
 Doc No: X3J16/97-0041
WG21/N1079
 Date: June 2nd, 1997
 Project: Programming
Language C++
 Ref Doc:
 Reply to: Josee Lajoie
 (josee@vnet.ibm.com
)

 +============================+
 | Core WG List of new issues |
 +============================+

 This list contains the issues I received since the Nashua meeting
 (either through private email or because they were posted on the
core
 reflector) and a few issues that where on the Core list of issues
before
 the Nashua meeting but that have not been addressed by a working
group.

 The committee may decide to address some of these issues before the
first
 C++ standard is published. The remaining issues will be passed along
to
 the committee working on the 5-year revision of the standard.

 +-------+
 | Core1 |
 +-------+

 Lexical Conventions

 2.10 [lex.name]:
 849: Which names are reserved to implementations?

 Name Look Up

 3.4.1 [basic.lookup.unqual]:
 850: How does name look up proceed in the parameter list of a
 friend function?
 5.1 [expr.prim]:
 855: ::name is not a qualified-id
 5.3.1 [expr.unary.op]:
 860: Is ptr->~T() a call to a destructor?
 7.3.3 [namespace.udecl]:
 863: Can the name introduced by a using-declaration be the same as
the
 name of an entity already declared in that scope?
 8.4 [dcl.fct.def]:
 865: What is the potential scope of a function parameter?
 9 [class]:
 869: Is a class name inserted in its own class scope considered a
member
 name for the purpose of name look up?

 Linkage

 7.1.5.1 [dcl.type.cv]:
 862: A local name declared const does not have internal linkage
 7.5 [dcl.link]:
 864: Does extern "C" affect the linkage of function names with
internal

 linkage?

 Object / Memory Model

 3.6.1 [basic.start.main]:
 851: Must a diagnostic be issued if main is called in a program?
 3.6.3 [basic.start.term]:
 852: Should the destruction of array objects be inter-leaved with
calls
 to the functions registered with atexit?
 5.10 [expr.eq]:
 861: Should the WP say that &x == &y is false if x not same object
as y?
 8.5.1 [dcl.init.aggr]:
 868: description of aggregate initialization should refer to
default
 initialization
 9.4.2 [class.static.data]:
 870: Is an error required if a static data member is used and not
 defined?
 9.5 [class.union]:
 871: Can a class with a constructor but with no default
constructor
 be a member of a union?
 12.2 [class.temporary]:
 874: Clarify lifetime of temporary example
 12.6.2 [class.base.init]:
 875: If a constructor has no ctor-initializer, but the class has a
 const member, is the constructor definition ill-formed?
 12.8 [class.copy]:
 876: The optimization that allows a copy of a class object to
alias
 another object is too permissive

 +-------+
 | Core2 |
 +-------+

 Sequence Points/Execution Model

 1.8 [intro.execution]:
 848: What can be done in a signal handler?
 694: List of full-expressions needed

 Access

 11 [class.access]:
 872: How do access control apply to constructors/destructors
implicitly
 called for static data members?
 873: How/when is access checked in default arguments of function
 templates?
 11.5 [class.protected]:
 752: When accessing a base class member, the qualification is not
ignored

 Types

 3.9.1 [basic.fundamental]:
 853: Should typeid(void-expression) be allowed?

 Default Arguments

 8.3.6 [dcl.fct.default]:
 689: What if two using-declarations refer to the same function but
the
 declarations introduce different default-arguments?
 776: Name look up in default argument expressions

 Types Conversions / Function Overload Resolution
 --
 4.8 [conv.double]:
 712: Should the result value of a floating-point conversion be
 implementation-defined?
 4.10 [conv.ptr]:
 854: Must a null pointer constant be an rvalue of integer type of
value 0?
 5.2.9 [expr.static.cast]:
 857: When can temporaries created by cast expressions be
eliminated?
 5.2.10 [expr.reinterpret.cast]:
 858: Can an expression of any type be cast to its own type using a
 reinterpret_cast?
 859: When can a pointer to member function be used to call a
virtual
 function with a covariant return type?
 8.5 [dcl.init]:
 866: cv-qualifiers and type conversions
 867: copy constructors do not have parameters of derived class
type
 13.3 [over.match]:
 877: 13.3.1.6 isn't about binding to a temporary
 13.3.3.1 [over.best.ics]:
 733: Implicit conversion sequences and scalar types
 13.3.3.2[over.ics.rank]:
 779: identity conversion is preferred over lvalue-to-rvalue
conversion

 Expressions

 5 [expr]:
 748: Should we say that operator precedence is derived from the
syntax?
 5.6 [expr.mul]:
 719: Is unsigned arithmetic modulo 2~N for multiplication as well?

 +--------+
 | Core 3 |
 +--------+

 RTTI

 5.2.8 [expr.typeid]:
 856: Should the WP mention the type extended_type_info?

 Templates

 3.5 [basic.link]:
 771: When are two different function template declarations with
the same
 template name ill-formed or valid overloads?
 14 [temp]:
 878: Can a template declaration not followed by a definition
specify
 export?
 14.3 [temp.arg]:

 879: What conversions can apply to a template argument to bring it
to
 the type of the corresponding nontype template parameter?
 14.5.3 [temp.friend]:
 880: When does a friend declaration refer to a global function or
to a
 template instantiation?
 14.5.4 [temp.class.spec] and 14.7.3 [temp.expl.spec]:
 881: What class-key can be used in declarations of specializations
 and partial specializations?
 14.6 [temp.res]:
 882: typename is not permitted in functional cast notation
 883: Can "template" be used to specify that an unqualified
function
 name refers to a template specialization?
 14.6.1[temp.local]:
 783: Do members of _dependent_ base classes hide the names of
template
 parameters?
 14.6.3 [temp.nondep]:
 884: no diagnostics required for semantics errors in template
definitions

 ==
=========
 Chapter 1 - General

 Work Group: Core
 Issue Number: 848
 Title: What can be done in a signal handler?
 Section: 1.8 [intro.execution]
 Status: active
 Description:
 [Erwin Unruh:]
 Throwing an exception from within a signal handler should
be
 undefined. All you can portably do within a handler is to
set
 a global flag of type "volatile sig_atomic_t".

 [Greg Colvin:]
 The C standard allows a signal handler to call signal(),
and
 in some cases abort(), exit(), and longjmp().

 The C++ draft does say the following in 1.8 para 10:
 "When the processing of the abstract machine is
interrupted by
 receipt of a signal, the values of objects modified after
 the preceding sequence point are indeterminate during the
 execution of the signal handler, and the value of any
object
 not of volatile sig_atomic_t that is modified by the
handler
 becomes undefined."

 This seems less restrictive than the C standard, which
allows
 undefined behavior if a signal handler "refers to any
object
 of static storage duration other than by assigning a value
to
 a static storage duration variable of type volatile
 sig_atomic_t".

 [Erwin Unruh:]
 1.8 para 10 should be deleted. It severely restricts
 optimizers. We all think that in the following code

 int a,b;
 a = 7;
 b = 5;
 a = 9;

 the first assignment is optimized away. 1.8 para says a
 compiler must put the assignment down because a signal
handler
 might refer to a. I think this is an unacceptable
situation
 with regard to C.

 [Erwin Unruh's proposed resolution:]
 A function registered as a signal handler may only do what
it
 is entitled to do in the C standard. A function which
uses
 (even potentially) a language or library feature not in C
will
 cause undefined behaviour.
 [Note: This also covers very minor additions!]

 [Example:

 inline void f(){} // inline is no C
 void g(int) { if (0) f(); } // g uses a non-C feature

 signal(SIGINT, &g); // undefined behaviour

 Although f is never called, activating a SIGINT causes
 undefined behaviour. Note that using exception handling
or
 RTTI would most probably cause problems on some machines.
]

 The result of this discussion should go into another
 paragraph in section [lib.support.runtime] 18.7.
 Resolution:
 Requestor: Greg Colvin/Erwin Unruh
 Owner: Steve Adamczyk (Sequence Points/Execution Model)
 Emails:
 Papers:
 .
.
 Work Group: Core
 Issue Number: 694
 Title: List of full-expressions needed
 Section: 1.8 [intro.execution]
 Status: editorial
 Description:
 1.8p14: "certain contexts in C++ cause the evaluation of a
 full-expression that results from a syntactic construct
other
 than expression"

 Is it enumerated anywhere exactly what these contexts are?
 Do the contexts themselves at least identify themselves as
 surrogate full-expressions?

