
ISO/IEC JTC1/SC22/WG21 N1042 (X3J16 96-0224)

Disposition of Comments from the C++ CD Ballot

 Thomas Plum

Convener, ISO/IEC JTC1/SC22/WG21

Draft of 01/29/97 8:00 AM

This is an edited version of WG21/N0799, the collected comments from the CD ballot. I have added the late
Canadian comments, and I have inserted after all comment the actions taken by consensus within WG21 to
resolve the issues. This document accompanies WG21/N1037, a revised Working Draft which we request be
issued by the SC22 secretariat for a second CD ballot. We acknowledge the extensive prior work by Sam
Harbison, Convener, ISO/IEC JTC1/SC22/WG21 until September 1996.

General comments

Some comments were echoed by several national bodies. We report our consensus here to avoid repetition:

1. Separation of library and language, creating a multipart standard.

We recognize that the library has been less stable than the language, and the possible
separation of the library from the language has been raised within WG21. However, there
has been no support from the national bodies attending meetings to make this
separation, because it was felt that issuing both language and libraries simultaneously
was important.

2. Dealing with WG21’s internal issue lists.

WG21 maintains several “to do” lists that include various issues that have arisen from
national body comments, internal discussions, public comments, etc. Some of the issues
on these lists have been substantive, but others are clearly less important for the
standard. We believe we have addressed the important issues.

We would like to discourage national bodies from blanket references to these internal
documents in their official comments, since such comments do not acknowledge the
obvious difference in importance between issues. We encourage national bodies to
explicitly list any issues about which they are concerned. (Cross-referencing such
comments with our issues list is helpful but not necessary.)

Nevertheless, we believe the current working draft eliminates all major open issues from
WG21’s issue lists.

3. Extensions.

WG21 recognizes that several language extensions were made immediately prior to
issuance of the first CD. Most of these had been under discussion for a long time. In
accordance with the usual needs for stability, WG21’s policy has been to resist adding
any extensions not specifically necessary to resolve national body comments.

Page 2

ISO/IEC JTC1/SC22/WG21 N1042 (X3J16 96-0224)

Australia

Approved without comments.

Belgium

Did not vote.

Brazil

Approved without comments.

Canada

[Canada did not submit an official vote before the end of balloting, but they did submit a late vote to SC22,
which is included here.]

Canada voted “Yes, with comments.” The comments are:

• The issue lists of the various working groups must be addressed.

See “General Comments” at the start of this document

• No further extensions may be accepted.

See “General Comments” at the start of this document

The “issue lists” referred to in point one are described in the following documents:

• N0689 IOStreams Issues List by John Hinke

• N0698 Clause 22 (Localization Library) Issues (V.2) by Nathan Myers

• N0699 Clause 20 (Utilities Library) Issues (V.2) by Nathan Myers

• N0702 Clause 24 (Iterators) Issues List by David Dodgson

• N0705 Clause 18 (Language support Library) Issues List - Version 2 by Mats Henricson

• N0758 Template Issues and Proposed Resolutions (Revision 13) by John Spicer

• N0759 Clause 21 (Strings Library) Issues List: Revision 7 by Rick Wilhelm

• N0760 Clause 23 (Containers Library) Issues List - Revision 5 by Larry Podmolik

• N0761 Open Issues for Numeric Libraries (Revision 3) by Judy Ward

• N0765 Core WG list of issues by Josée Lajoie

China

Approved without comments

Page 3

ISO/IEC JTC1/SC22/WG21 N1042 (X3J16 96-0224)

Czech Republic

Approved without comments.

Denmark

Approved without comments.

Finland

Approved without comments.

France

Disapproved with comments. AFNOR’s comments already made at the registration stage are still relevant. In
particular AFNOR proposal on character sets (in the spirit of Ada standard) has not been taken in account,
this is at least one major reason to not change our vote to approval.”

[We therefore repeat the original comments from AFNOR on the CD Registration Ballot.]

First, France supports the standardization of the C++ programming language and wants this standardization to
take effect AS SOON AS POSSIBLE.

The C++ reference manual is not enough stable and is still a moving target; as an example, document WG21
N0582 summarizes a non exhaustive list of unresolved issues concerning templates.

R–4 France considers that it is time not to STOP defining additional extensions that cannot realistically
be reviewed correctly and in a timely planning; the process is too much delayed.

A lot of such extensions have been defined during this process and France considers that the very
first objective of the standardization IS NOT MET in document N0545, that is, a clear, non-
ambiguous, mature and simple definition of the language.

WG21 believes that all major extensions were completed before the CD ballot, and no
additional extensions were planned. Some small extensions have been made to address
CD ballot comments.

R–5 The document is not conformant to ISO directives of drafting and presentation of International
Standards. A non exhaustive list of examples is:

R–5.a a table of content is missing,

A Table of Contents has been added.

