
 Doc. No: X3J16/97-0039
 WG21/N1077
 Date: 30 May 1997
 Project: Programming
Language C++
 Reply to: Matt Austern
 austern@sgi.com

 STANDARD LIBRARY EXCEPTION POLICY

SUMMARY

Clause 17 currently says that the library is not exception-safe:
if the library calls user code, and the user code throws an
exception, then you get undefined behavior.

This is a proposal to change that. The core idea is that a library
class or function is required to be exception-safe if the user-
defined
classes and functions that it invokes are themselves exception-safe.

DEFINITIONS

A function f is exception safe if
 (1) If an exception is thrown from within the function, it
 will not cause a resource leak.
 (2) Any object that f modifies will remain in a stable state,
 even if an exception is thrown from within f.

A class X is exception safe if
 (1) X::~X() doesn't ever throw an exception.
 (2) If an exception is thrown from within one of X's
constructors,
 it won't cause a resource leak. Any resources that were
 acquired prior to the exception being thrown will be
 released.
 (3) All of X's member functions and friend functions
 are exception safe.

A function is commit-or-rollback if it is exception safe and,
additionally, it makes the following guarantee:
 If an exception is thrown from within f, then the state of
 all objects that f modifies will be restored to the state they
had
 before f was called.

[NOTE: A consequence of these definitions is that if a non-member
function f doesn't allocate any resources, and if the types that it
operates on are all exception safe, then f is automatically exception
safe as well.]

DISCUSSION

I have now implemented a version of the STL in which all classes and
functions are exception safe, *provided* that the template arguments
provided by the user are exception safe. (And also provided that the
template parameters obey a few other constraints.) Some of the
classes and functions, but by no means all, have commit-or-rollback

semantics. There are some member functions where commit-or-rollback
would be either impossible or prohibitively expensive.

Here's what we need to do with the standard.
 (1) Change the semantics of some of the low-level library
 components in Clause 20. (It's effectively impossible
 to write exception-safe code using those components as
 they are currently defined.
 (2) Specify the exact requirements on user classes and functions.
 This should go in Clause 17, since it's a blanket requirement
 for the entire library.
 (3) Get rid of the sentence in Clause 17 saying that throwing
 an exception from within a library component results in
undefined
 behavior.

In my opinion, there is only one serious issue that's open for
discussion: should we say that the library is exception safe, and be
done with it, or should we attempt to explicitly list every member
function that is not only exception-safe but also commit-or-rollback?

I favor the former. Here are my reasons.
 (1) Fewer changes to the WP. A blanket statement in one place
 is much better than statements scattered throughout the
 library clauses.
 (2) Insufficient time. At this point, I believe that if we tried
 to generate a list like that we would probably not
 get it right.
 (3) Insufficient experience. I've looked at, and implemented,
 exception safety in the STL portion of the standard library.
 I haven't touched some of the other parts of the library,
 though. To be blunt, we are talking about standardization
 in advance of implementation experience; it pays to be
 very conservative.
 (4) Avoidance of overconstraint. I could come up with a list
 of functions that I have implemented to be commit-or-
 rollback, but it's not at all obvious that that list
 would be suitable as requirements for every conforming
 implementation.

[Note that there's nothing stopping vendors from documenting which of
the functions and classes in their implementations are commit-or-
rollback. None of these four objections applies to vendor-specific
documentation.]

RESTRICTIONS ON USER CODE

These restrictions are essentially those of "Vectors and Exceptions"
X3J16/97-0019 = WG21/N0157. At the time I wrote it, I had only
studied vectors in detail; I have now implemented exception safety in
the entire STL, though, so we can be reasonably confident that these
restrictions are necessary and sufficient for the entire library.

[Note that violating these restrictions does not necessarily result
in
undefined behavior; it results in undefined behavior only if an
exception is thrown from within a standard library component. And,
again, note that "undefined behavior" gives vendors license to
implement and document library components that are robust even when
the user-provided code violates these restrictions.]