 I didn't read the cited example (8.3.6) as thoroughly as I
 might, but I didn't see anything there that explicitly said
 "this is treated like a full-expression." Probably you could
 make the case based on combining several passages together,
but
 if the other ones are like this, it would take some real
 detective work to figure it out. If someone knows what
contexts
 were intended here, even if something might be omitted, it
would
 be an improvement to make it explicit, either here or in the
 various contexts.

 Steve Adamczyk:
 > I looked at the wording and I agree it could be clearer.
At
 > the least we should make normative the idea that when a
 > construct is implemented by an implicit function call, the
 > entire function call is considered a full expression.
3.2p2
 > may be useful as a list of implicit references.
 Resolution:
 Requestor: Mike Miller
 Owner: Steve Adamczyk (Sequence Points)
 Emails:
 Papers:
 .
.
 ==
=========
 Chapter 2 - Lexical Conventions

 Work Group: Core
 Issue Number: 849
 Title: Which names are reserved to implementations?
 Section: 2.10 [lex.name]
 Status: editorial
 Description:
 Regarding names that are reserved for C++ implementations,
 Sections 2.10 and 17.3.3.1.2 both say that identifiers
 containing a double underscore (__) or beginning with an
 underscore and an upper-case letter are reserved for use by
C++
 implementations and standard libraries.

 Section 17.3.3.1.2 also says the following:
 --Each name that begins with an underscore is reserved to
the
 implementation for use as a name with file scope or within
 the namespace std in the ordinary name space.

 This is missing from 2.10. I assume the wording in
17.3.3.1.2
 takes precedence?

 2.10 should be changed to just reference 17.3.3.1.2.
 Resolution:
 Requestor:
 Owner: Josee Lajoie (Lexical Conventions)
 Emails:
 Papers:
 .
.
 ==

=========
 Chapter 3 - Basic Concepts

 Work Group: Core
 Issue Number: 850
 Title: How does name look up proceed in the parameter list
of a
 friend function?
 Section: 3.4.1 [basic.lookup.unqual]
 Status: active
 Description:
 struct A {
 typedef int AT;
 void foo(AT);
 };
 struct B {
 typedef int BT;
 friend void A::foo(AT); // does name lookup find AT?
 friend void A::foo(BT); // does name lookup find BT?
 };

 3.4.1 is not clear describing how the scopes are searched
for
 the parameter list of a friend function declaration when the
 friend function is a member function of another class. i.e.
Is
 the scope of B ever considered?
 Resolution:
 Requestor:
 Owner: Josee Lajoie (Name Look Up)
 Emails:
 Papers:
 .
.
 Work Group: Core
 Issue Number: 851
 Title: Must a diagnostic be issued if main is called in a
program?
 Section: 3.6.1 [basic.start.main]
 Status: editorial
 Description:
 3.6.1 para 3 says:
 "The function main shall not be called from within a
program."

 Does 'call' mean function call in the program source or does
it
 refer to call during the execution of the program? The
"shall
 not" phrase can mean either that a diagnostic is required or
 that violation results in undefined behaviour depending on
which
 one of these options the term 'call' refers to.

 1.3 [intro.compliance] para 5 says:
 "--Whenever this International Standard places a requirement
 on the execution of a program (that is, the values of
data
 that are used as part of program execution) and the data
 encountered during execution do not meet that
requirement,
 the behavior of the program is undefined and this
 International Standard places no requirements at all on
the

 behavior of the program."
 Proposed Resolution:
 A diagnostic is required. "call" refers to a source code
 construct.
 Maybe the sentence should be rewritten as follows to make
the
 requirement explicit:
 "A program shall not contain a call to the function main."
 Resolution:
 Requestor: Steve Clamage/Fergus Henderson
 Owner: Josee Lajoie (Object Model)
 Emails:
 Papers:
 .
.
 Work Group: Core
 Issue Number: 852
 Title: Should the destruction of array objects be inter-
leaved
 with calls to the functions registered with atexit?
 Section: 3.6.3 [basic.start.term]
 Status: active
 Description:
 What is the defined order of atexit-registered function
calls
 in the following program:

 C f() { atexit(&func1); }
 C g() { atexit(&func2); }
 C x[] = { f(), g() };

 3.6.3 para 3 says:
 "If a function is registered with atexit (see <cstdlib>,
 lib.support.start.term) then following the call to exit,
any
 objects with static storage duration initialized prior to
the
 registration of that function will not be destroyed until
the
 registered function is called from the termination process
and
 has completed. For an object with static storage duration
 constructed after a function is registered with atexit,
then
 following the call to exit, the registered function is not
 called until the execution of the object's destructor has
 completed."

 The current draft (3.6.3) indicates that, upon termination,
 atexit will call registered functions in the example above
in
 the following order:

 Destructor for x[1]
 func2
 Destructor for x[0]
 func1

 This result is inconsistent with the behaviour of the
following
 slightly different program:

 C f() { static C local1; }
 C g() { static C local2; }

 C x[] = { f(), g() };

 The last sentence in 3.6.3 paragraph 1 says:

 "For an object of array or class type, all subobjects of
that
 object are destroyed before any local object with static
storage
 duration initialized during the construction of the
subobjects
 is destroyed."

 This mandates that destructor be called in the following
order:

 Destructor for x[1]
 Destructor for x[0]
 Destructor for local2
 Destructor for local1

 Should the ordering for these two programs be consistent?
 Shouldn't the first program call functions registered with
 atexit in a the following order?

 Destructor for x[1]
 Destructor for x[0]
 func2
 func1

 Proposed Resolution:
 [Josee: I remember a discussion where members of the
committee
 didn't want to require that an implementation remember the
 order of destruction of every array element separately. I
think
 this should be the case both when destructors for local
static
 variables are called and when functions registered with
atexit
 are called.]
 Resolution:
 Requestor:
 Owner: Josee Lajoie (Object Model)
 Emails:
 Papers:
 .
.
 Work Group: Core
 Issue Number: 853
 Title: Should typeid(void-expression) be allowed?
 Section: 3.9.1 [basic.fundamental]
 Status: active
 Description:
 [Bill Gibbons, core-7398:]
 The restriction on expressions of void type in 3.9.1/9:
 "An expression of type void shall be used only as an
expression
 statement (6.2), as an operand of a comma expression
(5.18), or
 as a second or third operand of ?: (5.16)."

 makes this code ill-formed:

 #include <typeinfo>

 void f() { }
 void g() {
 typeid(f()); // ill-formed
 typeid(void); // OK
 }

 Should expressions of type void be allowed as operands of
 typeid? (Note that they are already allowed as operands of
?:,
 so there is a precedent for allowing them.)

 [Sean Corfield, core-7404:]
 Should we consider this as part of the issue to relax uses
of
 void? This just seems to be 'yet another bug' in the
handling of
 void (that's how I view the 'unnecessary' restrictions since
 they get in the way of writing templates).
 Resolution:
 Requestor: Bill Gibbons
 Owner: Steve Adamczyk (Types)
 Emails:
 Papers:
 .
.
 ==
=========
 Chapter 4 - Standard Conversions

 Work Group: Core
 Issue Number: 712
 Title: Should the result value of a floating-point
conversion be
 implementation-defined?
 Section: 4.8 [conv.double]
 Status: active
 Description:
 4.8 says for floating-point conversions:
 If the [floating-point] source value is between two
adjacent
 [floating-point] destination values, the result of the
 conversion is an unspecified choice of either of those
values.

 yet 2.13.3 says for floating-point literals:

 the result is either the nearest representable value, or
the
 larger or smaller representable value immediately adjacent
to
 the nearest representable value, chosen in an
 implementation-defined manner.

