Clause 26 (Numerics Library) Motions

Motion (to adopt various changes to clause 26) :

Amend the WP as follows, thus closing issue 26-052:
-- strike the text "all allocated memory is returned." from the description of the valarray destructor in clause 26.4.1.1 [lib.valarray.cons] and replace it with the following: an implementation may return all allocated memory.

Amend the WP as follows, thus closing issue 26-053:
-- strike the following text from the definition of template class valarray in clause 26.4.1
[lib.template.valarray]:
void free();
-- strike the following text and its associated footnote from clause 26.4.1.7
[lib.valarray.members]:
free();
This function sets the length of an array to zero.
Amend the WP as follows, thus closing issue 26-054:
-- strike the text "void resize(size_t sz, const T\& c = T());" from the definition of template class valarray in clause 26.4.1 [lib.template.valarray] and replace it with the following:
void resize(size_t sz, T c = T());
-- strike the text "void resize(size_t sz, const T\& c = T());" from clause 26.4.1.7
[lib.valarray.members] and replace it with the following:
void resize(size_t sz, T c = T());
Amend the WP as follows, thus closing issue 26-055:
-- strike paragraphs 5 and 6 from clause 26.4.1.7 [lib.valarray.members] and replace them with the following:

This function returns an object of class valarray<T> of length size(), each of whose elements I is (*this) $[\mathrm{I}+\mathrm{n}]$ if $\mathrm{I}+\mathrm{n}$ is non-negative and less than size(), otherwise T() . Thus if element zero is taken as the leftmost element, a positive value of n shifts the elements left n places, with zero fill.
-- strike paragraphs 8 and 9 from clause 26.4.1.7 [lib.valarray.members] and replace them with the following:

This function returns an object of class valarray<T>, of length size(), each of whose elements I is (*this)[(I+n)\%size()]. Thus, if element zero is taken as the leftmost element, a positive value of n shifts the elements circularly left n places.

