
Doc. No.: WG21/N1015
X3J16/96-0197

Date: November 11, 1996
Project: C++ Standard Library
Reply to: Pete Becker

pbecker@oec.com

Clause 24 (Iterators Library) Issues

Work Group:     Library Clause 24
 Issue Number:   24-021
 Title:          Separate Header for Stream Iterators
 Section:        24.4
 Status:         active
 Description:
 From public review:
    Drawing iostream into an implementation that just needs iterators
    is most unfortunate.

 The current iterator header includes headers <ios> and <streambuf>
 to handle the stream iterators in 24.4.  This requires all of I/O
 to be included in the iterators header.  Yet I/O only needs this if
 the iterators are used.

 If a new header is used should it be in clause 24 or in clause 27?
 Is <iositer> a good name for the new header?
 Should the stream iterators be incorporated into current I/O headers?

 From Nathan Myers:
 Message c++std-lib-4174
 There are natural places for each of these iterator templates.
   Move istream_iterator<> to <istream>.
   Move ostream_iterator<> to <ostream>.
   Move istreambuf_iterator<> and ostreambuf_iterator<> to <streambuf>.
   Add forward declarations of all four to <iosfwd>.

 Changes to be made would include:
  Move the stream iterators into the I/O headers.

  Remove #include's for iosfwd, ios, and streambuf from 24.1.6
  [lib.iterator.tags] Header <iterator> synopsis and tags for
  subclause 24.4.

  Move istream_iterator to <istream>, ostream_iterator to <ostream>,
  and the streambuf iterators to <streambuf>.  Add forward
  declarations of all four to <iosfwd>.  Add #include <iterator> in



  these headers.

 Proposed Resolution:
  Close the issue without change.

  Because there is no longer any requirement that specific I/O
  headers be included with <iterator>, it is possible to implement
  the stream iterators without including all of I/O.

 Requester:      Public Review & Library WG
 Owner:          David Dodgson (Iterators)
 Emails:         lib-4174,4186,4191,4199,4202
 Papers:

------------------------------------------------------------------------
 Work Group:     Library Clause 24
 Issue Number:   24-038
 Title:          Removal of proxy class
 Section:        24.4.3 [lib.istreambuf.iterator]
 Status:         active
 Description:
         24.4.3:

 The changes to input iterator semantics make the proxy class
 an implementation detail.  It should not be required as part
 of the standard.

>From P.J. Plauger in N0795:
24.4.3:
istreambuf_iterator should remove all references to proxy, whether
or not Koenig's proposal passes to make more uniform the definition
of all input iterators. It is over specification.

24.4.3.1:
istreambuf_iterator::proxy is not needed (once istreambuf_iterator
is corrected as described below). It should be removed.

24.4.3.2:
istreambuf_iterator(const proxy&) should be removed.

24.4.3.4:
istreambuf_iterator::operator++(int) Effects should say that it
saves a copy of *this, then calls operator++(), then returns
the stored copy. Its return value should be istreambuf_iterator,
not proxy.

Editorial box 69 suggests that proxy be replaced by an opaque



unnamed type.

See also issue 42 regarding the return type of operator++(int).

 Proposed Resolution:
    Input iterators do not require a specific class to be returned
    from operator++(int).  (Nor do output iterators - see issue 42).
    The requirements are such that *i++ must work.  The actual
    type returned should be any that satisfy the requirements.
    This suggests that the implementer be given some latitude in
    the definition.  All other instances of operator++(int) in
    Clause 24 return a value of the iterator type.  The proposal
    is to have istreambuf_iterator::operator++(int) return a type
    which is implementation defined.

