
1

Doc. No.: X3J16/96-0202R1
WG21/N1020R1

Date: November 12, 1996
Project: Programming Language C++
Reply to: Beman Dawes

beman@dawes.win.net

Kona Motions for Clauses 17 through 21
Revision 1 reflects motions as actually passed in Kona.

1) Motion (to resolve several issues from the Clause 21 (Strings) issues
list - version 20):

Move we:

-- close issues 21-090, 095, and 111 from N1006 = 96-0188 without
taking any action.

-- amend the WP as described in N1006 = 96-0188 by adopting the
proposed resolution for issues 21-113, 115, and 116.

-- amend the WP and close issue 21-114 in N1006 = 96-0188 by
replacing in 21.3.7.9 [lib.string.io] operator<< effects:

Behaves as if the function calls:

os.write(str.data(), str.size())

by:
Behaves as if the following is executed:

for(str::iterator i = str.begin(); i != str.end(); i++) {
os.putc(*i);

}

2) Motion (to resolve an issue from the Clause 19 (Diagnostics) issues
list - version 3):

Move we close issue 19-002 as described in N1018 = 96-0200 by amending
the WP as follows:

Change Postcondition sections in 19.1.1 [lib.logic.error],
 19.1.2 [lib.domain.error], 19.1.3 [lib.invalid.argument],
 19.1.4 [lib.length.error], 19.1.5 [lib.out.of.range],
 19.1.6 [lib.runtime.error], 19.1.7 [lib.range.error],
 19.1.8 [lib.overflow.error], 19.1.9 [lib.underflow.error]

 from: Postcondition: what() == what_arg.data()
 to: Postcondition: strcmp(what(), what_arg.c_str()) == 0

3) Motion (to resolve several issues from the Clause 20 (Utilities)
issues list - version 6):

Move we:

-- close issue 20-039 from N1000 = 96-0182 by amending the WP
EqualityComparable requirements table in 20.1.1
[lib.equalitycomparable] from:

2

== is an equivalence relationship.

To:

== is an equivalence relationship, that is, it satisfies the
following properties:

• For all a, a == a.
• If a == b, then b == a.
• If a == b and b == c, then a == c.

And changing "a and b" to "a, b, and c" in paragraph 1 of the same
section.

-- close issues 20-042 and 043 from N1000 = 96-0182 by amending
the WP with the following changes to 20.4.5.1 [lib.auto.ptr.cons]:

• Delete paragraph 1.
• Change paragraph 3 to:

Requires: Y* can be implicitly converted to X*.
• Change paragraphs 6 and 7 to:

Requires: Y* can be implicitly converted to X*. The
expression delete get() is well formed.

Effects: If *this is the same object as a there are no
effects. Otherwise, call a.release(), and if *this owns
*get()then delete get().

• Change paragraph 9 to:
Postconditions: If *this is not the same object as a then
*this holds the pointer returned from a.release(). *this
owns *get() if and only if, as a precondition, a owns *a.

• Add a requires clause to the destructor:
Requires: The expression delete get() is well formed.

-- close issue 20-044 from N1000 = 96-0182 by amending the WP as
follows:

Section 20.4.1
Add:

allocator(const allocator<T>&) throw();
allocator& operator=(const allocator<T>&) throw();

Section 20.4.1.3
Add:

shared_allocator(const shared_allocator<T>&) throw();
shared_allocator<T>& operator=(const shared_allocator<T>&)

throw();

Section 20.4.5
Add:

auto_ptr(const auto_ptr<X>&) throw();
auto_ptr<X>& operator=(const auto_ptr<X>&) throw();

Section 20.4.5.1
Add the same two prototype as above.

Section 26.2.2
Add:

3

complex(const complex<T>&)
complex<T>& operator=(const complex<T>&);

Section 26.2.3
Add:

In complex<float> declaration, add:
complex<float>& operator=(const complex<float>&);

In complex<double> declaration, add:
complex<double>& operator=(const complex<double>&);

In complex<long double> declaration, add:
complex<long double>& operator=(const complex<long

double>&);

4) Motion (to resolve several issues from the Clause 18 (Language
Support) issues list - version 6):

Move we:

-- close issues 18-031, 18-032 from N1017 = 96-0199 without taking
any action.

-- close issue 18-030 from N1017 = 96-0199 by amending the WP:

• 17.3.1.1 paragraph 2 replace:

All library entities shall be defined within the namespace
std.

 with:

All library entities except macros, operator new, and
operator delete are defined within the namespace std or
namespaces nested within namespace std.

• 18.4, 18.4.1.1 through 18.4.1.3 change "size_t" to
"std::size_t".

-- close issue 18-033 from N1017 = 96-0199 by amending the WP as
follows:

18.6.2.2 Type unexpected_handler [lib.unexpected.handler] change
first bullet in `Required behavior' to:

 --throw an exception that satisfies the exception specification
 (however, if the call to unexpected() is from the program
rather than:
 from the implementation, any exception may be thrown);

18.6.2.4 unexpected [lib.unexpected] replace existing section
with:

 void unexpected();

Called by the implementation when a function exits via an
exception not allowed by its exception-specification
(_except.unexpected_). May also be called directly by the
program.

4

Effects: Calls the unexpected_handler function in effect
immediately after evaluating the throw-expression
(_lib.unexpected.handler_), if called by the implementation, or
calls the current unexpected_handler function, if called by the
program.

18.6.3.3 terminate [lib.terminate] replace existing section with:

void terminate();

Called by the implementation when exception handling must be
abandoned for any of several reasons (_except.terminate_). May
also be called directly by the program.

Effects: Calls the terminate_handler function in effect
immediately after evaluating the throw-expression
(_lib.terminate.handler_), if called by the implementation, or
calls the current terminate_handler function, if called by the
program.

5) Motion 5 was withdrawn.

6) Motion (to clarify namespace std usage):

Move we amend the WP by changing the first sentence of section 17.3.3.1
[lib.reserved.names] from:

It is undefined for a C++ program to add declarations or
definitions to namespace std unless otherwise specified.

To:
It is undefined for a C++ program to add declarations or
definitions to namespace std or namespaces within namespace std
unless otherwise specified.

7) Motion (Compromise on Library template default arguments [T Plum]):

Move we amend the WP by adding the following wording to clause 17:

Throughout the C++ Library clauses (17 through 27), whenever a template
member function is declared with one or more default arguments, this is
to be understood as specifying a set of two or more overloaded template
member functions. The version with the most parameters defines the
interface; the versions with fewer parameters are to be understood as
functions with fewer parameters, in which the corresponding default
argument is substituted in-place.

 [Example from _lib.set.cons_ 23.3.3.1

 explicit set(const Compare& comp = Compare(),
 const Allocator& = Allocator());

This declaration is to be understood as a shorthand for the following
three declarations:

 explicit set(const Compare& comp, const Allocator&);
 explicit set(const Compare& comp);
 explicit set();

5

In the second and third declarations, the default values Allocator() and
Compare() are used in place of the missing explicit function
parameters.]