R–5.b even though not required by ISO, a glossary shall be included given the context, which is, a
complex language with a lot of concepts,

Although desirable, a proper glossary seems beyond our ability to produce and review
within the required schedule time frames.

Page 4

ISO/IEC JTC1/SC22/WG21 N1042 (X3J16 96-0224)

R–5.c ISO terminology (and definitions) presented by ISO/SC1 shall be used instead of ANSI/X3-
TR-1-82:1982

This change has been made.

R–5.d Though not required by ISO, a Rationale is required at this stage of the process. It is unrealistic
to make effective review of the proposed standard without a Rationale.

We agree on the value of a Rationale, but the Working Group does not have the
extensive resources necessary to produce one.

R–6 The structure of the proposed reference manual shall be revised. We think that:

- The core language shall be separated from the libraries. The core language is what is handled by
the compiler.

- Language support libraries should stay in the core language.

- Other libraries shall be in required (non-optional) normative annexes.

See “General Comments” at the start of this document

R–7 The general structure of the libraries shall be revised. In particular, it is necessary to DECOUPLE
libraries . In the current proposal, there are unacceptable cross and forward references between
libraries (and sections). The order of introduction of libraries is not adequate.

We have taken some steps in this direction, particularly by separating exceptions and
strings.

R–8 The character set defined by the reference manual is not acceptable. In fact, programmers from
France (and other nations) cannot, given the current definition, use local characters in identifiers,
strings and comments. Modern ISO standard programming languages (as ISO8652-95 Ada) provide
definition for characters. We recommend that such a definition shall be used in C++. In particular,
use of ISO 10646 shall be accepted (see attached document).

We have added support for multinational character sets and their use in identifiers and
literals. The solution chosen is somewhat more general than the one adopted by Ada,
and includes support for ISO 10646.

R–9 We support the proposal in document SC22 N0582 concerning templates. That is, we think that a
model of compilation shall be included in the language.

A new template compilation model is specified.

R–10 In the same way, we support the introduction of keyword “typename” instead of overloading
“typedef”.

This change has been incorporated.

Other important technical comments (on lvalues, void, relation with environment, templates, exceptions,
temporaries,...) are not introduced in this list of objections because we think they can be handled during the
next stage and also because we need a C++ Rationale.

[Here was attached in the original CD Registration Ballot comments pages 9 through 14 of RM9X:5.0, an
Ada95 draft (1 June 1994)]

Page 5

ISO/IEC JTC1/SC22/WG21 N1042 (X3J16 96-0224)

Germany

The German DIN NI-22 has voted on CD 14882 as follows:

x Disapproval of the draft for reasons below

x Acceptance of these reasons and appropriate changes in the text will change our vote to approval.

R–11 One Definition Rule (ODR) The ODR is one of the important requirements for the CD-Ballot
already mentioned as R-31 in the Disposition of comments on CD Registration (Doc No: ISO/IEC
JTC1/SC22/WG21/N0669) by the German delegation. The ODR is not described in the Draft which
is base for this CD-Ballot (although we know that it was defined and voted in for the next issue of the
Draft).

We think, that this issue has sufficiently been addressed within the latest Draft Proposed
Working Paper WG/N0996, X3J16/96-178. The issue is closed.

R–12 Template Compilation Model We doubt that the template model as specified is defined clear
enough so that it can be used in a portable way. It is also not clear whether context merging problems
keep the user from determining the cause of errors since the context for some specialization has been
synthesized by the compiler in a non-obvious and complex way.

The context merge might also force implementors to store/retrieve lots of information (persistent
symbol table) which can lead to a less efficient implementation.

Extensive work in this area has been done.

R–13 Locale Library The locale's functionality shall be in accordance with the C locale defined by POSIX
and X/OPEN. It is not clear whether this has in principle been accepted for the C++ locale design.
The C++ locale should be efficiently implementable on top of the C locale.

Locale support has changed significantly, taking into account these comments.

R–14 Input/Output Library This library seems far from being complete; there is still a lot of open work.
We think unless more effort is spent on this part of the library it will fail the schedule.

We believe all significant issues in the I/O library have been resolved.

R–15 Other issues The are a lot of outstanding issues listed in the German public review comments
(X3J16/95-0132, WG21/N0732) which are not addressed by this Draft. (Table 1 on page 5.)