 Why not say "implementation-defined" for conversions too?

 This also applies to the integral to floating conversions
 described in 4.9 [conv.fpint].
 Resolution:
 Requestor: Bill Gibbons
 Owner: Steve Adamczyk (Type Conversions)
 Emails:
 Papers:
 .
.

 Work Group: Core
 Issue Number: 854
 Title: Must a null pointer constant be an rvalue of integer
 type of value 0?
 Section: 4.10 [conv.ptr]
 Status: editorial
 Description:
 4.10 para 1:
 "An integral constant expression (5.19) rvalue of integer
type
 that evaluates to zero (called a null pointer constant) can
be
 converted to a pointer type."

 Is this supposed to be a definition for the "null pointer
 constant"? It doesn't really say that. If an A is a D, it
 does not mean that other things can't also be Ds. I don't
find
 any other definition of "null pointer constant".

 Could an implementation define NULL to be a zero value of a
 magic internal compiler type that was compatible with all
 pointer types but not with integral types? In that case,
given

 void f(int);
 void f(char*);

 the expression f(NULL) would call f(char*), but with a usual
 implementation would call f(int). In addition, usual
 implementations would allow

 int i = 2 + NULL;

 but the hypothetical implementation would flag it as an
error.
 Proposed Resolution:
 The sentence in 4.10 is intended to define the term "null
 pointer constant".

 The first two phrases of 4.10 para 1 could be reversed to
show
 the intent better:
 "A null pointer constant, which is an integral constant
 expression (5.19) rvalue of integer type that evaluates to
zero,
 can be converted to a pointer type."

 According to the definition of NULL in chapter 18, NULL must
be
 a null pointer constant.
 Resolution:
 Requestor: Steve Clamage
 Owner: Steve Adamczyk (Type Conversions)
 Emails:
 Papers:
 .
.
 ==
=========
 Chapter 5 - Expressions

 Work Group: Core
 Issue Number: 748

 Title: Should we say that operator precedence is derived
from the
 syntax?
 Section: 5[expr]
 Status: editorial
 Description:
 para 4:
 "Except where noted, the order of evaluation of operands of
 individual operators and subexpressions of individual
 expressions, and the order in which side effects take
place, is
 unspecified."

 "Except where noted"
 Should we say that operator precedence is derived from the
 syntax? The C syntax says this in a footnote. (Footnote 35).
 Resolution:
 Requestor:
 Owner: Steve Adamczyk (Expressions)
 Emails:
 Papers:
 .
.
 Work Group: Core
 Issue Number: 855
 Title: ::name is not a qualified-id
 Section: 5.1 [expr.prim]
 Status: editorial
 Description:
 The term "qualified-id" is sometimes used in the WP to
 designate a name solely prefixed by the :: operator.
 However, the grammar does not allow a qualified-id to be
 preceded by a leading ::. This should be clarified.

 For example, 3.4.4 para 1 says:
 "The class-name or enum-name in the elaborated-type-
specifier
 may either be a simple identifier or be a qualified-id."
 The above does not allow:
 class ::B
 to refer to a global class name.
 Resolution:
 Requestor:
 Owner: Josee Lajoie (Name Look Up)
 Emails:
 Papers:
 .
.
 Work Group: Core
 Issue Number: 856
 Title: Should the WP mention the type extended_type_info?
 Section: 5.2.8 [expr.typeid]
 Status: active
 Description:
 Someone asked on the reflector:
 > The extended_type_info is no longer mentioned in the
draft.
 > Is there a conforming way to provide extended type
information
 > now?

 Bill Gibbons answered the following:
 > The working paper should say that typeid yields an lvalue
 > referring to a type_info object >>>or an object of type

derived
 > from type_info<<<.
 >
 > The name "extended_type_info" should probably still appear
in
 > a note, but of course it is totally non-normative.
 Resolution:
 Requestor: Bill Gibbons
 Owner: Bill Gibbons (RTTI)
 Emails:
 Papers:
 .
.
 Work Group: Core
 Issue Number: 857
 Title: When can temporaries created by cast expressions be
 eliminated?
 Section: 5.2.9 [expr.static.cast]
 Status: active
 Description:
 S s;
 (S)s; // Must this cast expression create a temporary of
type S?
 // Even though s has type S already?

 A more interesting example:

 class S {
 int i;
 public:
 S foo() { i = 1; return *this; }
 };

 S s;
 (S(s)).foo(); // Does this change the value of s.i?

 5.2.9 para 2 says that a temporary is created for S(s).
 Is the implementation allowed to eliminate this temporary?
 Resolution:
 Requestor: Josee Lajoie
 Owner: Steve Adamczyk (Type Conversions)
 Emails:
 Papers:
 .
.
 Work Group: Core
 Issue Number: 858
 Title: Can an expression of any type be cast to its own
type
 using a reinterpret_cast?
 Section: 5.2.10 [expr.reinterpret.cast]
 Status: active
 Description:
 This complements issue 796.

 5.2.10 para 2 says:
 "Any expression may be cast to its own type using a
 reinterpret_cast operator."

 There are two problematic cases with this scenario:
 (1) Array types.
 It's a little weird to be able to cast an lvalue array to
its
 own (array) type.

 (2) Class types. Maybe it's okay to cast a class
expression to
 its own type, but what are the semantics? Is a copy made?
If
 so, presumably the copy constructor is not called. (?)

 Both could be resolved by saying that the reinterpret_cast
does
 nothing in that case, i.e., it's like a set of parentheses,
but
 even there, one would have to be careful to indicate whether
 the expression is forced to an rvalue.
 Proposed Resolution:
 All things considered, it seems it would be better to make a
 change here like the one recommended for const_cast (Issue
796).
 Resolution:
 Requestor: Steve Adamczyk
 Owner: Steve Adamczyk (Type Conversions)
 Emails:
 Papers:
 .
.
 Work Group: Core
 Issue Number: 859
 Title: When can a pointer to member function be used to
call
 a virtual function with a covariant return type?
 Section: 5.2.10 [expr.reinterpret.cast]
 Status: active
 Description:
 5.2.10 para 10 says:
 "Calling a member function through a pointer to member that
 represents a function type that differs from the function
type
 specified on the member function definition results in
 undefined behavior, except when calling a virtual function
 whose function type differs from the function type of the
 pointer to member only as permitted by the rules for
 overriding virtual functions."

 Does the above intend to allow the following:
 struct X { };
 struct Y: X { };

 struct A {
 virtual X* f();
 };
 struct B : A {
 virtual Y* f();
 };

 X* (A::*pm)() = &A::f;
 Y* (B::*pm2)();
 pm2 = reinterpret_cast<Y*(B::*)()>(pm);

 B b;
 b.*pm2(); // is this supposed to be well formed?

 If so, then the example should be added to the WP.
 Resolution:
 Requestor:
 Owner: Steve Adamczyk (Type Conversions)
 Emails:

 Papers:
 .
.
 Work Group: Core
 Issue Number: 860
 Title: Is ptr->~T() a call to a destructor?
 Section: 5.3.1 [expr.unary.op]
 Status: active
 Description:
 5.3.1 para 9:
 "There is an ambiguity in the unary-expression ~X(), where X
 is a class-name. The ambiguity is resolved in favor of
treating
 the ~ as a unary complement rather than treating ~T as
 referring to a destructor."

 This seems to contradicts 12.4 [class.dtor] para 12:
 struct B {
 virtual ~B() { }
 };
 struct D : B {
 ~D() { }
 };

 D D_object;
 typedef B B_alias;
 B* B_ptr = &D_object;
 ...
 B_ptr->~B(); // calls D's destructor ??complement
op??
 B_ptr->~B_alias(); // calls D's destructor ??complement
op??
 ...

 Should 5.3.1 para 9 say that it only applies if the unary
 operator is not part of a postfix expression?
 Resolution:
 Requestor:
 Owner: Josee Lajoie (Name Lookup)
 Emails:
 Papers:
 .
.
 Work Group: Core
 Issue Number: 719
 Title: Is unsigned arithmetic modulo 2~N for multiplication
as well?
 Section: 5.6 [expr.mul]
 Status: editorial
 Description:
 5.6/3, Binary * operator

 According to 3.9.1/3, unsigned arithmetic is always modulo
2^N.
 For addition and subtraction this is easy to remember, but
for
 multiplication the rule should probably be repeated here
since
 it is less obvious.
 Resolution:
 Requestor: Bill Gibbons
 Owner: Steve Adamczyk (Expressions)
 Emails:
 Papers:

 .
.
 Work Group: Core
 Issue Number: 861
 Title: Should the WP say that &x == &y is false if x not
same
 object as y?
 Section: 5.10 [expr.eq]
 Status: editorial
 Description:
 The relational operators (5.9) produce unspecified results
when
 comparing addresses of unrelated objects. I'm using
"unrelated"
 to mean that neither is a subobject of the other, neither is
a
 subobject of the same object, and they are not both part of
the
 same array. I also am referring to the built-in address-of
 operator, not an user-defined operator. Prototypical
example:

 void f() {
 int x, y;
 bool b = (&x <= &y); // unspecified result
 ...
 So far, so good.

 Section 5.10 says the equality operators have the same rules
as
 the relationals, but goes on to provide some cases when
 addresses must compare equal. Conspicuously absent is any
 statement about equality of addresses of unrelated objects.

 bool b = (&x == &y); // also unspecified!

 I thought I remembered a guarantee that (&x!=&y) in early
 drafts of the C standard, but the current C standard does
not
 make the guarantee. (So far as I can tell. Fergus
Henderson
 thinks the C standard is open to interpretation on that
point
 but I don't see why. It is irrelevant in any case, since
the
 C++ standard could tighten the requirement without causing
any
 problems. Surely there is no program that depends on x and
y
 having addresses that compare equal!)

 It seems like a peculiar omission, since we generally expect
 the address of an object to determine its identity. In
 particular, I think much of STL relies on the proposition:

 (&x==&y) if and only if x and y are the same object

 Was the "only if" part of the proposition deliberately left
 out, and if so, can someone explain why?
 Resolution:
 Requestor: Steve Clamage
 Owner: Josee Lajoie (Object Model)
 Emails:
 Papers:

 .
.
 ==
=========
 Chapter 7 - Declarations

 Work Group: Core
 Issue Number: 862
 Title: A local name declared const does not have internal
 linkage
 Section: 7.1.5.1 [dcl.type.cv]
 Status: editorial
 Description:
 7.1.1 para 6 says:
 "A name declared in a namespace scope without a storage-
class-
 specifier has external linkage unless it has internal
linkage
 because of a previous declaration and provided it is
not
 declared const. Objects declared const and not explicitly
 declared extern have internal linkage."

 but 7.1.5.1 para 2 misses the `namespace scope' part (i.e.,
it
 forgets about objects with no linkage, I think):

 "An object declared with a const-qualified type has
internal
 linkage unless it is explicitly declared extern or unless
it
 was previously declared to have external linkage.[...]"
 Proposed Resolution:
 7.1.5.1 should say:
 "An object declared in a namespace scope ...".
 Resolution:
 Requestor: David Vandevoorde
 Owner: Josee Lajoie (Linkage)
 Emails:
 Papers:
 .
.
 Work Group: Core
 Issue Number: 863
 Title: Can the name introduced by a using-declaration be
the
 same as the name of an entity already declared in
that
 scope?
 Section: 7.3.3 [namespace.udecl]
 Status: active
 Description:
 7.3.3/1 says:
 "A name specified in a using-declaration in a class or
 namespace scope shall not already be a member of that
scope."

 7.3.3/10 says:
 "If the set of declarations and using-declarations for a
single
 name are given in a declarative region,
 -- they shall all refer to the same entity, or all refer to
 functions; or
 -- exactly one declaration shall declare a class name or

 enumeration name and other declarations shall all refer
to
 the same entity or all refer to functions; in this case
the
 class name or enumeration name is hidden."

 7.3.3 para 1 should probably be changed to reflect what
 7.3.3 para 10 says.

 [Bill Gibbons also mentions]:
 There is a note at the end of 7.3.3/13:

 [Note: two using-declarations may introduce functions with
the
 same name and the same parameter types. A call to such a
 function is ill-formed unless name look up can unambiguously
 select the function to be called (because the function name
is
 qualified by its class name, for example).]

 The note in 7.3.3/12 says the same thing about namespace and
 block scope.

 Why must the ambiguity be resolved by name lookup, and not
by
 overload resolution? For example:

 namespace A {
 void f(int);
 void f(long);
 }
 namespace B {
 void f(long);
 void f(double);
 }
 namespace C {
 using A::f;
 using B::f;
 void g() {
 f(123); // ill-formed ?
 }
 }

 As written, the WP makes this ill-formed because there are
 two different functions "f(long)" at the point of the call.
 Of course overload resolution would not be ambiguous.
 Resolution:
 Requestor: Herb Sutter
 Owner: Josee Lajoie (Name Lookup)
 Emails:
 Papers:
 .
.
 Work Group: Core
 Issue Number: 864
 Title: Does extern "C" affect the linkage of function names
with
 internal linkage?
 Section: 7.5 [dcl.link]
 Status: active
 Description:
 7.5 para 6 says the following:
 "At most one of a set of overloaded functions with a

particular
 name can have C linkage."

 Does this apply to static functions as well?
 For example, is the following well-formed?

 extern "C" {
 static void f(int) {}
 static void f(float) {}
 };

 Can a function with internal linkage "have C linkage" at all
 (assuming that phrase means "has extern "C" linkage"), for
how
 can a function be extern "C" if it's not extern?

 The function *type* can have extern "C" linkage -- but I
think
 that's independent of the linkage of the function *name*.
It
 should be perfectly reasonable to say, in the example above,
 that extern "C" applies only to the types of f(int) and
 f(float), not to the function names, and that the rule in
7.5
 para 6 doesn't apply.

 Mike's proposed resolution:
 The extern "C" linkage specification applies only to the
type
 of functions with internal linkage, and therefore some of
the
 rules that have to do with name overloading don't apply.
 Resolution:
 Requestor: Mike Anderson
 Owner: Josee Lajoie (Linkage)
 Emails:
 Papers:
 .
.
 ==
=========
 Chapter 8 - Declarators

 Work Group: Core
 Issue Number: 776
 Title: Name look up in default argument expressions
 Section: 8.3.6 [dcl.fct.default]
 Status: active
 Description:
 para 5 says:
 "The names in the expression are bound, and the semantic
 constraints are checked, at the point of declaration."

 At the point of declaration of what? the function or the
 parameter?

 In this example, to which 'f' does the default argument
refers?
 ::f or N::f?

 typedef int (*PF)();
 int f(PF);
 namespace N {
 int f(PF p = &f);

 }
 Resolution:
 Requestor:
 Owner: Steve Adamczyk (Default Arguments)
 Emails:
 Papers:
 .
.
 Work Group: Core
 Issue Number: 689
 Title: What if two using-declarations refer to the same
function but
 the declarations introduce different default-
arguments?
 Section: 8.3.6 [dcl.fct.default]
 Status: active
 Description:
 7.3.3 para 10 says:
 "If the set of declarations and using-declarations for a
single
 name are given in a declarative region,
 -- they shall all refer to the same entity, or all refer to
 functions; or ..."

 8.3.6 para 9 says:
 "When a declaration of a function is introduced by way of a
using
 declaration, any default argument information associated
with the
 declaration is imported as well."

