
Document Numbers: X3J16/96-0214
WG21/N1032

Date: November 13, 1996
Reply To: Bill Gibbons

bill@gibbons.org

Core-III Working Paper Changes (Motions and Editorial)

==

1. Clarify the semantics of "uncaught_exception".

(Rationale: it is safe to throw an exception from unexpected (because the exception is
considered handled at entry to unexpected), but not from terminate (because terminate
may not exit.) Since uncaught_exception is intended to indicate whether it is safe to
throw an exception, the semantics associated with entering unexpected and terminate
need to be adjusted. Issue raised by 96-0186R1/N1004R1.)

Move we amend the working paper as follows:

Current wording in 15.1p6:

An exception is considered finished when the corresponding
catch clause exits.

Revised wording:

An exception is considered finished when the corresponding
catch clause exits or when unexpected() exits after being entered
due to a throw.

Current wording in 15.5.1p1:

— when a exception handling mechanism, after completing evaluation of the
object to be thrown but before completing the initialization of the
exception-declaration in the matching handler, calls a user function
that exits via an uncaught exception,

Revised wording:

- when an exception handling mechanism, after completing evaluation of the
object to be thrown but before either completing the initialization of the
exception-declaration in the matching handler or entering unexpected()
due to the throw, calls a user function that exits via an uncaught
exception,

Current wording in 18.6.3.3p2 for terminate():

Effects: Calls the terminate_handler function in effect immediately
after evaluating the throw-expression (18.6.3.1).

Revised wording:

Effects: Calls the terminate_handler function in effect immediately
after evaluating the throw-expression (18.6.3.1).
Effects: If terminate() is called by the implementation,
uncaught_exception() returns true when called at any point after
entry to terminate().

Current wording in 18.6.4 for uncaught_exception():

Returns: true after completing evaluation of a throw-expression until
completing initialization of the exception-declaration in the matching

handler (15.5.3). This includes stack unwinding (15.2).

Revised wording:

Returns: true after completing evaluation of a throw-expression until
either completing initialization of the exception-declaration in the
matching handler (15.5.3) or entering unexpected() due to the throw;
or after entering terminate() for any reason other than an explicit
call to terminate(). [Note: this includes stack unwinding (15.2).]

==

2. Correct the semantics of "dynamic_cast".

(Rationale: it was the intent that access checking in dyanamic_cast mimic the checking
which would be done by a single static cast (for direct downcasts) or a pair of static
casts to the most derived type and then to the result type (for cross-casts). The
current wording does not do this, and also has an unintended bug allowing unsafe
direct downcasts in some situations. Core issue 549.)

Move we amend the working paper as follows:

Current wording in 5.2.7p8:

The run-time check logically executes like this: If, in the most
derived object pointed (referred) to by v, v points (refers) to a
public base class sub-object of a T object, and if only one object
of type T is derived from the sub-object pointed (referred) to by v,
the result is a pointer (an lvalue referring) to that T object.
Otherwise, if the type of the most derived object has an unambiguous
public base class of type T, the result is a pointer (reference) to
the T sub-object of the most derived object.

Revised wording:

The run-time check logically executes like this:

- If, in the most derived object pointed (referred) to by v, v points
(refers) to a public base class sub-object of a T object, and if only
one object of type T is derived from the sub-object pointed (referred)
to by v, the result is a pointer (an lvalue referring) to that T object.

- Otherwise, if v points (refers) to a public base class sub-object of
the most derived object, and the type of the most derived object has
an unambiguous base class of type T, the result is a pointer (reference)
to the T sub-object of the most derived object.

Current wording in 5.2.7p10:

class A { virtual void f(); };
class B { virtual void g(); };
class D : public virtual A, private B {};
void g()
{

D d;
B* bp = (B*)&d; // cast needed to break protection
A* ap = &d; // public derivation, no cast needed
D& dr = dynamic_cast<D&>(*bp); // succeeds
ap = dynamic_cast<A*>(bp); // succeeds
bp = dynamic_cast<B*>(ap); // fails
ap = dynamic_cast<A*>(&dr); // succeeds
bp = dynamic_cast<B*>(&dr); // fails

}

Revised wording:

class A { virtual void f(); };

class B { virtual void g(); };
class D : public virtual A, private B {};
void g()
{

D d;
B* bp = (B*)&d; // cast needed to break protection
A* ap = &d; // public derivation, no cast needed
D& dr = dynamic_cast<D&>(*bp); // fails
ap = dynamic_cast<A*>(bp); // fails
bp = dynamic_cast<B*>(ap); // fails
ap = dynamic_cast<A*>(&dr); // succeeds
bp = dynamic_cast<B*>(&dr); // fails

}

==

3. Clarify the semantics of throwing an exception object of array or function type, as
follows:

(Rationale: initializing the handler in an exception-declaration is intended to
parallel initializing the parameter in a function call. But the handler
type is not known at the point of the throw, and there is no way to initialize
the exception temporary if the thrown expression has array or function type.
So the array-to-pointer and function-to-pointer conversions should be done at the
throw and the corresponding adjustments should be made to the handler type.
Core issue 678.)