Table 1: Germany’s “other issues”
R-no.,

DIN no.
Comment WP chap. Related doc(s) Recommendation for

ISO/ANSI

R–1
Predicate throwing 15 X3J16/95-0093

WG21/N0693
yes

R–2
Rethrowing pending
exceptions

15 X3J16/95-0092
WG21/N0692

yes

R–3 Incorporate the long
long integral data type

2,3,4,5,7,1
7,18,22,27

X3J16/95-0115,
WG21/N0715

yes, ext-reflector

Page 6

ISO/IEC JTC1/SC22/WG21 N1042 (X3J16 96-0224)

in C++
R–4 The default destructor

should be virtual
automatically

12.4 Email: 16.6.95 no, need a proposal before

R–5 There should be a
provision in the
language to inquire an
objects identity

9,10 Email 16.6.95 no, use dynamic_cast<void*>

R–6 const Pointers to non-
const Objects

8 Proposal 19.6.95 no

R–7 Pointers to const
Objects

8 Proposal 19.6.95 no already allowed

R–8 Construction and
Destruction of const or
volatile Objects

12 Proposal 19.6.95 no

R–9 Derived Classes
comments

10 Email: 26.6.95,
X3J16: edit-561

yes, 10.3 last sentence is
editorial

R–10 Numerics Library 26 Email:26.6.95,
X3J16: edit-564

yes, editorial

R–11 Missing preprocessing
numbers in Chapter 2.3

2 --, X3J16: edit-
562

yes, already a core issue

R–12 The return-type of
default operator= should
be const T&

12.8 Email: 28.6.95 no

R–13 Avoid copy ctor when
binding an exception
object by reference to
catch declaration

15 via phone no, bug in some compilers

R–14 Why does C++ this
archaic header file
mechanism?

16 Email: 29.6.95,
DIN #502

no, a module system was
requested

R–15 class auto_ptr: get->m;
what is m?

20.4.5,
page 20-
17

Email: 21.5.95,
X3J16: edit-563

yes, edit-reflector

R–16 class auto_ptr: the copy
ctor should be private to
forbid parameter
passing of auto_ptr per
value.

20.4.5 Email: 21.5.95,
X3J16: edit-566

yes, but need discussion on
lib-reflector

R–17 The operational
semantic for back() is
wrong.

23.1,
Table 53,
p. 23-5

Email: 21.5.95,
X3J16: edit-565

yes, edit-reflector

R–18 The meaning of
comparing things is not
consistent.

23.1, , p.
23-6

Email: 21.5.95,
X3J16: edit-567

yes, edit-reflector

R–19 What is „m“ ? 23.3.1, p.
23-32

Email: 21.5.95,
X3J16: edit-568

yes, edit-reflector

R–20 Logic error: replace !(*i 25.3.2, p. Email:21.5.95, yes, lib-reflector

Page 7

ISO/IEC JTC1/SC22/WG21 N1042 (X3J16 96-0224)

> *j) with !(*i < *j) 25-20 X3J16:lib-3822
R–21 Just titles no contents 23,24,25 Email: 21.5.95,

X3J16: edit-570
yes, edit-reflector

R–22 Findings in chapter
20,23,24,25

20 Fax: 30.6.95,
X3J16: edit-579,
lib-3829

yes, edit-reflector, lib-reflector

R–24 POD structures 9 X3J16: edit-575 yes, edit-reflector
R–25 Layout compatible types 3.9 X3J16: edit-576 yes, edit-reflector
R–26 Explicit initialization of

globals before main
8 X3J16/95-0093,

WG21/N0693
yes, ext-reflector

Status Revision 1:

The list mentioned above has been updated (X3J16/96-0051, WG21/N0869) and is
therefore added to this document. From that list, the following items are solved by the
current Draft (X3J16/96-0178, WG21/N0996): 19, 20, 21. All other issues must be
checked against the CD-2 WP and will be kept open until CD-2 Ballot. With CD-2 Ballot,
the German delegation expects to provide an update of this table. However, the German
Delegation reports that they have no objections to shipping CD-2 with these open issues.

Page 8

ISO/IEC JTC1/SC22/WG21 N1042 (X3J16 96-0224)

2. German public review comments

No. Comment Author incoming
Date

WP
chapter

DIN WG
Topic
leader

related
Document

German
WG vote

must,shall,nice
,opposed,
abstain

Re-
commen-
dation for
ISO/ANSI

[status]
1 Derived Classes comments Ulrich

Eisenecker
26.6.1995 10 Eisenecker Email: 26.6.95

X3J16: edit-561
not voted on yes,

[open]
2 Numerics Library Ulrich

Eisenecker
26.6.1995 26 Eisenecker Email:26.6.95

X3J16: edit-564
not voted on yes,

[open]
3 class auto_ptr: the copy ctor

should be private to forbid
parameter passing of
auto_ptr per value.