A. General restrictions.

All functions invoked by the library, and all types provided as
template parameters for library templates, must be exception-safe.

B. Restrictions on allocators.

If A is an allocator type, then neither A::deallocate() nor
A::destroy()
may ever throw an exception.

If Ptr is a pointer type (A::pointer or A::const_pointer), then valid
pointer operations on objects of type Ptr (that is, operations where
the preconditions specified in the Random Access Iterator
requirements
table are satisfied) may never throw exceptions.

[Note: this wording is awkward because it is intended to permit
objects of type Ptr to throw exceptions in two circumstances.
(1) When preconditions are not satisfied---an attempt to dereference
a null pointer, for example. (2) If Ptr has member functions that
are not found in the Random Access Iterator requirements, then
those operations may throw exceptions.]

In the version of this proposal that I posted to the reflector, I
also
included the requirement that operations on A::size_type and
A::difference_type may not throw exceptions. I've removed that
requirement, because Sean pointed out that it's redundant: built-in
types, like int and long, don't throw exceptions. (size_type and
difference_type are required to be "integral types", and the phrase
"integral type" has a specific definition in clause 3.)

CHANGES TO LOW-LEVEL LIBRARY COMPONENTS

A. Specialized algorithms.

As it stands, the three specialized algorithms in 20.4.4 are useless
for implementing exception-safe containers. If an exception is
thrown
from somewhere within one of those algorithms, then exception safety,
even in a very weak sense, demands that the recovery code determine
how many constructor calls succeeded before the exception was thrown.
With the interface currently specified, this is impossible.

The simplest change is to require that all three of these functions
be
commit-or-rollback. That is: if there is an exception, then all
objects constructed before the exception was thrown will be
destroyed.
This turns out to be very easy to implement.

This implies one more restriction: iterator operations on the
arguments of these three functions may not throw exceptions.

B. Temporary buffers.

Get_temporary_buffer and return_temporary_buffer are not suitable
for implementing exception-safe algorithms; a far better solution
is a temporary_buffer class.

Since every library implementor will need some class of this sort,
and
since users who want to implement exception-safe adaptive algorithms
will also need it, the most sensible choice is to add it to the
standard. I do not propose removing get_temporary_buffer and

return_temporary_buffer, however; they're redundant, but there's no
reason to gratuitously break programs that use them.

 template <class ForwardIterator,
 class T =
iterator_traits<ForwardIterator>::value_type>
 class temporary_buffer {
 public:
 temporary_buffer(ForwardIterator first, ForwardIterator
last);
 ~temporary_buffer();

 T* begin();
 T* end();
 ptrdiff_t size() const;
 ptrdiff_t requested_size() const;
 private:
 temporary_buffer(const temporary_buffer&) {}
 void operator=(const temporary_buffer&) {}
 };

[Note: This is a very minimal interface, but it suffices for
exception-safe adaptive generic algorithsm. Alex Stepanov and I, and
others, have written many adaptive algorithms using this interface.]

SPECIFIC WP CHANGES

All WP changes are in clause 17 and clause 20. I am leaving out the
changes to the allocator requirements: I'm writing a separate
proposal
to deal with allocators, and it makes much more sense to list all
allocator-related WP changes together.

CHANGES IN CLAUSE 17

Add the following text at the end of section 17.1 [definitions]

 -- stable state. An object's state is stable if none of its
 member or friend functions, when called with arguments
 that satisfy their preconditions, result in undefined
 behavior. [Note: in particular, this applies to the object's
 destructor.] An object's state is unstable if it is not
 stable.

 -- exception safe function. A function f is exception safe if
 an exception thrown from within f does not cause a resource
leak
 (objects that are constructed and never destroyed, or
 memory that is allocated and never deallocated) and does not
 cause the state of any object that f modifies to become
 unstable.

 -- exception safe class. A class X is exception safe if
 all of its member and friend functions are exception safe,
 and, additionally, its destructor is guaranteed never to throw
an
 exception.