Move we amend the working paper as follows:

Current wording in 15.1p3:

A throw-expression initializes a temporary object of the static
type of the operand of throw, ignoring the top-level cv-qualifiers
of the operand’s type, and uses that temporary to initialize the
appropriately-typed variable named in the handler.

Revised wording:

A throw-expression initializes a temporary object, the type of which
is determined by removing any top-level cv-qualifiers from the static
type of the operand of throw and adjusting the type from “array of T”
or “function returning T” to “pointer to T” or “pointer to function
returning T,” respectively. The temporary is used to initialize the
appropriately-typed variable named in the handler.

New paragraph between 15.3p1 and 15.3p2:

A handler of type "array of T" or "function returning pointer to T"
is adjusted to be type "pointer to T" or "pointer to function
returning T", respectively.

==

4. Clarify when class templates are instantiated during a "trial parse".

(Rationale: template-ids used as qualifiers must be instantiated to determine
whether the qualified name is a type. So the working paper note to the
effect that instantiation is not done in a trial parse is incorrect.
The proposed resolution makes any program for which it matters ill-formed.
Core issue 671.)

Move we amend the working paper as follows:

Current wording in 6.8p3:

The disambiguation is purely syntactic; that is, the meaning of
the names occurring in such a statement, beyond whether they are

type-ids or not, is not used in or changed by the disambiguation.
Disambiguation precedes parsing, and a statement disambiguated as
a declaration may be an ill-formed declaration. [Note: because
the disambiguation is purely syntactic, template instantiation
does not take place during the disambiguation step.]

Revised wording:

The disambiguation is purely syntactic; that is, the meaning of
the names occurring in such a statement, beyond whether they are
type-ids or not, is not used in or changed by the disambiguation.
Class templates appearing in qualifiers are instantiated as
necessary to determine if the qualified name is a type-id.
Disambiguation precedes parsing, and a statement disambiguated as
a declaration may be an ill-formed declaration. If, during parsing,
a name in a template parameter is bound differently than it would
be bound during a trial parse, the program is ill-formed. No
diagnostic is required. [Note: this can occur only when the name
is declared earlier in the declaration.]

==

5. Editorial change to restore intended interaction of default arguments and using-
declarations.

(Rationale: the working paper was changed in a way not intended by a motion about
default arguments. The original intent is restored.)

Current wording n 8.3.6p9:

When a declaration of a function is introduced by way of a using
declaration (7.3.3), any default argument information associated with
the declaration is imported as well. If the function is redeclared
thereafter in the namespace with additional default arguments, the
imported declaration is not affected.

Revised wording:

When a declaration of a function is introduced by way of a using
declaration (7.3.3), any default argument information associated with
the declaration is made known as well. If the function is redeclared
thereafter in the namespace with additional default arguments, the
additional arguments are also made known through the using declaration.

==

6. Clarify when overload resolution causes class template instantiation.

(Rationale: the working paper implies that every possible conversion of an argument
to a potential parameter must be considered. This can result in a massive number
of class template instantiations, most of which can usually be avoided by a
careful implementation of the overload resolution algorithm (because a function is
known to be nonviable or not the best match through information about other
parameters. Core issue 676.)

Move we amend the working paper as follows:

Remove the editorial box #14 in 14.7.1p3, and add a new paragraph in its
place:

If the overload resolution process can determine the correct function to
call without instantiating a class template definition, it is unspecified
whether that instantiation actually takes place. [Example:

template <class T> struct S {
operator int();

};

void f(int);
void f(S<int>&);
void f(S<float>); // instantiation of S<float> allowed

// but not required

void g(S<int>& sr) {
f(sr); // instantiation of S<int> allowed

// but not required
};

- end example]

==
.
7. Clarify the set of associated names used for argument-dependent name lookup.

(Rationale: the working paper does not address how any non-type arguments and
template template arguments in a template-id affect the set of associated names.
Core issues 686 and 703.)

Move we amend the working paper as follows:

Add the following footnote to 3.4.2p2, after "… be considered;":

The set of namespaces is determined entirely by the types of the
arguments. Typedef names used to specify the types do not
contribute to this set.