Uli Breymann 30.6.1995 20.4.5 Bormann,
Breymann

Email: 21.5.95
X3J16: edit-566

not voted on yes,
[open]

4 What is „m“ ? Uli Breymann 30.6.1995 23.3.1
p. 23-32

Bormann,
Breymann

Email: 21.5.95
X3J16: edit-568

not voted on yes,
[open]

5 Logic error: replace !(*i > *j)
with !(*i < *j)

Uli Breymann 30.6.1995 25.3.2
p. 25-20

Bormann,
Breymann

Email:21.5.95
X3J16:lib-3822

not voted on yes,
[open]

6 Findings in chapter
20,23,24,25

Carsten Bormann 30.6.95 20 Bormann,
Breymann

Fax: 30.6.95
X3J16: edit-579
 lib-3829

not voted on yes,
[open]

7 Layout compatible types Manfred
Lichtmannegger

30.6.95 3.9 Unruh X3J16: edit-576 not voted on yes,
[arrays still

open]
8 pop() should return a value Nicolai Josuttis 6.12.95 23.2.4.1

23.2.4.2
23.2.4.3

Kiefer X3J16: lib-4496 pop_value() yes
[open]

9 Mandate for bad_alloc Ulrich Eisenecker 7.12.95 26.3 Kiefer X3J16: lib-? not voted on yes
[open]

10 Can the class instantiated by
the user ?

Ulrich Eisenecker 7.12.95 26.3.2.4
footnote

219

Kiefer X3J16: lib-? not voted on yes
[open]

11 Design of basic_istream and
basic_ostream

Udo Mueller 8.12.95 27 Kiefer,
Lichtmann-
egger

X3J16: lib-? note that op
<< with int

is not
possible

yes
[open]

12 Editorial issues Udo Mueller 8.12.95 20.3.6.1
20.4.1.1
20.4.1.3

Kiefer X3J16: lib-? not voted on yes
[open]

13 Editorial issues Udo Mueller 8.12.95 27 Kiefer X3J16: lib-? not voted on yes
[open]

14 Wrong Specifications for
Logical Iterator Conditions

Ulrich Breymann 6.1.96 25.3.3.1 Kiefer X3J16: lib-? not voted on yes
[open]

15 Missing iterator parameter Ulrich Breymann 24.1.96 24.3.2.6.5 Kiefer X3J16: edit-? not voted on yes
[open]

16 Instantiation of virtual
functions in templates

Udo Müller 13.2.96 14.3.2, §6 Unruh opposed
(4:1)

no

17 Minor Typos Nicolai Josuttis 8.12.95 21.1.1.8.3
21.1.1.9.1

23.2.1
23.2.1.2

Kiefer X3J16: edit-624 not voted on yes
[open]

18 Remove find_first, rfind and
find_last

Nicolai Josuttis 8.12.95 21.1.1.9.3
21.1.1.9.4

Kiefer X3J16: edit-624 WG
recommends

an
informative

vote

yes
[open]

19 Introduce const &
bitset::operator[] () const

Nicolai Josuttis 8.12.95 23.2.1 Kiefer X3J16: lib-4496 not voted on yes
[open]

20 Specify #include <iterator> Nicolai Josuttis 24.1.96 21.1 Kiefer X3J16: lib-4496 not voted on yes

Page 9

ISO/IEC JTC1/SC22/WG21 N1042 (X3J16 96-0224)

for containers 23.2
23.3

[open]

21 capacity() and reserve() Nicolai Josuttis 24.1.96 21.1.1.6
23.2.5.4

Kiefer X3J16: lib-4496 not voted on yes
[open]

22 Move min(), max() swap()
into utility part

Nicolai Josuttis 24.1.96 25 -> utility Kiefer X3J16: lib-4496 not voted on yes
[open]

23 Move bitset section Nicolai Josuttis 19.2.96 23.4 Kiefer X3J16: edit-624 not voted on yes
[open]

24 Distance n=0 Ulrich Breymann 19.2.96 24.1.6 Kiefer X3J16: edit-? not voted on yes
[open]

25 Access to Exception Object’s
Type Information

Roland Hartinger 6.3.96 5.2.7
15.5.4
18.5.3

Hartinger X3J16/96-0052
WG21/N0870
core-6404

not voted on yes
[open]

 [The rest of this page left blank intentionally.]

Page 10

ISO/IEC JTC1/SC22/WG21 N1042 (X3J16 96-0224)

Japan

[Disapproved with the following comments.]

In addition to technical comments, we would like to raise a procedural issue on the current CD ballot. After
the draft for voting was sent to each national body, significant amount of modifications to the draft were
discussed and agreed on before the voting deadline, i.e., in the Monterey meeting held in July. Since official
voting is on the April draft, we find the situation unnatural. Such a situation should be avoided for future
voting.

We agree to avoid this situation in the future.

