
 n1067

J16/97-0029 = WG21/N1067 Page 1

 From: Randy Meyers
 ZKO 2-3/N30
 Digital Equipment Corp.
 110 Spitbrook Road
 Nashua, NH 03062
 Phone: 603-881-2743
 Email: rmeyers@decc.enet.dec.com

To: X3 Secretariat
 Attn: Deborah J. Donovan
 1250 EyeStreet, NW
 Suite 200
 Washington, DC 20005

CC: ANSI
 Attn: BSR Center
 11 West 42nd Street
 New York, NY 10036

Subj: Public Review Comment on ISO/IEC CD 14882

Enclosed are my comments on ISO/IEC CD 14882. Please forward them
to X3J16.

Thank You.

1 GRAMMAR ISSUE

1.1 Default Arguments In Template Definitions

Subclause 14.2, paragraph 3, contains the following rule to
resolve parsing problems in the names of template specializations:

 When parsing a template-id, the first non-nested > is taken
 as the end of the template-argument-list rather than a
 greater-than operator.

No similar rule exists for declarations, yet similar parsing
problems exist since non-type template parameters may have default
arguments:

 const int x = 6;
 const int y = 5;
 template<int i = x > y> class A {float a[i];};

The parsing is particularly challenging for compilers who wish to
give intelligent error messages for (or support in a compatibility
mode) the obsolete practice of "default int":

 class C {
 template<int i = x > y() {return i;} //C::y(), not ::y
 }
ˇJ16/97-0029 = WG21/N1067 Page 2

I tested 5 compilers: four of them assumed the first non-nested >
ended the template parameters. The fifth compiler did not support
any form of default arguments.

 Page 1

 n1067

Recommendation: Add the following at the end of paragraph 3 of
Clause 14:

 When parsing a template-declaration, the first non-nested >
 is taken as the end of the template-parameter-list rather
 than a greater-than operator.

The following examples could also be added:

 const int x = 6;
 const int y = 5;
 template<int i = x > y> class A {float a[i];}; // syntax
 // error
 template<int i = (x > y)> class B {float b[i];}; // ok

2 CORE LANGUAGE ISSUE

2.1 Member Access Control

Clause 11, paragraph 1 says:

 A member of a class can be

 --private; that is, its name can be used only by member
 functions, static data members, and friends of the class in
 which it is declared.

 --protected; that is, its name can be used only by member
 functions, static data members, and friends of the class in
 which it is declared and by member functions, static data
 members, and friends of classes derived from this class (see
 class.protected).

This seems overly restrictive in contrast to saying:

 A member of a class can be

 --private; that is, its name can be used only by members and
 friends of the class in which it is declared.

 --protected; that is, its name can be used only by members
 and friends of the class in which it is declared and by
 members and friends of classes derived from this class (see
 class.protected).

For example, the current wording prevents reasonable uses such as:
ˇJ16/97-0029 = WG21/N1067 Page 3

 class C {
 class INNER { ... };
 INNER private_data; // Bad use of INNER?
 class IN2 : INNER { ... }; // Bad use of INNER?
 };

Recommendation: Use the alternative wording above.

3 C COMPATIBILITY ISSUES

 Page 2

 n1067

3.1 Universal Character Names

WG14/X3J11 has voted to adopt the universal character set name
proposal from the C++ Working Paper. However, WG14/X3J11
discovered that a piece of the original proposal was accidentally
dropped from the proposal voted into C++. During original
discussions of the UCN proposal, the intent was that a UCN could
not be used to write a character from the Basic Source Character
Set.

For example, you could not end a quoted string by specifying the
UCN for quote.

WG14/X3J11 directed the editorial board drafting the final words
for the C9x Standard to add such a restriction. C++ should also
add this restriction.

In a discussion with Tom Plum, we came to the conclusion that
writing a UCN for a character in the Basic Source Character Set
should be a constraint violation for C, and should make the
program ill-formed for C++.

Ill-formed was chosen over undefined behavior since it is
undesirable to permit extensions:

 1. Some implementations might treat identifiers spelled
 using UCNs as distinct from identifiers spelled directly.

 2. Some implementations might treat the UCN for a quote as
 ending a string; some might consider the UCN for a quote
 as a quote character in the string's value.

 3. Allowing UCNs to represent characters in the Basic Source
 Character Set is likely to slow down the lexical
 processing of C++ source.

However, that brings up another issue: Although the "printing"
characters have an unambiguous UCN, the UCN for some of the
non-printing characters from the Basic Source Character Set have
an implementation defined UCN. For example, some implementations
use linefeed as the newline source character; other
implementations use return as the newline source character. In my
discussion with Plum, we decided the best way to handle this is to
ˇJ16/97-0029 = WG21/N1067 Page 4

prohibit UCNs with hex codes less than 0x20, which disallows all
of the traditional ASCII control characters.

Recommendation: Add the following words at the end of paragraph 2
of Subclause 2.2:

 If the hexadecimal value for a universal character name is
 less than 0x20 or if the universal character name designates
 a character in the basic source character set, then the
 program is ill-formed.

3.2 Type Rules For Integer Constants

WG14/X3J11 has adopted a change to the rules for determining the
type of an integer literal: If an integer literal is of the form

 Page 3

 n1067

that normally is always signed (for example, unsuffixed decimal
constants) then do not permit it to have unsigned type if it can
not be represented as long (currently, such a constant may have
unsigned long type).

The reason for the change is that C9x has adopted "long long", and
some C compilers are contemplating integer types even longer than
long long. The current rules introduce an anomaly every time a
new larger integer type is added: normally signed constants pass
through ranges where they are unsigned. See Footnote 21 of
Subclause 2.13.2 for problems that this can cause.

Programs that depend upon unsuffixed decimal literals being
unsigned (as opposed to signed) are not portable anyway:
implementations with a larger word size might be able to represent
the constant as a signed type.

Implementations are free to continue to use an unsigned type as a
last resort to represent a large decimal constant: After issuing
a diagnostic, the implementation could then use unsigned long at
the constant's type.

Recommendation: Change paragraph 2 of Subclause 2.13.1 to read:

 The type of an integer literal depends on its form, value,
 and suffix. If it is decimal and has no suffix, it has the
 first of these types in which its value can be represented:
 int, long int. If it is octal or hexadecimal and has no
 suffix, it has the first of these types in which its value
 can be represented: int, unsigned int, long int, unsigned
 long int. If it is suffixed by u or U, its type is the first
 of these types in which its value can be represented:
 unsigned int, unsigned long int. If it is suffixed by l or
 L, its type is long int. If it is suffixed by ul, lu, uL,
 Lu, Ul, lU, UL, or LU, its type is unsigned long int.

Delete footnote 21 formerly referenced by this paragraph, or
rewrite the footnote to discuss why normally decimal constants
ˇJ16/97-0029 = WG21/N1067 Page 5

without a U suffix are never unsigned.

 Page 4