 This is not really clear regarding what happens in the
following
 case:
 namespace A {
 extern "C" void f(int = 5);
 }
 namespace B {
 extern "C" void f(int = 7);
 }

 using A::f;
 using B::f;

 f(); // ???
 Resolution:
 At the Hawaii meeting, the core WG agreed that the example
above was
 an error and suggested that this be clarified in the WP as
an
 editorial matter.
 Requestor: Bill Gibbons
 Owner: Steve Adamczyk (Default Arguments)
 Emails:
 Papers:
 .
.
 Work Group: Core
 Issue Number: 865
 Title: What is the potential scope of a function parameter?
 Section: 8.4 [dcl.fct.def]
 Status: editorial
 Description:
 Subclause 3.3.2 paragraph 2 reads:

 "The potential scope of a function parameter name in a
function
 definition (_dcl.fct.def_) begins at its point of
declaration.
 If the function has a function try-block the potential
scope
 of a parameter ends at the end of the last associated
handler,
 else it ends at the end of the outermost block of the
function
 definition. A parameter name shall not be redeclared in
the
 outermost block of the function definition nor in the
 outermost block of any handler associated with a function
 try-block."

 But subclause 8.4 paragraph 2 reads:
 "The parameters are in the scope of the outermost block of
the
 function-body."

 I presume the latter sentence should simply be removed. The
 following shows why it makes a difference.

 const int n = 1;
 void f(int n,
 int m = n); // which n?
 Resolution:
 Requestor: Neal Gafter
 Owner: Josee Lajoie (Name Lookup)
 Emails:
 Papers:
 .
.
 Work Group: Core
 Issue Number: 866
 Title: cv-qualifiers and type conversions
 Section: 8.5 [dcl.init]
 Status: active
 Description:
 1. The description of copy-initialization in 8.5 para 14
says:
 "The user-defined conversion so selected is called to
 convert the initializer expression into a temporary,
whose
 type is the type returned by the call of the user-
defined
 conversion function, with the cv-qualifiers of the
 destination type."

 Why must the temporary have the cv-qualifiers of the
 destination type? Shouldn't the cv-qualifiers of the
 conversion function dictate the cv-qualifiers of the
 temporary? For example,

 struct A {
 A(A&);
 };
 struct B : A { };

 struct C {
 operator B&();
 };

 C c;
 const A a = c; // allowed?

 The temporary created with the conversion function is an
 lvalue of type B.

 If the temporary must have the cv-qualifiers of the
 destination type (i.e. const) then the copy-constructor
for A
 cannot be called to create the object of type A from the
 lvalue of type const B.

 If the temporary has the cv-qualifiers of the result type
of
 the conversion function, then the copy-constructor for A
can
 be called to create the object of type A from the lvalue
of
 type const B.

 This last outcome seems more appropriate.

 2. the treatment of cv-qualifiers in 13.3.1.4 is also
puzzling:

 "Assuming that cv1 T is the type of the object being
 initialized...
 --When the type of the initializer expression is a class
 type "cv S", the conversion functions of S and its
base
 classes are considered. Those that are not hidden
within
 S and yield type "cv2 T2", where T2 is the same type
as T
 or is a derived class thereof, and where cv2 is the
same
 cv-qualification as, or lesser cv-qualification than,
cv1,
 are candidate functions."

 Why must the result of the conversion function be equally
or
 less cv-qualified than the object initialized? Shouldn't
the
 cv-qualification of the copy-constructor parameter
determine
 whether the cv-qualification on the result of the
conversion
 function is appropriate or not? For example:

 struct A {
 A(const A&);
 };
 struct B : A { };

 struct C {
 operator const B&();
 };

 C c;
 A a = c;

 The conversion function returns an lvalue of type const
B.

 Shouldn't this be allowed since the copy constructor for
 class A accepts arguments that are const lvalues?

 3. Is sub-clause 13.3.1.5 only for the initialization of
 non-class objects?

 The wording in this clause makes this somewhat confusing.
 The bullet in paragraph 1 says:
 "Conversion functions that return a nonclass type "cv2 T"
 are considered to yield cv-unqualified T for this
process of
 selecting candidate functions."

 All the conversion functions considered in this section
 return "nonclass type". In which case, all the bits
about
 cv-qualifiers are not necessary (and are somewhat
confusing).
 Resolution:
 Requestor: Josee Lajoie
 Owner: Steve Adamczyk (Type Conversions)
 Emails:
 Papers:
 .
.
 Work Group: Core
 Issue Number: 867
 Title: copy constructors do not have parameters of derived
class
 type
 Section: 8.5 [dcl.init]
 Status: editorial
 Description:
 Editorial Issue:
 In the definition of copy-initialization in section 8.5 para
 14, footnote 87 says:
 "Because the type of the temporary is the same as the type
of
 the object being initialized, or is a derived class
thereof,
 this direct-initialization, if well-formed, will use a copy
 constructor (_class.copy_) to copy the temporary."

 The term "copy constructor" is not used correctly here.
 Direct initialization considers not only the copy
constructor
 but all constructors such that a constructor that accepts a
 derived class type would be preferred in this situation:

 struct D;
 struct B {
 B(const B&);
 B(const D&);
 };
 struct D { };

 struct X {
 operator D();
 };

 B b = x;

 Isn't the temporary created by this copy-initialization of
type

 D (i.e. "the type returned by the call of the user-defined
 conversion function")? Shouldn't B(const D&) be selected?
 B(const D&) is not a copy constructor.
 Resolution:
 Requestor: Josee Lajoie
 Owner: Steve Adamczyk (Type Conversions)
 Emails:
 Papers:
 .
.
 Work Group: Core
 Issue Number: 868
 Title: description of aggregate initialization should refer
to
 default initialization
 Section: 8.5.1 [dcl.init.aggr]
 Status: editorial
 Description:
 8.5.1 para 7 says that "each member not explicitly
initialized
 shall be initialized with a value of the form T()".

 This should instead say that the member should be default-
 initialized. This matters when the type T is an array,
because
 you can't write T() for an array type T.

 If this change is made, paragraph 8 (about leaving a
reference
 uninitialized) can be made a note, because default-
 initialization of a reference is ill-formed ([dcl.init] para
5).

 12.6.1 para 2 should also talk about default initialization.
 Resolution:
 Requestor: Steve Adamczyk
 Owner: Josee Lajoie (Object Model)
 Emails:
 Papers:
 .
.
 ==
=========
 Chapter 9 - Classes

 Work Group: Core
 Issue Number: 869
 Title: Is a class name inserted in its own class scope
 considered a member name for the purpose of name
look up?
 Section: 9 [class]
 Status: editorial
 Description:
 class A { };

 class X {
 class A { };
 class Y : ::A {
 A a; // base class A or X::A?
 };
 };

 The answer to this is almost clear.
 Members of base class members are found before names declared

in
 containing classes (3.6.1p7), and the class name is inserted
into
 the class (9p2), so I would say that the reference to A must
be
 the base class.

 What is not clear is whether the insertion of the class name
is
 considered to be a "member" for the purpose of 3.6.1p7. I
think
 it's intended to be, but the terminology is not consistent,
 probably because the concept of "membership" as applying to
other
 than data members and member functions evolved over time.
 Resolution:
 Requestor: Mike Miller
 Owner: Josee Lajoie (Name Lookup)
 Emails:
 Papers:
 .
.
 Work Group: Core
 Issue Number: 870
 Title: Is an error required if a static data member is used
 and not defined?
 Section: 9.4.2 [class.static.data]
 Status: editorial
 Description:
 9.4.2 para 2 says:
 "A definition shall be provided for the static data member
if
 it is used (3.2) in a program."

 9.4.2 para 5 says:
 "There shall be exactly one definition of a static data
member
 that is used in a program; no diagnostic is required;

 Para 2 does not say: "no diagnostic required".

 The duplication and difference between these two sentences
is
 a bad thing. The sentence in 9.4.2 para 2 should be removed.
 Resolution:
 Requestor:
 Owner: Josee Lajoie (Object Model)
 Emails:
 Papers:
 .
.
 Work Group: Core
 Issue Number: 871
 Title: Can a class with a constructor but with no default
 constructor be a member of a union?
 Section: 9.5 [class.union]
 Status: editorial
 Description:
 9.5[class.union]:
 "An object of a class with a non-trivial default constructor
 (_class.ctor_), a non-trivial copy constructor
(_class.copy_), a
 non-trivial destructor (_class.dtor_), or a non- trivial
copy

 assignment operator (_over.ass_, _class.copy_) cannot be a
 member of a union, nor can an array of such objects."

