global namespace. This allows a program that indirectly includes
<stdio.h> to work as expected in the examples here:

 #include <wchar.h> #include <cwchar>
 int main () { or int main () {
 printf ("hello\n"); printf ("hello\n");
 return 0; return 0;
 } }

We found that we needed dozens of macros to accomplish this. The
headers required:

 1. one macro to track namespace levels to avoid namespace nesting
 2. one macro per header to ensure that ISO C names defined from a
 <cname> version of a header included directly by a user
program
 were never placed into the namespace std.
 3. one macro per header to determine whether a <name.h> header
 was included (directly or indirectly).
 4. one macro per header to ensure that names included directly
 or indirectly from a <name.h> header were brought into
 the global namespace only once.

which is alot of macros.

In addition C++ will have to live with <cname> headers which behave
differently on different systems depending on whether there is a
nested include file in the underlying C library <name.h> header. For
example <cwchar> includes the C library version of <wchar.h> which
may
indirectly include the C library version of <stdio.h>. So when a
user
includes <cwchar> on some systems names defined in <stdio.h> by ISO C
are brought into namespace std, on others they are not.

 // myprog.cxx on Sun, HP, Digital UNIX
 #include <cwchar> // wchar and stdio names into std::

 // myprog.cxx on Visual C++, Digital OpenVMS
 #include <cwchar> // wchar names into std::

A side effect of this is that once a header has nested namespaces a
user gets name pollution regardless of their own good intentions. So
a program like that below still gets the std namespace polluted.

 // myprog.cxx on Sun, HP, Digital UNIX
 #include <cwchar> // wchar and stdio names into std::

 #include <cstdio>

CONCLUSIONS

The value of placing the standard C library in namespace std is
significant. The C library is an important piece of C++ and it
should
be cleanly integrated into the C++ environment. Not providing
namespace support in the C library breaks the encapsulation of the
C++
library in namespace std. However in light of the issues discussed
here we believe that providing namespace support for the C library is
highly error prone and will lead to unmaintainable C++ versions of
the
C library headers (and C library headers themselves if they are
modified) and create serious bugs.

Non-ISO C names in ISO C headers pose problems as do implementation
reserved names in C library headers and ISO C functions implemented
as
macros. In practice (although this is technically outside the
immediate scope of the ANSI C++ standard process) it involves a
synchronization between C/C++ standard library headers and most
likely
involves reworking the C library headers. A difficulty with this is
that the C headers exist in a C development environment which is not
directly encompassed by the C++ development environment. We believe
that the C library is fairly well known and that the C and C++
libraries can be integrated by leaving the C library in the global
namespace as C does.

Our conclusion is that the ISO C library names should be removed from
namespace std. We believe that the benefits of putting ISO C names
into namespace std do not outweigh the increased complexity required
for compliance.