In any case, our vote is on April draft, and our comments are on its contents; progress made in Monterey
meeting is not reflected in our comments at all. We conducted a review by experts that consists of current
working group members, people with experience with other standard activities such as internationalization,
and recognized experts in C++ in academic and industrial communities. We are very much aware that the
standard as proposed has considerable amount of complexity and the quality of the document remains much
to be improved. The national body, however, felt that the current situation reflects the complexity and
diversity of programming for modern system development, large and growing popularity of the language, and
the effort that majority of people could afford to make under various constraints. When we consider practical
alternatives, we believe that the current draft is a reasonable step toward a potential standard, and more effort
is needed to stabilize and refine the draft before it is considered for a standard.

Among the various comments and issues discussed, we present the following three with the condition
mentioned in the first paragraph. Most of other comments are of editorial nature, and they will be provided
directly to the editor or to each subcommittee.

R–16 A) Implementation Dependent Extensions The current C standard permits implementation
dependent extension with the introduction of the notion of conforming implementation as follows.

"A confirming implementation may have extensions (including additional library functions), provided
they do not alter behavior of any strictly conforming program." (In section 1.7 compliance)

This is a very useful rule as one can build an implementation that permits extended set of characters
such as Kanji for identifiers within the current framework of the C standard. We propose that the
C++ standard should permit this.

We have revised clause 1.3 paragraph 7 as suggested here.

R–17 B) String We have provided a large number of comments on the draft on the subject. Taka Adachi
has already communicated with other members of library subcommittee; some of issues raised are
being in agreement. Among them, there are two outstanding issues due to potential of large changes.

1. The dependence of each member function on the traits should be made explicit.

The dependence of iostreams and string’s member functions on the traits is made
explicit by 21.1 Character traits [lib.char.traits] , paragraph two which says:

“Most classes specified in clauses _lib.string.classes_ and _lib.input.output_
need a set of related types and functions to complete the definition of their semantics.
These types and functions are provided as a set of member typedefs and functions in

Page 11

ISO/IEC JTC1/SC22/WG21 N1042 (X3J16 96-0224)

the template parameter `traits' used by each such template. This subclause defines the
semantics guaranteed by these members.”

2. Possible elimination of use of charT() as default argument in seven members.

 The only place where a string’s function uses charT() as default argument is in:

iterator insert(iterator p, charT c = charT());

- potential of having eos() different from char() and explicit indication of dependence on traits

eos() as been removed, and is replaced by charT(). Therefore it is directly dependent on
the character type.

Taka will communicate with library members and work actively to try to reach agreement.

R–18 C) IO streams A number of issues and comments were collected and most of them being
communicated separately. We will describe one outstanding issue here. The problem is the lack of
dependence of type definitions such as int_type, pos_type, off_type and state_type on charT in the
definition of templated ios_traits.

(See comments at the end of the example.)

For example, considering 'char' specialization, we might define the following.

template <class charT> struct ios_traits {
. . . .
typedef charT char_type;
typedef int int_type;
. . . .
};

We would have to accept int_type as a constant definition in all of the specialized traits, not only in
ios_trait<char> , but in ios_traits<wchar_t> and in ios_traits<ultrachar> as well. It
would lead to the restriction upon implementations in that all of the char T have to be converted in 'int' range.
This may be too restrictive for future wide character types and user-defined character types and user-defined
character types.

Therefore, consider adopting

namespace std(
template <class charT> struct ios_traits<charT> {}

struct ios_traits<char> {
typedef char char_type;
typedef int int_type;
typedef streampos pos_type;
typedef streamoff off_type;
typedef mbstate_t state_type;

// 27.4.2.2 values:
static char_type eos();
static int_type eof();
static int_type not_eof(char_type c);
static char_type newline();
static size_t length(const char_type's);
// 27.4.2.3 tests:

Page 12

ISO/IEC JTC1/SC22/WG21 N1042 (X3J16 96-0224)

static bool eq_char_type (char_type, char_type):
static bool eq_int_type(int_type, int_type);
static bool is_eof(int_type);
static bool is whitespace (const ctype<char_type> ctype&, char_type);

// 27.4.2.4 conversions:
static char_type to_char_type(int_type);
static int_type to_int_type(char_type);
static char_type* copy(char_type*dst, const carr* src, size_t n);

static state_type get_state(pos_type);
static pos_type get_pos(streampos fpos, state_type state);
};

struct ios_traits<wchar_t> {
typedef wchar_t char_type;
typedef wint_t- int_type;
typedef wstreampos pos_type;
typedef wstreamoff off_type;
typedef mbstate_t state_type;

// 27.4.2.2 values:
static char_type eos();
static int_type eof();
static char_type not_eof(char_type C);
static char_type newline();
static size_t length(const char_type* s);

// 27.4.2.3 tests:
static bool eq_char_type(char_type, char_type);
static bool eq_int_type(int_type, int_type);
static bool is_eof(int_type);
static bool is_whitespace(const ctype<char_type> ctype&, char_type);