Current wording in 3.4.2p2:

— If T is a template-id, its associated namespaces are the
namespace of the template and the namespaces associated with
the type of template arguments.

Revised wording:

- If T is a template-id, its associated namespaces are the
namespaces of the template, the namespaces associated with
the types of the template arguments provided for template
type parameters (excluding template template parameters), and
the namespaces of any template template arguments.

==

8. Editorial change to clarify a description of exception type matching.

(Rationale: there were two ways to interpret the text. It was clear to
Core-III which one was intended.)

Current wording in 15.3/2:

A handler is a match for a throw-expression with an object of type E if
...
— the handler is of type cv1 T* cv2 and E is a pointer type that can be
converted to the type of the handler by a standard pointer conversion
(4.10) not involving conversions to pointers to private or protected or
ambiguous classes, or a qualification-conversion (4.4), or a
combination of these two.

Revised wording:

A handler is a match for a throw-expression with an object of type E if
...
— the handler is of type cv1 T* cv2 and E is a pointer type that can be
converted to the type of the handler by a combination of

- a standard pointer conversion (4.10) not involving conversions
to pointers to private or protected or ambiguous classes

- a qualification conversion

==

9. Clarify that member templates do not suppress implicit copy/assign functions.

(Rationale: The automatic declaration of implicit copy constructors and copy assignment
operators should not be affected by the possibility of a member template specialization
meeting the requirements for a copy constructor or copy assignment operator. Issue 8.3
in 96-0158/N0976.)

Move we amend the working paper as follows:

Current wording in 12.8p2:

A constructor for class X is a copy constructor if its first parameter
is of type X&, const X&, volatile X& or const volatile X&, and either
there are no other parameters or else all other parameters have default
arguments (8.3.6).

Revised wording:

A non-template constructor for class X is a copy constructor if its first
parameter is of type X&, const X&, volatile X& or const volatile X&, and
either there are no other parameters or else all other parameters have
default arguments (8.3.6). [Footnote: Because a template constructor is
never a copy constructor, the presence of such a template does not
suppress the implicit declaration of a copy constructor. Template
constructors participate in overload resolution with other constructors,
including copy constructors, and a template constructor may be used to copy
an object if it provides a better match than other constructors.]

Current wording in 12.8p9:

A user-declared copy assignment operator X::operator= is a non-static
member function of class X with exactly one parameter of type X, X&,
const X&, volatile X& or const volatile X&.

Revised wording:

A user-declared copy assignment operator X::operator= is a non-static
non-template member function of class X with exactly one parameter of
type X, X&, const X&, volatile X& or const volatile X&. [Footnote:
Because a template assignment operator is never a copy assignment
operator, the presence of such a template does not suppress the implicit
declaration of a copy assignment operator. Template assignment operators
participate in overload resolution with other assignment operators,
including copy assignment operators, and a template assignment operator
may be used to copy an object if it provides a better match than other
assignment operators.]

==

10. Assume a dependent qualified name is a type in some additional contexts.

(Rationale: There are to two contexts where a qualified name is assumed to be a type,
and the typename keyword is neither necessary nor permitted to be applied to the name.
The two contexts are qualifiers (e.g. B in A::B::C) and elaborated names
(e.g. B in struct A::B). But there are also two contexts where a qualified name must
be a type name, and the typename keyword is not permitted, yet the name is not assumed
to be a type name. (That is, typename is both required and forbidden.) These contexts
are base class specifiers and member/base initializers. These two cases should be made
to behave like the first two, i.e. typename is assumed. Core issue 736.)

Move we amend the working paper as follows:

Add a new paragraph between 14.6p3 ad 14.6p4:

The keyword typename is not permitted in a base-specifier or in a
mem-initializer. In these contexts a qualified-name that depends on a
template parameter is implicitly assumed to be a type name.

==

11. Editorial change to clarify that “friend class T” is not permitted.

(Rationale: This is a frequently asked question. Core issue 738.)

Current wording in 7.1.5.3p5:

If the identifier resolves to a typedef-name or a template type-parameter,
the elaborated-type-specifier is ill-formed.

Revised wording:

If the identifier resolves to a typedef-name or a template type-parameter,
the elaborated-type-specifier is ill-formed. [Note: This implies that,
within a class template with a template type-parameter T, the declaration
"friend class T;" is ill-formed.]

==

12. Clarify that declarations of references to functions and pointers to members
may have exception-specifications.

(Rationale: It was an oversight that these cases were left out. Core issue 740.)

Move we amend the working paper as follows:

Current wording in 15.4p1:

An exception-specification shall appear only on a function declarator
in a function or pointer declaration or definition.

Revised wording:

An exception-specification shall appear only on a function declarator
in a function, pointer, reference, or pointer-to-member declaration or
definition.”

==

13. Clarify that when a pointer to member is dereferenced, the class types associated
with both the object and the pointer to member must be complete.

(Rationale: If the classes are different, they must be complete to perform required
conversions. Even if the classes are the same, allowing the class to be incomplete
would provide little additional functionality and might overly constrain some
implementations of pointers to members. Core issue 644.)

Move we amend the working paper as follows:

Current wording in 5.5p2 and 5.5p3:

The binary operator .* binds its second operand, which shall be of
type “pointer to member of T” to its first operand, which shall be
of class T or of a class of which T is an unambiguous and accessible
base class. The result is an object or a function of the type
specified by the second operand.

The binary operator ->* binds its second operand, which shall be of

type “pointer to member of T” to its first operand, which shall be
of type “pointer to T” or “pointer to a class of which T is an
unambiguous and accessible base class.” The result is an object or
a function of the type specified by the second operand.

Revised wording:

The binary operator .* binds its second operand, which shall be of
type “pointer to member of T” (where T is a completely defined class
type) to its first operand, which shall be of class T or of a class
of which T is an unambiguous and accessible base class. The result
is an object or a function of the type specified by the second operand.

The binary operator ->* binds its second operand, which shall be of
type “pointer to member of T” (where T is a completely defined class
type) to its first operand, which shall be of type “pointer to T” or
“pointer to a class of which T is an unambiguous and accessible base
class.” The result is an object or a function of the type specified by
the second operand.

==

14. Editorial change to clarify that types used in exception-specifications
must be complete.

(Rationale: We decided that types used in exception-specifications must be
complete, but the working paper is not consistent on this point.)

Current wording in 15.4p1:

A type denoted in an exception-specification shall not
denote an incomplete type.

Current wording in 15.4p7:

An exception-specification can include identifiers that
represent incomplete types.

Revised wording in 15.4p7:

An exception-specification shall not include identifiers that
represent incomplete types.

==

15. Editorial change to add "export" to the list of keywords.

(Rationale: the keyword list is not correct.)

Current wording in 2.11p1 table 3:

asm do inline short typeid
auto double int signed typename
bool dynamic_cast long sizeof union
break else mutable static unsigned
case enum namespace static_cast using
catch explicit new struct virtual
char extern operator switch void
class false private template volatile
const float protected this wchar_t
const_cast for public throw while
continue friend register true
default goto reinterpret_cast try
delete if return typedef

Revised wording:

(same table with "export" added)

==

16. Correct problems in the template grammar.

(Rationale: Some nonterminals defined in the working paper are not connected
to the rest of the grammar, i.e. the grammar does not say where they may be
used. Also since the old use of "specialization" now means "explicit
specialization", the grammar should be updated to account for this. Also,
the production for elaborated-type-specifier is split into two places, and
so the incomplete first production is the only one which appears in the
grammar (due to the typesetting conventions. And the production for
full-template-argument-list is used in only one place and can be eliminated.)

Move we amend the working paper as follows:

Original wording in 7p1:

declaration:
block-declaration
function-definition
template-declaration
linkage-specification
namespace-definition

Revised wording:

declaration:
block-declaration
function-definition
template-declaration
explicit-instantiation
explicit-specialization
linkage-specification
namespace-definition

Original wording in 7.1.5.3p1:

elaborated-type-specifier:
class-key ::opt nested-name-specifier opt identifier
enum ::opt nested-name-specifier opt identifier

Revised wording:

elaborated-type-specifier:
class-key ::opt nested-name-specifier opt identifier
enum ::opt nested-name-specifier opt identifier
typename ::opt nested-name-specifier identifier
typename ::opt nested-name-specifier identifier < template-argument-list >

Original wording in 14.6p2:

A qualified-name that refers to a type and that depends on a
template-parameter (14.6.2) shall be prefixed by the keyword
typename to indicate that the qualified-name denotes a type.

elaborated-type-specifier:
. . .
typename ::opt nested-name-specifier identifier full-template-

argument-list opt
. . .

full-template-argument-list:
< template-argument-list >

Revised wording:

A qualified-name that refers to a type and that depends on a
template-parameter (14.6.2) shall be prefixed by the keyword
typename to indicate that the qualified-name denotes a type,
forming an elaborated-type-specifier (_dcl.type.elab_).

elaborated-type-specifier:
. . .
typename ::opt nested-name-specifier identifier
typename ::opt nested-name-specifier

identifier < template-argument-list >
. . .

Original wording in 14.7.3p1:

specialization:
template < > declaration

Revised wording:

explicit-specialization:
template < > declaration

==

