
WG21/N1021R1 X3J16/96-0203R1 1

Compromise allocator proposal

Matthew Austern (austern@sgi.com) Nathan Myers (ncm@cantrip.org)
Sean Cor�eld (sean@ocsltd.com)

November 13, 1996

Abstract

This is a compromise proposal for �xing allocators, inspired by N1008 = 96-0190 and by the
discussion in the Kona allocator technical session.

1 Clause 20 changes

Replace Table 41 (\Desciptive variable de�nitions") with the following table.

Variable De�nition

T, U Any type

X An Allocator class for type T

Y The corresponding allocator class for type U

t A value of type const T&

a, a1, a2 Values of type X

b A value of type Y

p A value of type X::pointer, obtained by calling
a1.allocate, where a1 == a.

q A value of type X::const pointer obtained by con-
version from a value p.

r A value of type T& obtained by the expression *p

s A value of type const T& obtained either by the ex-
pression *q or by conversion from r.

u A value of type Y::const pointer, either obtained by
calling Y::allocate or else 0.

n A value of type X::size type.

Change Table 42 (\Allocator requirements"), in clause 20.1.5 [lib.allocator.requirements] as
follows.

� Change the speci�cation columns of pointer and const pointer to read, respectively,
\pointer to T" and \pointer to const T".

� Change the speci�cation columns of reference and const reference to read, respectively,
T& and const T&.

� In the line de�ning rebind<>, change the return type column entry to \Y", and the note

column entry to:



WG21/N1021R1 X3J16/96-0203R1 2

For all U (including T), Y::rebind<T>::other is X.

� Delete the lines de�ning operators new, delete, new[], and delete[], and the line de�ning
operator=.

� Change the expression \X a1(a2);" to \X a(b);", and change the corresponding seman-

tics column to read \post: Y(a) == b;".

� Change the semantics column of operator== to read \Returns true i� storage allocated
from each can be deallocated via the other".

� Add a line describing a default constructor, just before the line that describes the copy
constructor. The expression column reads X(). The return type column is empty. The
semantics column reads \Creates a default instance".

� Add a footnote to the description of a.allocate that reads as follows.

It is intended that a.allocate be an e�cient means of allocating a single object
of type T, even when sizeof(T) is small. That is, there is no need for a container
to maintain its own \free list."

Delete paragraph 3 of x20.1.5 [lib.allocator.requirements].

Add the following two paragraphs to the end of x20.1.5 [lib.allocator.requirements]:

Implementations of containers described in this International Standard are permitted
to assume that their Allocator template parameter meets the following two additional
requirements beyond those in Table 42.

� All instances of a given allocator type are required to be interchangeable and
always compare equal to each other.

� The typedef members pointer, const pointer, size type, and difference type

are required to be T*, T const*, size t, and ptrdiff t, respectively.

Implementors are encouraged to supply libraries that can accept allocators that en-
capsulate more general memory models and that support non-equal instances. In
such implementations, any requirements imposed on allocators by containers beyond
those requirements that appear in Table 42, and the semantics of containers and
algorithms when allocator instances compare non-equal, are implementation-de�ned.

In x20.4 [lib.memory], delete the de�nitions of operators new, delete, new[], and delete[]

from the Header <memory> synopsis

In x20.4.1 [lib.default.allocator], delete the assignment operator, and operator new. Add a
member declaration:

allocator(const allocator&) throw();

Delete from x20.4.1 [lib.default.allocator] and x20.4.1.2 [lib.allocator.globals] operators new,
delete, new[], and delete[].

Delete x20.4.1.3 [lib.allocator.example].

2 Clause 21 changes

� In x21.3.5.2 [lib.string::append] and in x21.3.5.3 [lib.string::assign], remove the Allocator&
argument.



WG21/N1021R1 X3J16/96-0203R1 3

� In x21.3.5.8 [lib.string::swap], change the Complexity clause (paragraph 3) to read \con-
stant time".

� In x21.3.6 [lib.string.ops], and in x21.3 [lib.basic.string], change the declaration of member
get allocator() to return \allocator type". Change the description to: \Returns: a
copy of the Allocator object used to construct the string."

3 Clause 23 changes

� In Table 75 (which is in x23.1 [lib.container.requirements]) delete the lines that de�ne the
type allocator type and the expression a.get allocator(). In the lines that de�ne the
expressions a.swap(), a.size(), and a.max size(), change the entry in the complexity
column to \(Note A)". Add, after the table, \Those entries marked (Note A) should have
constant complexity." Delete the operational semantics speci�cation for assignment.

� Add to paragraph 8 of x23.1 [lib.container.requirements]:

In all container types de�ned in this clause the member get allocator() returns
a copy of the Allocator object used to construct the container.

� In the declarations of queue, priority queue, and stack, in, respectively, x23.2.3.1
[lib.queue], x23.2.3.2 [lib.priority.queue], and x23.2.3.3 [lib.stack], remove the get allocator()

member function. Remove the allocator type member typedef. Add a member type-
def \typedef Container container type;". In the constructor replace the Allocator
contructor argument with const Container& = Container().

� In x23.2.3 [lib.container.adapters], add the following:

The container adapters each take a Container template parameter, and each
constructor takes a Container reference argument. This container is copied into
the Container member of each adapter.

� In x23.2.3.2 [lib.priority.queue], add to the second priority queue constructor a �nal ar-
gument: \const Container& = Container()". In the default constructor, replace the
description of the E�ects with

E�ects: Initializes c with y and comp with x; then calls make heap(c.begin(),

c.end(), comp).

In the second, template, constructor, change the E�ects: paragraph to read:

E�ects: Initializes c with y and comp with x; then calls c.insert(c.end(),

first, last); and �nally calls make heap(c.begin(), c.end(), comp).