 This should say, "An object with a non-trivial constructor".
 i.e.
 class C {
 C(int);
 };

 Objects of type C cannot be members of a union.
 Resolution:
 Requestor:
 Owner: Josee Lajoie (Object Model)
 Emails:
 Papers:
 .
.
 ==
=========
 Chapter 11 - Member Access Control

 Work Group: Core
 Issue Number: 872
 Title: How do access control apply to
constructors/destructors
 implicitly called for static data members?
 Section: 11 [class.access]
 Status: active
 Description:
 Here's a question that is being discussed in comp.std.c++
for
 which I don't find a clear answer in the draft.

 class C { // has private constructor and destructor
 friend class D;
 C();
 ~C();
 };

 class D {
 public:
 static C c; // static member
 };

 C D::c; // can this be constructed, and if so, can it be
 // destroyed?

 Members of D can create and destroy objects of type C
because
 the ctor and dtor are accessible. What about the static C
 member of D? Is its construction and destruction in the
scope
 of D (accessible) or in global scope (inaccessible)? Where
is
 the answer defined in the draft?
 Resolution:
 Requestor: Steve Clamage
 Owner: Steve Adamczyk (Access)
 Emails:
 Papers:
 .
.
 Work Group: Core
 Issue Number: 873

 Title: How/when is access checked in default arguments of
 function templates?
 Section: 11 [class.access]
 Status: active
 Description:
 The proposed relaxation of default argument checking for
 function templates (and presumably member functions of class
 templates) informally given by Stroustrup in N1070/97-0032
is:

 A default argument to a template function is checked only
if
 used.

 In N1062R1/97-0024R1, Unruh proposes the following wording:

 A default argument expression specialization is implicitly
 instantiated only when the function specialization is
 referenced in a context that requires the default argument
 expression to exist.
 ...
 The point of instantiation of a default argument
expression
 specialization is the same as that for the function.
[Note:
 Even if only some of the calls use a default argument, all
 points of instantiation of the function can be used to
 instantiate the default argument expression
specialization.]

 For access checking, the current working paper says, in
11/7:

 The names in a default argument expression (8.3.6) are bound
at
 the point of declaration, and access is checked at that
point
 rather than at any points of use of the default argument
 expression.

 Obviously this would have to change. But some details are
 missing.

 In particular, there are two points about access checking
which
 should be made more clear. Here is my understanding of what
is
 intended by the proposal:

 * Access checking is done relative to the original scope of
the
 default argument. Default arguments are treated as part
of
 the body of the function for access checking; the only
 difference from the current rule is the deferred
instantiation
 (which implies that some currently ill-formed default
 arguments are no longer ill-formed if they are never
used.)

 and:

 * If no valid specialization could ever be generated for a
 default argument, the program is ill-formed (no diagnostic

 required).

 Examples:

 class A {
 protected:
 typedef int Z;
 static int x;
 };
 template<class T> class B : T {

 void f(A::Z); // ill-formed, even if only instantiation
is B<A>
 // diagnostic is required

 void g() // well-formed, because there is
 { int y = A::x; } // at least one instantiation
B<A>::g
 // in which the access is valid

 void h(int y = A::x); // well-formed, same reason
 };

 class C {
 protected:
 typedef int Z;
 static int x;
 };
 template<class T> class D { // ONLY DIFFERENCE IS NO BASE
CLASS

 void f(C::Z); // ill-formed
 // diagnostic is required

 void g() // ill-formed, because there is
 { int y = C::x; } // no possible specialization
 // in which the access is valid
 // No diagnostic required.

 void h(int y = C::x); // ill-formed, same reason
 // No diagnostic required.
 };
 Resolution:
 Requestor: Bill Gibbons
 Owner: Steve Adamczyk (Access)
 Emails:
 Papers:
 .
.
 Work Group: Core
 Issue Number: 752
 Title: When accessing a base class member, the
qualification is not
 ignored
 Section: 11.5[class.protected]
 Status: editorial
 Description:
 11.2 para 4 says:
 "The access to a member is affected by the class in which
the
 member is named. This naming class is the class in which
the
 member name was looked up and found. [Note: this class can

be
 explicit, e.g., when a qualified-id is used, or implicit,
e.g.,
 when a class member access operator (_expr.ref_) is used
 (including cases where an implicit this->" is added. If
both a
 class member access operator and a qualified-id are used to
 name the member (as in p->T::m), the class naming the
member is
 the class named by the nested-name-specifier of the
 qualified-id (that is, T).]"

 This is contradictory to the example in 11.5 para 1:

 class B {
 protected:
 int i;
 static int j;
 };

 class D1 : public B {
 };

 class D2 : public B {
 friend void fr(B*,D1*,D2*);
 void mem(B*,D1*);
 };
 void fr(B* pb, D1* p1, D2* p2)
 {
 p2->B::i = 4; // ok (access through a D2,
 // *** qualification ignored ***
 }

 According to 11.2 para 4, the qualification is not ignored.
 Resolution:
 Requestor:
 Owner: Steve Adamczyk (Access)
 Emails:
 Papers:
 .
.
 ==
=========
 Chapter 12 - Special member functions

 Work Group: Core
 Issue Number: 874
 Title: Clarify lifetime of temporary example
 Section: 12.2 [class.temporary]
 Status: editorial
 Description:
 12.2 paragraph 5 example:
 " class C {
 // ...
 public:
 C();
 C(int);
 friend const C& operator+(const C&, const C&); //
problem
 ~C();
 };
 C obj1;
 const C& cr = C(16)+C(23);
 C obj2;

 the expression C(16)+C(23) creates three temporaries. A
first
 temporary T1 to hold the result of the expression C(16), a
 second temporary T2 to hold the result of the expression
C(23),
 and a third temporary T3 to hold the result of the addition
of
 these two expressions. The temporary T3 is then bound to
the
 reference cr."

 Binding the result of the expression to "C const& cr" is a
nice
 example of a const reference to a temporary; however, the
 function does not return a temporary, it returns a "C
const&".
 With the snapshot of the example given, it is very difficult
 (impossible?) to determine where T3 came from. If the
function
 returns a "C" rather than a "C const&", everything makes
sence.
 Resolution:
 Requestor: John Potter via Steve Clamage
 Owner: Josee Lajoie (Object Model)
 Emails:
 Papers:
 .
.
 Work Group: Core
 Issue Number: 875
 Title: If a constructor has no ctor-initializer, but the
class
 has a const member, is the constructor definition
 ill-formed?
 Section: 12.6.2 [class.base.init]
 Status: active
 Description:
 The CD is clear that the following:

 struct A {
 ~A();
 };

 struct Y {
 Y() : d(0.0) {}
 A const a;
 double d;
 };

 is ill-formed because the mem-initializer-list for Y does
not
 include an initializer for `a' (which is a const non-POD
class
 without a user-declared default-ctor). [class.base.init]/4

 However, if Y were defined as:

 struct Y {
 Y() {}
 A const a;
 };

 then the answer is not clear: the rules for

 mem-initializer-lists do not apply since there is no
 mem-initializer-list.
 Proposed Resolution:
 The intention was that it be ill-formed.
 In the opening sentence of [class.base.init]/4, we should
add
 "(including the case where there is no mem-initializer-list
 because the constructor definition has no ctor-
initializer)".
 Resolution:
 Requestor: David Vandevoorde
 Owner: Josee Lajoie (Object Model)
 Emails:
 Papers:
 .
.
 Work Group: Core
 Issue Number: 876
 Title: The optimization that allows a copy of a class
object to
 alias another object is too permissive
 Section: 12.8 [class.copy]
 Status: active
 Description:
 12.8 [class.copy] Paragraph 15.
 A comment on comp.std.c++ said the following:
 "This paragraph is fundamentally flawed and should either be
 removed or substantially reworked (preferably removed).
The
 "optimisation" it describes allows the compiler to
arbitrarily
 violate the basic semantic axiom that arguments passed by
value
 are not modified."

 Andrew Koenig replies:
 > In c++std-core-7448, John Skaller discusses a potential
 > problem with the rule that says, in effect, that for
 > optimization purposes a compiler is allowed to assume that
 > copy constructors copy their objects and that the original
and
 > the copy can be aliased if one of them is never used
again.
 >
 > I think the problem can be summarized by saying that
objects
 > can bind resources, and even if an object is not used, the
 > resource it binds might be. The kind of thing that might
 > happen is
 >
 > Thing x = /* some value */;
 > SubThing y = x.extract_portion();
 > Thing z = x;
 > z.clobber_portion();
 > // now try to fetch the value of y
 >
 > If x is never used again, the compiler is entitled to
alias z
 > and x. However, if y actually refers to part of the
storage
 > that x used, clobbering z (which is an alias to x) might
also
 > clobber y.
 >

 > I can think of a few ways of dealing with this problem:
 >
 > 1. Acknowledge that the problem exists, but don't solve
it.
 >
 > 2. Outlaw the optimization except in very restricted
 > circumstances.
 >
 > 3. Offer a way for class authors to say `Don't optimize'
 >
 > I haven't decided whether or not I think (1) is a good
idea,
 > but I don't think (2) is a good idea, unless we put a
whole
 > lot of work into defining the cases. The reason is that
the
 > optimization makes a tremendous difference in fairly
common
 > cases like these:
 >
 > class Point {
 > // ...
 > int x, y;
 > // ...
 >
 > Point& operator=+(Point p) {
 > x += p.x; y += p.y; return *this;
 > }
 > // ...
 > };
 >
 > inline Point operator+(Point p, point q) {
 > Point r = p;
 > r += q;
 > return r;
 > }
 >
 > Perhaps the author should have used const Point& instead
of
 > just Point, but not every does. Anyway, the optimization
 > allows the compiler to rewrite the parameters of operator+
to
 > avoid copying them, even if Point has an explicit copy
 > constructor. I'd hate to lose that.
 >
 > On the other hand, I have a simple way of allowing for
(3):
 > just say that if a class has an `explicit' copy
constructor,
 > that means that the compiler is not allowed to optimize it
 > away (with the possible exception of the return value
 > optimization). I suspect that anyone who knows enough to
 > define classes that play aliasing games will know enough
to
 > say `explicit'.

 [Fergus Henderson, core-7469]
 > I suspect that at the time it [allowing the aliasing] was
 > considered, the committee may not have considered the
 > implications of the word "unused".
 >
 > Just as we have "bitwise const" and "logical const", so we
 > can talk about "bitwise use" and "logical use". Which
sort

 > of "use" does 12.8 para 15 refer to?
 >
 > The optimization in question is reasonable if and only if
 > the original is subsequently logically unused. This has
lead
 > some people (e.g. Pete Becker) to interpret the current
text
 > as referring to logical use, and I suspect that many
people
 > voting for the resolution may have been implicitly
assuming
 > that use meant logical use.
 >
 > However, if your machine does not have a "read the
 > programmer's mind" instruction, then logical use is not
 > computable. If the text is interpreted to mean logical
use,
 > then the paragraph becomes non-normative waffle, because
no
 > earthly compiler can take advantage of it.
 >
 > So as I see it, the status quo is that the working paper
is
 > ambiguous. If "use" was intended to mean "logical use",
as I
 > suspect it may have been, then (due to problems that were
not
 > noticed at the time) the text that was voted in turns out
to
 > be useless, and so it should be deleted. If "use" was
 > intended to mean "bitwise use", as it generally does
 > elsewhere in the WP, then the text that was voted in is
 > useful, but breaks some programs that really ought to be
 > legal (and again, I suspect that these problems were not
 > really understood at the time it was voted in).
 >
 > Given that this distinction between bitwise use and
logical
 > use was not made clear at the time (please correct me if
I'm
 > wrong), and given that the problems that the bitwise use
 > version causes were not made clear at the time (again,
please
 > correct me if I'm wrong), I think that the committee ought
to
 > reconsider this issue.
 Resolution:
 Requestor: John Skaller
 Owner: Josee Lajoie (Object Model)
 Emails:
 Papers:
 .
.
 ==
=========
 Chapter 13 - Overloading

 Work Group: Core
 Issue Number: 877
 Title: 13.3.1.6 isn't about binding to a temporary
 Section: 13.3 [over.match]
 Status: editorial
 Description:
 13.3 para 2 says:

 "Overload resolution selects the function to call in seven
 distinct contexts within the language:
 ...
 --invocation of a conversion function for initialization of
a
 temporary to which a reference (_dcl.init.ref_) will be
 directly bound (_over.match.ref_)."

 But 13.3.1.6 [over.match.ref] isn't about binding to a
 temporary, it's about binding to an lvalue.

 13.3.1.6 [over.match.ref] para 1 says:
 "Under the conditions specified in _dcl.init.ref_, a
reference
 can be bound directly to an lvalue that is the result of
 applying a conversion function to an initializer
expression."
 Resolution:
 Requestor: Jason Merrill
 Owner: Steve Adamczyk (Overload Resolution)
 Emails:
 Papers:
 .
.
 Work Group: Core
 Issue Number: 733
 Title: Implicit conversion sequences and scalar types
 Section: 13.3.3.1 [over.best.ics]
 Status: editorial
 Description:
 13.3.3.1 para 6:
 "The implicit conversion sequence is the one required to
convert
 the argument expression to an rvalue of the type of the
 parameter. ... When the parameter has a class type and
the
 argument expression is an ravlue of the same type, the
implicit
 conversion sequence is identity conversion. When a
parameter
 has class type and the argument expression is an lvalue of
the
 same type, the implicit conversion sequence is an
 lvalue-to-rvalue conversion."

 Shouldn't the last two sentences also apply to non-class
types?

 Jason Merrill also notes in core-7309:

 > In this test case, I assert that under the current
overloading
 > rules the second and third functions are equally good
matches for
 > the argument, even though the third is "obviously" the
right
 > choice. The ics for the third a reference binding to the
lvalue,
 > while the ics for the second is a reference binding to a
temporary,
 > but that also has identity rank because there are no
lvalue->rvalue
 > conversions for built-in types. Perhaps there should be?
 >

 > int f(char &);
 > int f(const char &);
 > int f(volatile char &);
 > int f(const volatile char &);
 >
 > int main()
 > {
 > volatile char c = 'a';
 > f (c);
 > }

 To which Stephen Adamczyk replies:

 > I believe there are lvalue-to-rvalue conversions for
builtin types.
 > Perhaps you're interpreting 13.3.3.1 para 6
(over.best.ics) as
 > saying there aren't, because it mentions them explicitly
for class
 > types but not for builtin types.
 > But the class wording is needed because it is a special
case. For
 > builtin types, the lvalue-to-rvalue conversion is a normal
part of
 > the implicit conversion sequence, and as 13.3.3.1.1
(over.ics.scs)
 > says, that includes an lvalue-to-rvalue conversion when
 > appropriate.

 [Josee:]
 I think a note or footnote should be added to make this
clear.
 I have seen many trip over this.
 Resolution:
 Requestor:
 Owner: Steve Adamczyk (Type Conversions)
 Emails:
 Papers:
 .
.
 Work Group: Core
 Issue Number: 779
 Title: identity conversion is preferred over lvalue-to-
rvalue
 conversion
 Section: 13.3.3.2[over.ics.rank]
 Status: editorial
 Description:
 Subclause 13.3.3.2 paragraph 3, third sub-bullet has the
 following example:

 int g(const int&);
 int g(int);
 int i;
 int k = g(i); // ambiguous

 The call to g is not ambiguous.
 The match to g(const int&) is identity.
 The match to g(int) requires an lvalue-to-rvalue conversion.

 The first sub-bullet of paragraph 3 says that:
 "the identity conversion sequence is considered to be a
 subsequence of any non-identity conversion sequence"
 because of this rule, g(const int &) is be preferred.