 A. (use implementation defined)
    24.5.3 synopsis
      remove 'class proxy' and 'istreambuf_iterator(const proxy& p)'
      change 'proxy operator++(int)' to 'implementation_defined
        operator++(int)'
    remove 24.5.3.1
    remove istreambuf_iterator(const proxy& p) from 24.5.3.2

 B. (make proxy a class for exposition only)
    change all occurrences of proxy in 24.5.3 to boldface
    remove the code portion of 24.5.3.1, change proxy to boldface
    change proxy to boldface in 24.5.3.2

 Requester:      David Dodgson
 Owner:          David Dodgson (Iterators)
 Emails:
 Papers: N0795, Updated Issues List for Library, pre-Tokyo
         N0833, Proposed Iterators Changes, pre-Santa Cruz

------------------------------------------------------------------------
 Work Group:     Library Clause 24
 Issue Number:   24-042
 Title:          Return type for operator++(int)
 Section:        24.3.2  24.4.2  24.4.4
 Status:         active
 Description:
         24.:

>From Judy Ward (j_ward@decc.enet.dec.com):

   operator++(int) for:



   back_insert_iterator
   front_insert_iterator
   insert_iterator
   ostream_iterator
   [Note: ostreambuf_iterator is also affected]

   are all currently specified in the standard as:

   insert_iterator<Container> operator++(int);

   I was wondering why the HP implementation has them as:

   insert_iterator<Container>& operator++(int);

   The reason is that if the user tries something like:

   *i++ = 0;

   where i is an insert_iterator, an insert_iterator<Container>
   copy ctor would automatically be called under the
   current specification. I don't think you want this
   to happen, especially in the HP implementation where
   the private data members are of type Container& and
   Container::iterator.

   So my proposal is to return by reference in each of the
   postfix ++ operators.

See also issue 32 regarding the return type of insert_iterator::
operator++(int).

 Discussion:
    In general, the result of operator++(int) is a temporary which
    is needed only for the duration of the expression.  The
    iterators described in Clause 24 are described uniformly in this
    regard.  However, the iterators specified in this issue are all
    output iterators.  For them there is no need to return a temporary
    (usually (*this) is returned).  The standard could be changed
    to return a reference for these items.

    The specifications for output iterators (and input iterators) do
    not require the return result for operator++(int) to be of the
    same class.  The specifications are therefore somewhat open-
    ended.  However, some return value must be specified in the
    iterators described in this section.  One possibility is to
    change the return types to references, another is to leave them
    as they are but provide additional discussion in the introduction
    stating that any return type which meets the specifications is



    conforming.  It may be argued that a reference return type meets
    an 'as-is' requirement for the iterators.  A third possibility
    is to make them implementation-defined.

 Resolution:
    Update the return type for operator++(int) in
      24.4.2.1 [lib.back.insert.iterator], 24.4.2.2.4,
      24.4.2.3 [lib.front.insert.iterator], 24.4.2.4.4,
      24.4.2.5 [lib.insert.iterator], 24.4.2.6.4,
      24.5.2 [lib.ostream.iterator],
      24.5.4 [lib.ostreambuf.iterator], 24.5.4.2

 Requester:      Judy Ward
 Owner:          David Dodgson (Iterators)
 Emails:
 Papers:

------------------------------------------------------------------------
 Work Group:     Library Clause 24
 Issue Number:   24-044
 Title:          Simplification of reverse iterator adapters
 Section:        24.2 24.4.1
 Status:         active
 Description:
         24.4.1 [lib.reverse.iterators]:
    Previous changes to iterators allow reverse_bidirectional_iterators
    to be combined with reverse_iterators.  The bidirectional case
    could be eliminated as a separate class, only reverse_iterators
    would be needed.

    An additional change could be made to the iterator_traits and
    iterator templates.  This change would include the Reference
    and Pointer types in the traits.  Reference is the type returned
    for a reference for the value_type, Pointer for a pointer to
    the value_type.  Currently these are parameters for the reverse_
    iterators only.  Adding them would make them available for all
    iterators.  It would require uses of the iterator template to
    possibly specify 5 parameters instead of 3 (default arguments
    would allow fewer arguments to be specified in many cases).
    It would also allow only the base iterator to be needed as an
    argument to the reverse_iterator template.