 -- commit-or-rollback. A function f is commit-or-rollback if
 it is exception safe and, additionally, it guarantees that,
 if an exception is thrown from within f, all objects
 that f modifies will be restored to the same states as before
 f was called.

Remove the last sentence from paragraph 2 of section 17.3.3.6
[lib.res.on.functions]. That is, remove the text
 -- if any of these functions or operations throws an exception,
 unless specifically allowed in the applicable Required
 Behavior paragraph.

Add the following text after paragraph 1 of section 17.3.4.8
[lib.res.on.exception.handling]

 In certain cases (replacement functions, handler functions,
operations
 on types used to instantiate standard library template
components),
 the C++ Standard Library depends on components supplied by a
 C++ program. Unless explicitly stated in the applicable Required
 behavior paragraph, these components may report failure by
 throwing exceptions.

 All standard library components are exception safe. If the
 standard library depends on a component supplied by a C++
 program, that component is required to be exception safe.
 If the library depends on a component that is not exception
 safe, and an exception is thrown by either the library or the
 supplied component, the resulting behavior is undefined.

CHANGES IN CLAUSE 20

Add class temporary_buffer to the header <memory> synopsis in section
20.4 [lib.memory].

Add the following text after paragraph 1 of section 20.4.4
[lib.specialized.algorithms].

 All of the following algorithms are commit-or-rollback. In all
of
 the algorithms, the formal template parameter ForwardIterator is
 required to have the property that no exceptions are thrown from
 increment, assignment, comparison, or dereference of valid
 iterators.

Add the following text, as a new section, after section 20.4.3
[lib.temporary.buffer]. Number the new section 20.4.4, and renumber
sections 20.4.4 through 20.4.6 accordingly.

 20.4.4 Temporary buffer class

 Template class temporary_buffer allocates temporary storage, and
 deallocates the storage when it itself is destroyed. It does not
 provide copy or assignment semantics.

 namespace std {
 template <class ForwardIterator,
 class T =
iterator_traits<ForwardIterator>::value_type>
 class temporary_buffer {
 public:
 temporary_buffer(ForwardIterator first, ForwardIterator
last);
 ~temporary_buffer();

 T* begin();
 T* end();
 ptrdiff_t size() const;

 ptrdiff_t requested_size() const;

 private:
 temporary_buffer(const temporary_buffer&) {}
 void operator=(const temporary_buffer&) {}
 };
 }

 20.4.4.1 temporary_buffer requirements

 The formal template parameters ForwardIterator and T are
 required to satisfy the following properties.
 - ForwardIterator conforms to the requirements of a
 mutable forward iterator.
 - T has a constructor that can take a single argument of
 type iterator_traits<ForwardIterator>::value_type.
 - T has an accessible destructor.

 20.4.4.2 temporary_buffer constructor and destructor

 temporary_buffer(ForwardIterator first, ForwardIterator last)

 Requires: [first, last) is a valid range.
 Effects: Creates a temporary buffer that contains at
 most distance(first, last) objects of type T. The
 initial values of the buffer's elements are
 arbitrary. [Note: this gives the implementation
 freedom to use whichever of T's constructors is
 most convenient or efficient.]

 ~temporary_buffer()

 Effects: Destroys all of the objects in the buffer, and
 deallocates the buffer's storage.

 20.4.4.3 temporary_buffer members

 T* temporary_buffer::begin()
 Effects: Returns a pointer to the first element in the buffer.

 T* temporary_buffer::end()
 Effects: Returns a pointer one past the the last element in the
buffer.

 ptrdiff_t requested_size() const
 Effects: Returns the buffer's requested size. That is, it
 returns distance(first, last), where first and last
 are the arguments that were used to construct the
 buffer.

 ptrdiff_t temporary_buffer::size() const
 Effects: Returns the number of elements in the buffer. [Note:
 size() == end() - begin().] The returned value
satisfies
 the constraint 0 <= size() <= requested_size().