// 27.4.2.4 conversions:
static char_type to_char_type(int_type);
static int_type to_int_type(char_type);
static char_type* copy(char_type* dst, const char* src, size_t n);
static state_type get_state(pos_type);
static pos_type get_pos(streampos fpos, state_type state);
};

}

As a result of the separation of the two specializations, we have to change the descriptions in
[lib.streams.types], as follows; 27.4.1 Types

typedef OFF_T streamoff;

The type streamoff is an implementation-defined type that satisfies the requirements of type OFF_T.

typedef WOFF_T wstreamoff;

The type wstreamoff is an implementation-defined type that satisfies the requirements of type WOFF_T.

typedef POS_T streampos;

The type streampos is an implementation-defined type that satisfies the requirements of type POS_T.

Page 13

ISO/IEC JTC1/SC22/WG21 N1042 (X3J16 96-0224)

typedef WPOS_T wstreampos;

The type wstreampos is an implementation-defined type that satisfies the requirements of type WOPS_T.

typedef SIZE_T streamsize;

The type streamsize is a synonym for one of the signed basic integral types. It is used to represent the number
of characters transferred in an I/O operations, or the size of I/O buffers.

The above approach can be found in "defining nothing in the template version of traits and defining
everything in each specializations" by N. Kumagai (X3J16/94-0083). We regret that mistakes in the document
for Austin (X1J16/95-0064) caused to introduce such inappropriate definitions to the current WP.

We should not put any definitions (static member functions or typedefs) related to int_type, off_type,
pos_type and/or state_type in the template definition of the traits. The reason is that these three types depend
on the template parameter class 'charT' for variety of environments (ASCII, stateless encoding for double byte
characters, and UniCode). For example,

charT char wchar_t
int_type int wint_t
off_type streamoff wstreamoff
pos_type streampos wstreampos
state_type mbstate_t mbstate_t

Note that the two of the above types, 'wint_t' 'mbstate_t' are defined in C Amendment 1 (or MSE).

We cannot assume that two implementation-defined types, streampos and wstreampos have the same
definitions because under some shift encoding, wstreampos has to keep an additional information, the shift
state, as well as the file position. We should represent them with two different symbols. POS_T and
WPOS_T so as to give a chance to provide separate definitions for these two specifications.

For pos_type in both of specialized traits, 'mbstate_t' is introduced from C Amendment 1 (or former MSE)
and is an implementation-defined type to represent any of shift states in file encoding.

The type, INT_T is not suitable for the definition of streamsize because INT_T represents another character
type whose meaning is to specify the definitions of streampos.

A proposition equivalent in principle as been accepted; see 1.1 Character traits
[lib.char.traits].

Netherlands

[Disapproved with the following comments.]

R–19 1. The document has a normative reference to the C standard (ISO/IEC 9899). However, C++
deviates from C in many places. Still, nowhere in the C++ standard these deviations are made explicit
(other than in an informative annex which strictly speaking is no part of the standard). The
compliance section should make clear what happens when a program makes use of these deviating
features. As it stands, it is not written anywhere that the ‘new’ (C++) specification takes precedence
over the ‘old’ (C) specification.

Page 14

ISO/IEC JTC1/SC22/WG21 N1042 (X3J16 96-0224)

Except for explicit cross-references (see clause 1.2), an ‘old’ C specification is not
normative for C++; in this respect, the C++ standard is self-contained.

R–20 2. The document is virtually un-readable for non-experts. Obviously, the document is not meant to
teach a person C++. However, for the document to be useful, it should be reasonably accessible (i.e.,
readable) for any person with a reasonable experience in C++. It is clearly possible to write a
standard that way (e.g. the C standard). Furthermore, it is clearly possible to write a definition of C++
that way (e.g., the books of B. Stroustrup).

We hope the current draft improves this situation.

R–21 3. The document is not very clear about what can be expected of a C++ implementation. A more
precise definition of what is required of an implementation and what freedom the implementor has is
needed. As an example, the C standard can be looked at, with sections on constraints (strict) and
semantics (less strict).

We believe that our document is more strict in this regard than the C standard; in our
document all negative requirements mandate diagnostics except where explicitly noted.
In the C standard, there are numerous perfectly-diagnosable negative requirements that
do not actually require diagnosis, for no reason other than that the requirement happens
to appear in a semantics section rather than in a constraints section.

R–22 4. The standard library contains far too many classes and features. It is clear that C++ (like C)
needs a standard library. The reason for this is that the language itself has no method for
communication with the system (I/O, date/time and other system dependencies). A standard library
for these system-dependent features is necessary to allow portable code to be written. The C standard
was focussed upon these issues, however the proposed C++ standard library introduces many classes
and features (in particular standard data structures and algorithms) that do not add to the portability
of the language.