    Question:  Currently an output iterator is defined using:

      class out_iter : public iterator<output_iterator_tag, void> { };

      Will this code be legal if this change is made ( because



      the default for Reference would use void&).  If not, can
      a specialization be defined to make it work?

 Proposed Resolution:
   A.  Eliminate reverse_bidirectional Iterators

       Previous changes to iterators make reverse_bidirectional_iterator
       superfluous.  The reverse_iterator template can be written
       to handle both random access and bidirectional iterators.

       Remove sections 24.4.1.1 and 24.4.1.2

   B.  Include the Pointer and Reference typedefs in iterator<>

       Including these types would make iterator adapters easier
       to write.

       Changes to the WP are in N0910/96-0092 with these updates:

       3.3 bullet 2:
           the base class for reverse_iterator can be
           iterator_traits<Iterator>

       3.3 bullet 5:
           the penultimate word should be "const_iterator" not
           "reverse_iterator"

 Requester:      Matt Austern, Angelika Langer, Alex Stepanov
 Owner:          David Dodgson (Iterators)
 Emails: lib-4826-27,4833,4836,4847,4855
 Papers: 96-0092/N0910, "Simplification of reverse iterator adapters",
                        pre-Stockholm

------------------------------------------------------------------------
 Work Group:     Library Clause 24
 Issue Number:   24-045
 Title:          Descriptions of stream iterators
 Section:        24.5.1 and 24.5.2
 Status:         active
 Description:
         24.5.1 and 24.5.2
         [lib.istream.iterator] and [lib.ostream.iterator]
    All other iterators in this section have a description of the
    semantics of each individual member function.  The istream_ and
    ostream_ iterators do not.  There is simply a listing of the
    headers with no following descriptions.



 Proposed Resolution:

 Add the following protected members in 24.5.1
 protected:
   basic_istream<charT,traits>* in_stream;
   T value;

 Add the following descriptions:
 24.5.1.1 istream_iterator constructors and destructor

 istream_iterator();

 Effects: Constructs the end-of-stream iterator.

 istream_iterator(istream_type& s);

 Effects: Initializes in_stream with s.  value may be initialized
 during construction or the first time it is referenced.

 istream_iterator(const istream_iterator<T,Distance>& x);

 Effects: Constructs a copy of x.

 ~istream_iterator();

 Effects: The destructor for value is performed.

 24.5.1.2 istream_iterator operations

 const T& operator*() const;

 Returns: value

 const T* operator->() const;

 Returns: &(operator*())

 istream_iterator<T,Distance>& operator++();

 Effects: *in_stream >> value
 Returns: *this

 istream_iterator<T,Distance>  operator++(int);

 Effects:
    istream_iterator<T,Distance> tmp = *this;
    *in_stream >> value;



    return (tmp);

 template <class T, class Distance>
   bool operator==(const istream_iterator<T,Distance>& x,
                   const istream_iterator<T,Distance>& y);

 Returns: (x.in_stream == y.in_stream)

 Add the following protected members to 24.5.2
 protected:
   basic_ostream<charT, traits> out_stream;
   const char* delim;

 Add the following descriptions:
 24.5.2.1 ostream_iterator constuctors and destructor

 ostream_iterator(ostream_type& s);

 Effects: Initializes out_stream with s and delim with null.

 ostream_iterator(ostream_type& s, const charT* delimiter);

 Effects: Initializes out_stream with s and delim with delimiter.

 ostream_iterator(const ostream_iterator<T>& x);

 Effects: Constructs a copy of x.

 ~ostream_iterator();

 Effects: The iterator is destroyed.

 24.5.2.2 ostream_iterator operations

 ostream_iterator<T>& operator=(const T& value);

 Effects:
    *out_stream << value;
    if (delim != 0) *out_stream << *delim;
    return (*this);

 ostream_iterator<T>& operator*();

 Returns: *this

 ostream_iterator<T>& operator++();
 ostream_iterator<T>  operator++(int);



 Returns: *this

 Requester:      David Dodgson
 Owner:          David Dodgson (Iterators)
 Emails:
 Papers:


