
 Doc. No: X3J16/97-0040
 WG21/N1078
 Date: 2 June 1997
 Project: Programming
Language C++
 Reply to: Matt Austern
 austern@sgi.com

 ALTERNATE POINTER TYPES

DISCUSSION

This is a proposal to relax the restrictions on pointer types in
user-defined allocators. It does not address the issue of
non-equal allocator instances.

This discussion is based on X3J16/97-0018R1 = WG21/N0156R1,
"Allocators and alternative pointer types, revision 1". Major
differences: (1) In the earlier paper I identified alternative
resolutions in a number of cases; here, I'm proposing a single
solution. (2) I identified several issues related to the lifetime of
references to elements pointed to by user-defined "pointers". I now
believe that this was largely a red herring. The real issue is
object
identity: an important guarantee seems to be missing both for C
pointers and for iterators. This proposal only addresses the missing
iterator guarantee, since the pointer guarantee is a core language
issue.

The part of this proposal that I like the least is the mechanism for
downcasting, performing static casts (e.g. casts from
Allocator<void>::pointer to Allocator<T>::pointer), and casting away
constness. I dislike making up new syntax, and introducing new
member
functions. I don't think we have a choice, though. Casts are
essential, and a requirement that casts of Allocator<T>::pointer use
the
same syntax as ordinary casts would be tantamount to saying that
Allocator<T>::pointer has to be T*.

OBJECT IDENTITY

These requirements should go in 24.1.3 [lib.forward.iterators],
immediately after Table 75.

 -- If a == b then either a and b are both dereferenceable, or
 else neither is dereferenceable.

 -- If a and b are both dereferenceable, then a == b if and only
 if *a and *b are the same object.

CHANGES IN CLAUSE 20

In Table 31, Descriptive variable definitions, add two new lines.
 Variable Definition
 p1 Value of type X::pointer, possibly null.
 q1 Value of type X::const_pointer, possibly
null.
 v1 Value of type Y::pointer, possibly null.
 u1 Value of type Y::const_pointer, possibly
null.

In Table 32 (Allocator requirements)

Change the description of X::size_type to
 A type that can represent the size of the largest object in the
 allocation model, and that can represent every non-negative value
 of X::difference_type. X::size_type and Y::size_type are the
same
 types.

Change the description of X::difference_type to
 A type that can represent the difference between any two pointers
 in the allocation model. X::difference_type and
 Y::difference_type are the same types.

Add to the assertion/note column of the X::pointer description:
 a mutable random access iterator whose value type, difference
 type, pointer type, reference type, and iterator category are,
 respectively, X::value_type, X::difference_type, X::value_type*,
 X::reference, and random_access_iterator_tag. X::pointer has
 an automatic conversion to T* and to X::const_pointer.

Add to the assertion/note column of the X::const_pointer description:
 a constant random access iterator whose value type, difference
 type, pointer type, reference type, and iterator category are,
 respectively, X::value_type, X::difference_type, const
 X::value_type*, X::const_reference, and
 random_access_iterator_tag. sizeof(X::pointer) ==
 sizeof(X::const_pointer). X::const_pointer has an
 automatic conversion to const T*.

Delete the sentence "The result is a random access iterator" from
a.allocate()'s assertion/note column, and add:
 Postcondition: if the return value is denoted p, then p + n
 is a past-the-end iterator and all of the pointers in the range
 [p, p + n) are dereferenceable iterators. None of the pointers
 in the range [p, p + n) are null pointers, and p + n may be a
null
 pointer only if n == 0.

Add to the assertion/note column of the a.deallocate() description:
 deallocate() may not throw exceptions.

Change "x.construct", in the expression column, to "a.construct".
Change "x.destroy", in the expression column, to "a.destroy".
 (This corrects an editorial error. "x" is meaningless, since it
 is not found anywhere in Table 31.)

Add to the assertion/note column of the a.destroy() description:
 destroy() may not throw exceptions.

Remove the member function "address" from Table 32.

Change paragraphs 4 and 5 of section 20.1.5 to read as follows:

 Implementations of containers described in this International
Standard
 are permitted to assume that their allocator template parameter
meets
 the following additional requirement beyond those in Table 32.

 -- All instances of a given allocator type are required to be
 interchangeable and always compare equal to each other.

 Implementors are encouraged to supply libraries that can accept
 allocators that support non-equal instances. In such
implementations,
 any requirements imposed on allocators beyond those requirements
 that appear in Table 32, and the semantics of containers and
 algorithms when allocator instances compare non-equal, are
 implementation-defined.

Add the following new entries to Table 32.

Expression Return type Assertion/note/
 pre/post-condition

static_cast<X::pointer>(x) X::pointer x is a constant
integral
 expression that
evaluates
 to 0. The return
value is a
 null pointer.
Every null
 pointer compares
equal to
 every other null
pointer of
 the same type.

static_cast<Y::pointer>(p1) Y::pointer Requirement: T*
has an
 automatic
conversion to
 U*. [Note:
examples are
 derived-to-base
conversion,
 and casting to a
void
 pointer.]
Postcondition:
 if the return
value is
 cast back to
X::pointer,
 it will compare
equal to p1.

static_cast<Y::const_pointer>(q1) Y::const_pointer Requirement: const
T* has
 an automatic
conversion to
 const U*.
Postcondition:
 if the return
value is
 cast back to
 X::const_pointer,
it will
 compare equal to
q1.

X::do_static_cast(v1) X::pointer Requirement:
static_cast
 from U* to T* is

valid.

X::do_dynamic_cast(v1) X::pointer Requirement:
dynamic_cast
 from U* to T* is
valid.

X::do_static_cast(u1) X::const_pointer Requirement:
static_cast
 from const U* to
const T*
 is valid.

X::do_dynamic_cast(u1) X::const_pointer Requirement:
dynamic_cast
 from const U* to
const T*
 is valid.

X::do_const_cast(p1) X::const_pointer Postcondition:
 p1 ==
do_const_cast(p1).

Add a note at the end of Table 32:

 For any values of type X::pointer and X::const_pointer, valid
 pointer operations (i.e. operations described in Table 32 or in
 Tables 73 through 77, where operands satisfy the applicable
 preconditions) may not throw exceptions.

Add do_static_cast, do_dynamic_cast, and do_const_cast, as static
members, to the default allocator in section 20.4.1. Remove both
versions of allocator::address(). Add a throw() specification
to allocator::destroy() and allocator::deallocate().

STRUCTURE-PRESERVING CONVERSIONS

Option 1:

Add the following sentence at the end of Table 32.

 The conversion from X::pointer to T*, and from X::const_pointer
 to const T*, is structure-preserving. That is,
 static_cast<T*>(p + n) == static_cast<T*>(p) + n.

Option 2:

Add the following text following paragraph 2 in section
21.3 [lib.basic.string]:

 The template parameter Allocator is required to conform to
 the requirements of an allocator (section 20.1.5), and to
 satisfy the additional requirement that Allocator::pointer,
 Allocator::const_pointer, Allocator::size_type, and
 Allocator::difference_type are, respectively,
 charT*, const charT*, size_t, and ptrdiff_t.

