
J16/97-0038 = WG21/N1076

1

Missing “undefined behavior” for const
Randy Meyers

Note: this paper is a revision of a paper distributed privately during the Nashua meeting. The issue
raised herein is listed as one of the US national body issues.

The working paper is missing a statement about undefined behavior involving const . The working
paper does make the following statement about const (Subclause 7.1.5.1):

Except that any class member declared mutable (7.1.1) can be modified, any attempt to modify
a const object during its lifetime (3.8) results in undefined behavior.

The purpose of the undefined behavior is to allow implementations to optimize accesses to const objects.
An implementation is free to assume that the value of a const object does not change, and may take
advantage of the above rule to avoid reloading the value of a const object from memory just because an
assignment was made through a pointer since the const object was first loaded into a register. However,
this rule only holds during the object’s lifetime.

Subclause 3.8 defines the lifetime of an object as beginning after its storage is obtained and its non-trivial
constructor (if it has one) has completed. Its lifetime ends when its non-trivial destructor (if it has one)
begins to execute or its storage is reused or released.

When taken together, the effect of these two rules are that you are not prohibited from modifying a
const object outside its lifetime. This is good and consistent with the rest of the draft since constructors
and destructors are allowed to modify const objects (Subclause 12.1):

A constructor can be invoked for a const , volatile , or const volatile object. A
constructor shall not be declared const , volatile , or const volatile (9.3.2). const
and volatile semantics (7.1.5.1) are not applied on an object under construction. Such
semantics only come into effect once the constructor for the most derived object (1.7) ends.

Similar words are in 12.4 for destructors.

This opens a hole in the ability of implementations to optimize const objects. Consider the following
program:

class C;
void no_opt(C *);

class C {
public:

int c;
C() : c(0) {no_opt(this);}

};

const C cobj;

void no_opt(C *cptr)
{

int i = cobj.c * 100;
cptr->c = 1;
cout << cobj.c * 100 << '\n';

}

J16/97-0038 = WG21/N1076

2

An implementation would like to assume that it can optimize the function no_opt() by recognizing the
expression cobj.c * 100 as a common subexpression (after all, cobj is a const object whose value
cannot change). However, since no_opt() is called during construction, the const semantics and the
undefined behavior rule from 7.1.5.1 do not apply. So, the implementation is obliged to honor the
modification of a const object through a pointer to a non-const object. The traditional optimizations
on const objects cannot be done unless the implementation can prove that the code in question will
never be executed during construction or destruction of the const object.

This is not a desirable state of affairs: it is not easy to determine that a function will not be called during
construction or destruction of a const object. Therefore, implementations will have to assume that
const objects with constructors or destructors might be modified. C++ programs will not benefit from
optimizations that programmers expect just in case a very obscure and unreasonable coding practice might
be used.

The best solution is to permit access to an object during the object’s construction or destruction only
through the this pointer or through a pointer value or reference that was formed using the this
pointer. In the example above, the program would have undefined behavior because the function
no_opt() accesses cobj directly using its name while cobj is undergoing construction. The access to
cobj using cptr is permitted since cptr was initialized with the value of the this pointer.

I am not sure what wording to use to accomplish the intent of the above paragraph.

During the Nashua meeting, several people discussed making it undefined behavior to reference a const
object by its “name” while it is undergoing construction or destruction. The problem with this approach is
that name is not a term in the standard, and for this purpose, name would have to mean more than a
simple identifier. For example, if A is an array whose elements are const, referring to A[5] using A[5]
while A[5] is undergoing construction needs to be undefined behavior. Likewise, if a class C has a const
member M undergoing construction, the reference C.M needs to be undefined behavior. Such cases make
“name” a very complex concept. The this pointer approach is probably more fruitful.