This is not to say that it would not be nice to have standard definitions for these features, but it should
not be part of the C++ language standard. Adding these features to the C++ standard complicates
both the implementation (e.g. for embedded systems) and the learning of the language. Furthermore,
it is not clear at the moment whether the features included in the library are really what is needed. In
fact, if one considers the currently available commercial libraries as an indication, there is much
more need for a standard library for handling GUI’s. This is understandable, since GUI interfaces are
generally system dependent and a standard library for that would greatly improve portability. This
cannot be said about e.g. a list data structure. A telling sign about the need for the features of the
current library is that currently it is not supported by any of the major C++ development
environments.

The proposed C++ library has now been implemented and commercially released by
several vendors. The national bodies represented in the working group meetings felt
strongly that such a standard library was necessary.

R–23 5. NNI objects to the fact that the complete library has been defined in terms of templates. This
makes it more difficult to use the library without a complete and in-depth knowledge of the language.
A grow-path from C to C++ is also not facilitated by the use of templates in the library. Furthermore,
it makes it impossible to implement the library on older systems (where templates might not be

Page 15

ISO/IEC JTC1/SC22/WG21 N1042 (X3J16 96-0224)

supported yet) and on smaller (e.g. embedded) systems (where templates are not implemented to save
space).

We feel that the use of templates is essential to the production of a library which is both
generic and efficient.

R–24 6. NNI requires that all outstanding issues on open issue lists (like the one in SC22/N1885) are dealt
with in a satisfactory manner.

The new draft addresses what we feel are the important outstanding issues. WG21’s
internal issue lists include many items that are not essential to the standard, and the fact
that some issue lists may still have unresolved issues is acceptable unless national
bodies have comments on specific unresolved issues.

Minimal changes needed to change our vote to a (reluctant) yes are:

• Solving the issues mentioned in item 6

• Deleting the library from the standard (except for the language support libraries and the C standard
library). (This would solve items 4+5).

The possibility of separating the language and the library has been raised several times,
but all national bodies represented at the meetings have firmly resisted the separation, in
favor of a single standard.

New Zealand

Did not vote.

Romania

Approved without comments.

Slovenia

Approved without comments.

Sweden

[Disapproved with the following comments.]

Note: document numbers of the form 95-0151/N0751 refer to SC22/WG21 documents.

R–25 Progress of SC22/WG21 We are generally pleased with the current rate of progress of SC22/WG21.
However, as a large number of minor issues remain to be considered and resolved, we favour
submitting a second Committee Draft for balloting. We are convinced that the document will be
ready for the DIS stage after the second CD ballot.

We agree.

The delay caused by submitting a second CD is unfortunate, but we nevertheless support Schedule
Scenario #2 of document 95-0151/N0751.

Page 16

ISO/IEC JTC1/SC22/WG21 N1042 (X3J16 96-0224)

Before the CD ballot closed and these comments were received, WG21 agreed on a
slightly different (and longer) schedule.

R–26 Issues lists The most important work in the near future is to resolve all known outstanding problems,
as documented by several “issues lists ” distributed in SC22/WG21.

See “General Comments” at the start of this document

R–27 Clarification of templates [temp] We believe that the template source model, the template
compilation model, and the practical implications of both, need to be further clarified. In particular,
there are several issues of great practical importance that cannot be discussed and analyzed because
the necessary framework is missing. For example,

R–27.a Building libraries that are distributed in binary form.

R–27.b Distributed development, involving the combination of several libraries that may reference other
common libraries.

R–27.c Shared libraries containing templates.

R–27.d Support for large projects, for example, if template instantiation can be implemented with linear
algorithms.

R–27.e Portability of the source model.

R–27.f Early diagnostics.

(In response to R-27a-f) The description of the template compilation model has been
substantially clarified, in particular with respect to name leakage and separate
compilation of templates. The phases of translation have been similarly enhanced to
cover template compilation.

R–28 Copying semantics of auto_ptr [lib.auto.ptr] The current semantics of the copy-constructor and the
assignment operator of auto_ptr are error-prone, without providing great utility. We would instead
prefer a distinct member function for transferring ownership from one auto_ptr object to another.

In essence we prefer the semantics described in document 94-0202/N0589 over the semantics
described in the revised version 94-0202R1/N0589R1.

SC22/WG21 considered the issue but left it without action.

R–29 Division of negative integers [expr.mul] Paragraph 4: The value returned by the integer division
and remainder operations shall be defined by the standard, and not be implementation defined. The
rounding should be towards minus infinity. E.g., the value of the C expression (-7)/2 should be
defined to be -4, not implementation defined. This way the following useful equalities hold (when
there is no overflow, nor “division by zero ”):

(i+m*n)/n == (i/n) + m for all integer values m

(i+m*n)%n == (i%n) for all integer values m

Page 17

ISO/IEC JTC1/SC22/WG21 N1042 (X3J16 96-0224)

These useful equalities do not hold when rounding is towards zero. If towards 0 is desired, it can
easily be defined in terms of the round towards minus infinity variety, whereas the other way around
is trickier and much more error-prone.