 Resolution:
 Requestor:
 Owner: Steve Adamczyk (Type Conversions)
 Emails:
 Papers:
 .
.
 ==
=========
 Chapter 14 - Templates

 Work Group: Core
 Issue Number: 878
 Title: Can a template declaration not followed by a
definition
 specify export?
 Section: 14 [temp]
 Status: active
 Description:
 [John Spicer, core 7399:]:
 Can a template that is only declared (and not defined) in a
 translation unit be declared "export"?

 The WP says:
 "A non-inline template function or static data member
template
 is called an exported template if its definition is
preceded
 by the keyword export or if it has been previously declared
 using the keyword export in the same translation unit."

 This does not make it clear whether an exported declaration
is
 ill-formed or whether the "export" is simply ignored.

 [Erwin Unruh, core-7407:]
 We have five possible solutions:
 1: Allow export only on definitions.
 2: Allow export only on entities defined in that translation
 unit.
 3: Allow export on declarations but without semantics if not
 followed by a definition.
 4: Allow export on declarations with the semantic that this
will
 be an exported template.
 5: Require export on all declarations of an exported
template.
 Requestor: John Spicer
 Owner: Bill Gibbons (Templates)
 Emails:
 Papers:
 .
.
 Work Group: Core
 Issue Number: 879
 Title: What conversions can apply to a template argument to
 bring it to the type of the corresponding nontype
 template parameter?
 Section: 14.3 [temp.arg]
 Status: active
 Description:
 template <int i> class S { }; S<3.3> s;
 Can the template argument for the nontype template parameter
i

 be a floating point constant?

 14.3 para 3 says:
 "A template-argument for a non-type non-reference template-
 parameter shall be an constant expression of integral type,
 ..."

 14.3 para 6 says:
 "Standard conversions (4) are applied to an expression used
as
 a template-argument for a non-type template-parameter to
 bring it to the type of its corresponding template
parameter."
 Proposed Resolution:
 For parameters of integral or enumeration type, only the
 integral promotions and integral conversions are allowed
(and
 not, for example, floating/integral conversions). For
pointer
 and reference parameters, only derived-to-base conversions
and
 conversion to "void*" are allowed. (If "void&" is added and
 conversion to "void&" is a standard conversion, then this
would
 be allowed also.)

 (Note that array-to-pointer and function-to-pointer
conversions
 would always be done under the proposed resolution to 2.1;
see
 2.2 also.)
 Resolution:
 Requestor:
 Owner: Bill Gibbons (Templates)
 Emails:
 Papers:
 .
.
 Work Group: Core
 Issue Number: 880
 Title: When does a friend declaration refer to a global
 function or to a template instantiation?
 Section: 14.5.3 [temp.friend]
 Status: active
 Description:
 Now that a global function can overload a template function,
 when does a friend declaration in a template class refers to
 the global function or when it refers to a template
 instantiation. For example:

 int foo(int);
 template<class T> int foo(T);

 template<class T> class C1 {
 friend int foo(int);
 };
 template<class T> class C2 {
 friend int foo(T);
 };
 template<class T> class C3 {
 friend int foo<int>(int);
 };

 [John Spicer's answer:]

 > A friend declaration in which the declarator is not
qualified,
 > and that does not specify an explicit template argument
list
 > always declares a normal (i.e., nontemplate) function.
So,
 > C1 makes the previously declared foo(int) a friend. C2
does
 > too, when T is int, otherwise it declares a new normal
 > (nontemplate) function. C3 always refers to instances of
the
 > template foo. C3 does not make the global foo(int) a
friend,
 > it makes an instance of template foo a friend.
 >
 > One fuzzy area is what happens if you say
 >
 > template <class T> void f(T);
 > template <class T> struct A {
 > friend void ::f(T);
 > };
 >
 > Does the global qualifier permit this to map onto the
 > template? Without a WP change to permit this, my answer
would
 > be no.

 How and when must the template specialization syntax be used
 with friend declarations?

 int foo(int);
 template<class T> int foo(T);
 template<> int foo<double>(double);

 template<class T> class S2 {
 template<> friend int foo<T>(T);
 };

 [John Spicer's answer:]
 > The "template <>" is not permitted in friend declarations.
 >
 > Core 3 did discuss and agree upon these issues (except
that
 > the issue I raised about the global qualifier was not
 > discussed).
 Proposed Resolution:
 When explicit template arguments are provided, the friend
 declaration refers to the specialization. Other than that,
if
 the enclosing scope has a function template and no non-
template
 function, the friend declares a (hidden) new nontemplate
 function, exactly as if the function template declaration
did
 not exist.
 Resolution:
 Requestor:
 Owner: Bill Gibbons (Templates)
 Emails:
 Papers:
 .
.
 Work Group: Core
 Issue Number: 881

 Title: What class-key can be used in declarations of
 specializations and partial specializations?
 Section: 14.5.4 [temp.class.spec] and 14.7.3 [temp.expl.spec]
 Status: active
 Description:
 Is it legal to have a specialization of a class template
with a
 different class-key than that with which it was declared.
 For example, the template is declared a class and the
 specialization is declared a union.

 How about partial specializations?

 I can't find any mention of template unions at all, but I
 presume that they are allowed since there is nothing
disallowing
 them.
 Resolution:
 Requestor: Mike Ball
 Owner: Bill Gibbons (Templates)
 Emails:
 Papers:
 .
.
 Work Group: Core
 Issue Number: 882
 Title: typename is not permitted in functional cast
notation
 Section: 14.6 [temp.res]
 Status: active
 Description:
 The syntax does not permit "typename" to be used as part of
a
 functional notation cast.

 template <class T> int f(T)
 {
 return typename T::inner(); // typename not allowed here
 }

 If "typename" is not present, then T::inner is assumed to be
a
 function name and the program is ill-formed if, during an
 instantiation, it turns out to be a type.

 [Matt Austern:]
 There are a few places in the library description, such as
in
 20.4.4 (specialized algorithms) where it is assumed that
this
 syntax is valid.
 Resolution:
 Requestor: John Spicer
 Owner: Bill Gibbons (Templates)
 Emails:
 Papers:
 .
.
 Work Group: Core
 Issue Number: 883
 Title: Can "template" be used to specify that an
unqualified
 function name refers to a template specialization?
 Section: 14.6 [temp.res]

 Status: active
 Description:
 In the following example:

 namespace A {
 struct B { };
 template<class T> void f(T t);
 }
 void g(A::B b) {
 f<3>(b);
 }

 does type-dependent (Koenig) lookup apply to the lookup of
"f"?
 Without the explicit "<>" template arguments, the answer is
 currently yes, because the lookup of "f" (other than to
 determine whether it is a type) can be deferred until after
the
 arguments have been parsed. But with explicit template
 arguments, there is no way to parse the expression without
 knowing that "f" is a template.
 Proposed Resolution:
 We will propose that the "template" keyword be allowed in
this
 context so that type-dependent lookup can be used even when
 there are explicit template arguments.
 Resolution:
 Requestor: Mike Ball
 Owner: Bill Gibbons (Templates)
 Emails:
 Papers:
 .
.
 Work Group: Core
 Issue Number: 884
 Title: no diagnostics required for semantics errors in
template
 definitions
 Section: 14.6.3 [temp.nondep]
 Status: editorial
 Description:
 14.6.3 para 1 has the following example:
 template<class T> class Z {
 public:
 void f() {
 h++; // error cannot increment function
 }
 };

 Maybe the comment should also indicate that an
implementation
 doesn't have to diagnose this if the template is not
 instantiated.

 Something similar to the example in 14.6 paragraph 5 would
be
 helpful:
 // may be diagnosed even if ... is not instantiated.
 Proposed Resolution:
 The example in 14.6.3 should make it clear that although an
 implementation is allowed to diagnose this kind of error
when
 processing the template definition, it is not required to
 diagnose such errors until the point of instantiation.

 Resolution:
 Requestor:
 Owner: Bill Gibbons (Templates)
 Emails:
 Papers:
 .
.