Division of negative integers has been extensively discussed in SC22/WG14 (C),
proposing the desired specification in the next release of the ISO C standard.
SC22/WG21 has not changed the corresponding normative text because the change in C
is not yet effective, but added a footnote describing the intention of following ISO C.

R–30 ISO Latin-1 in identifiers [lex.name] We support the French CDR ballot comment suggesting that
C++ allow letters of ISO 8859-1 (Latin-1) in identifiers. [See R–8.]

We have added a method for representing and accepting a program that contains
identifiers written in Latin-1, as well as other extended character sets. (See clauses 2.1,
2.2, and 2.10.) See also ballot comment R-8.

R–31 Strengthening of bool datatype [conv.bool] The original proposal for a Boolean datatype (called
bool) provided some additional type-safety at little cost. SC22/WG21 changed the proposal to allow
implicit conversion from int to bool, thereby reducing type-safety and error detectability.

The implicit conversion from int to bool shall be deprecated, as described in document 93-
0143/N0350. As a future work-item, the implicit conversion should be removed.

We feel that the current conversion rules are required for compatibility with existing C++
code.

R–32 Definition of inline functions [dcl.fct.spec] In paragraph 3 it is stated that “A call to an inline
function shall not precede its definition. ” One consequence of this restriction is that adding an inline
keyword (which is only a recommendation, just like register) can make a program ill-formed. We
suggest that this restriction is removed.

The addition of the inline keyword is not merely a ‘recommendation’; it invokes
normatively different behavior.

R–33 Declaration of ios_base::iword [lib.ios.base.storage] Function iword() returns a long& while the
text seems to imply that the array is an array of type int. We believe the return value shall be int&.

We have corrected the specification of iword to use type long everywhere.

R–34 Values of bool type [basic.fundamental] Footnote 26 is confusing and shall be removed. Footnotes
are not normative.

A rigorous-checking implementation could use an “uninitialized boolean” value which is
neither true nor false. The footnote just clarifies this possibility.

R–35 Language Independent Arithmetic We generally support a binding to LIA-1 (ISO/IEC 10967-1) in
C and C++. Future work should track this standard and subsequent standards, e.g., LIA-2. If the
current wording of the standard meets LIA-1, in particular the specification of the numeric_limits
class, the standard should explicitly reference document ISO/IEC 10967-1.

We explicitly reference ISO/IEC 10967-1.

Page 18

ISO/IEC JTC1/SC22/WG21 N1042 (X3J16 96-0224)

R–36 Unique type introduced by typedef One of the Swedish comments on the CD suggested a new
typedef that would introduce a distinct type. We think this issue should be further investigated at
some point in the future. The proposed syntax is:

typedef explicit int Height;

typedef explicit int Length;

The issue has been deferred to a future revision of ISO C++.

Page 19

ISO/IEC JTC1/SC22/WG21 N1042 (X3J16 96-0224)

Switzerland

Approved without comments.

Ukraine

Approved without comments.

United Kingdom

The UK votes NO to the CD ballot. The technical issues that the UK wants to see addressed are in the
accompanying document 95/0013. The UK feels that so many substantive changes need to be made to the
Draft Standard that it would be impossible for the vote to be changed to YES without first seeing the revised
document, even if all our technical issues were accepted unchanged.

It should also be noted that it is our opinion that the document submitted was not stable enough to warrant a
CD ballot, and did not include the editorial boxes, some of which dealt with contentious issues. WG21 has
been actively pursuing changes, some of which are contrary to the CD document, during the ballot process. ...

R–37 ... The UK submits that it is necessary to have a period of stability prior to any future ballots:
standards have a long term impact and rushing them into print for short term needs often results in
very costly post-publication maintenance and public confusion.

WG21 has endeavored to meet this requirement from the UK. The WD that was
approved at the July 1996 Stockholm meeting was held stable through the November
1996 Kona meeting to the greatest extent possible, allowing only the correction of
generally-agreed bugs and clarification of technical issues. We believe that this was
accomplished in accordance with the UK requirements.

R–38 [Document 95-0013 contains on the order of 300 issues, some of which are editorial.]

WG21 believes that the current status is in accordance with the opinion of the UK
delegation; that is, the great majority of these issues have been successfully resolved,
and those that remain are not considered sufficiently major to delay publication of the
second CD.

United States

Abstain. [The US TAG was unable to develop an official position that they could transmit to the ANSI.]

[End of collected comments]

