Doc. No.: WGE21/ N1000=X3J16/ 96- 0182

Dat e: 23 Sep 1996

Pr oj ect: C++ Standard Library

Reply to: Nat han Myers
<ncm@antrip. org>

Clause 20 (Utilities Library) Issues (Revision 6)

** Revision H story:

Revision 0 - 22 May 1995 [was Version 1]

Revision 1 - 09 Jul 1995 [was Version 2] (edits before Monterey)
Revision 2 - 26 Sep 1995 (pre-Tokyo)

Revi sion 3 - 30 Jan 1996 (pre-Santa Cruz)

Revi sion 4 - 28 May 1996 (pre-Stockholm

Revision 5 - 09 Jul 1996 (Stockholm

Revision 6 - 23 Sep 1996 (pre-Kona)

** | ntroduction

This docunent is a summary of issues identified for the C ause 20,
identifying resolutions as they are voted on, and offering reconmendati ons
for unsolved problens in the Draft where possible.

** Work G oup: Library: Wilities Cause 20

** | ssue Number: 20- 032

** Title: Al'l ocator pointer and reference required conversions
need clarification

** Sections: 20.1.4 [lib.allocator.requirenents]

** Status: active

** Description:

(This is Box 20-1 in the pre-Stockhol mdraft.)
The table of Allocator requirenments specifies conversions:

X::pointer --> T*, void*, X :const_pointer, XT<voi d>::const_pointer
X::const_pointer --> T const*, void const*, XT<voi d>::const_pointer
X :reference --> T&

X::const_pointer --> T consté&

and describes the conversions to built-in pointers and references as
yielding a value suitable to use as "this" in a nmenber function

The conversion to XT<voi d>::const_pointer (which is shorthand for
X::rebind<voi d>::other::const_pointer) is for use as the "hint"
argunent to allocate.

The question is, is this a conplete set of necessary conversions,
or does the list require refinement? In particular, should sone
reference conversions (e.g. X :reference --> X :const_reference)
be required as well?

** Proposed Resol ution

(none yet)

** Requestor: Nat han Myers <ncm@antri p. org>
** Owner:

** Work G oup: Library: Wilities Cause 20

** | ssue Number: 20- 039
** Title: definitions inconplete

** Sections: 20.1.1, 20.1.2, 20.1.3
** Gt at us: active

** Description:

The definition of EqualityConparable in 20.1.1 uses the term
"equi val ence relationship.” This termis not defined within the
draft.

The definition of LessThanConparable in 20.1.2 uses the term
"total ordering relationship." This termis not defined within the
draft.

Does "equi val ence" include constness? The second |ine of the
CopyConstructible requirenents in 20.1.3, table 40 requires u
(where u is on object of const T) to be equivalent to T(u). T(u)
will not return a const object.

** Di scussion
** Proposed Resol ution

(none yet)

** Requestor: John Benito

** Owner:

** Work G oup: Library: Wilities Cause 20
** | ssue Number: 20- 040

** Title: 20. 1.4 paragraph 2 uncl ear
** Sections: 20.1. 4

** Status: active

** Description:

20.1.4 p2 states that requirements of types mani pul ated t hrough
al l ocators are specified in table (32). |If this table does somehow
contain this information, it is in no way clear

** D scussion

I"mnot sure what John is getting at here.

** Proposed Resol ution

(none yet)

** Requestor: John Benito

** Owner:

** Work G oup: Library: Wilities Cause 20

** | ssue Number: 20- 041

** Title: al | ocator operators new[], delete[] need count argunent
** Sections: 20.4.1.2 [lib.allocator. gl obal s]

** Status: active

** Description:
The gl oba

tenpl ate <class T>
voi d operator delete[](void*, allocator<T>& a);

is not inplenentable, because it needs an (unavail abl e) el enent
count argument to pass to a.deallocate(). This can only be provided

by an argunent, which inplies that a matching argunment is required for

tenpl ate <class T>
voi d* operator new] (size_t, allocator<T>&)

because normal ly operator delete[] is called only by the exception
handl i ng runtime system which gets the argunments for operator delete[]
fromthe argunents passed to operator new].

Al'so, in the description, the value passed in the size t argunent was
wong, and the number of argunents to deall ocate was off.

** Di scussion
** Proposed Resol ution

Repl ace the decl arations and descriptions of the above operators,
in the synopsis 20.4 [lib.nmenory], and in the description 20.4.1.2
[lib.allocator.globals] as foll ows:

tenpl ate <class T>
voi d* operator new](size_t bytes, allocator<T>& a, size_t count);

Requires: bytes == count*sizeof (T)
Returns: a.allocate(count);
Not es: i nvocation as "new(a,N T[N " results in correct argunents.

tenpl ate <class T>
voi d operator del ete(void* p, allocator<T>& a);

Requires: p obtained by calling a.allocate, not yet deall ocated.
Ef fect: a.deallocate(p,1)
tenpl ate <class T>

voi d operator delete[](void* p, allocator<T>& a, size_t count);

Requires: p obtained by calling a.allocate, not yet deall ocated.
Ef fect: a.deall ocate(p, count)

Furthernmore, editorially:

Prototypes for operators == and != appear incorrectly in 20.4 [|ib. menory]
but correctly in 20.4.1 [lib.default.allocator]. The correct declarations

shoul d be noved to replace the incorrect declarations.

Finally, operator newis declared in both 20.4 and 20.4.1. It should be
removed from 20. 4. 1.

** Requestor: Nat han Myers <ncm@antri p. or g>

** Omner:

** Work G oup: Library: Uilities Cause 20

** | ssue Nunber: 20- 042

** Title: aut o_ptr<> assi gnnent semantics disastrous
** Sections:

** Status: active

** Description:

comrents below will refer to the foll owing extract of the working
paper of the draft (in [lib.auto.ptr], p 20-26 of the "DRAFT. 20
Sept enber 1996"):

1. tenplate<class Y> auto_ptr& operator=(const auto _ptr<Y>& a) throw();

2

3: Requires: Yis type X or a class derived from X for which delete
4: (Y*) is defined and accessi bl e.

5: Effects: If *this owns *get() and *this != & then delete get().
6: Calls a.release().

7: Returns: *this.

8: Postconditions: *this holds the pointer returned from a.release().
9:

*this owms *get() if and only if a owns *a.

Problem 1: an auto_ptr target of a self-assignment dangles. This is
because of the unconditional call to a.release() on line 6

Problem 2: there is a leak in sonme situations such as:

p =q
p=q
After the first assignnment, both p and q point to the sane resource,

but p owns it. This ownership -and thus any ownership of the resource-
is lost during the second assi gnment.

Simlar cases are nmet every tine when, in an assignnent "p =q;", p

and q both point to the same resource, but p owns it.

** Di scussion
The anbi guity about the behavi our shows in the follow ng slip:

5: Effects: If *this owns *get() and *this != & then delete get().
N

Shoul d one read: "this != & " or "this->get() != a.get()"?
| argue that this behaviour is not acceptable, for several reasons:

- This behavior |oses conpared to plain pointers (loss of safety!).

- It results -in ny exanple above- fromthe fact that the assignnent
nmodi fies its const argunent through the use of nmutable, in a way that
is not anynore semantically free for the user.

I claimthat this is an abuse of "nutable"

- The current behavior is surprising for users, even if it results
froma sinple specification

- The main area of use for auto ptrs is likely to be the witing of
si npl e exception safe code. What is expected of "exception safe"
code is nostly code that doesn’'t |eak in presence of exceptions. It
is therefore especially critical to prevent this kind of problens.

This is an argunent to change the assignnent senantics
as described bel ow

Exanpl e of inpl enentati on:

tenpl at e<cl ass Y> auto_ptr& operator=(const auto_ptr<Y>& r) throw) {
if ((void*)& != (void*)this) { // | didn't understand Greg’s test
if (px !'=r.px)
if (owner)
del et e px;
owner = r.owner;
pX = r.pXx;

} else
owner |=r.owner; // don’t transfer non-ownership to owner
r.owner = 0;

return *this;

** Proposed Resol ution:
Change the description of auto _ptr<> assignnment semantics as foll ows:

Effects: If this == , skip.
O herwi se, consider two cases: *this and a hold pointers to
different resources, or to the sane resource.
In the first case, if *this owns *get, delete get(); then transfer
t he ownership and the pointer.
In the second case, take care that the ownership is not |ost.
In both cases, insure that a doesn’t own the pointer.

Postconditions: *this holds the pointer returned froma.get(). *this
owns *get() if and only if either of *this or a owned it previously.

** Requestor: Marc G rod <marc. girod@tc. noki a. con> (FI NLAND)

** Owner:

** Wrk G oup: Library: Wilities C ause 20

** | ssue Nunber: 20- 043

** Title: Di scussi on of const conversions omitted fromauto_ptr<>
** Sections:

** St atus: active

** Description:

On line 3 (in issue 22-042), shouldn’t the draft nmention the case of
const conversi on?:

3: Requires: Y is type X or a class derived from X for which del ete
NNNNANNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

In this exanple, Y is neither X, nor a class derived fromX
aut o_ptr<const X> p;
auto_ptr<X> q;
p =q

** [scussi on:

The sane woul d apply to the copy constructor.

** Proposed Resol ution:
(no WP text offered)

** Requestor: Marc G rod <marc. gi rod@tc. noki a. conr

** Owner:

** Work G oup: Library: Wilities Cause 20

** | ssue Nunber: 20- 044

** Title: Tenpl ate copy constructors not used inplicitly

** Sections: 20.4.1 [lib.default.allocator], 20.4.5 [lib.auto.ptr]
** Status: active

** Description:

Now that the definition of tenplate constructors has been clarified,
we now recogni ze that the definitions of many of the |ibrary conponents
is inconplete and incorrect.

In particular, those conponents which are defined with a tenplate
constructor in a formsimlar to a copy constructor, e.g.

tenpl ate <class T>
class X {

tenpl ate <class U>
X(const X<U>&); [// a copy constructor?

b

do not actually have a copy constructor defined, and the |anguage
description is such as to require that a copy constructor be generated,
not as an inplicit specialization of the declared tenplate constructor,
but rather according to the rules for automatic generation of ordinary
undecl ared copy constructors.

** Di scussi on

In the Draft, we have generally not nentioned copy constructors for

cl asses for which the semantics or declaration would be identica

to that generated automatically. Exceptions to this are those cases
where copy semantics is abnormal (e.g. in auto_ptr<>) or where nore

stringent requirenents are inposed (e.g. a nil throw() specification
as in allocator<>).

We should add explicit declarations of these constructors to the
descriptions of those class tenplates to which the above renarks

apply.

** Proposed Resol ution
(none yet)

** Requestor: St eve Runsby <steve@mt hs. warw ck. ac. uk>
** Omner:

** Work G oup: Library: Uilities Cause 20

** | ssue Nunber: 20- XXX

** Title:

** Sections:

** St atus: active

** Description:
** [scussion
** Proposed Resol ution

** Requestor:
** Onner :

Cl osed i ssues:

** | ssue Nunber: 20- 001
** Title: Al'l ocat or needs operator ==
** Resol ution: passed

** | ssue Number: 20- 002
** Title: al l ocator::types<> has no public nmenbers
** Resol ution: passed

* %

* %

* %

* %

* %

* %

* %

* %

* %

* %

* %

* %

* %

* %

* %

* %

* %

* %

* %

* %

* %

* %

* %

* %

* %

* %

* %

* %

* %

* %

* %

* %

* %

* %

* %

* %

* %

* %

* %

* %

* %

* %

* %

* %

* %

* %

* %

* %

| ssue Nunber:

Title:
Resol uti on:

| ssue Nunber:

Title:
Resol uti on:

| ssue Nunber:

Title:
Resol uti on:

| ssue Nunber:

Title:
Resol uti on:

| ssue Nunber:

Title:
St at us:

| ssue Nunber:

Title:
Resol uti on:

| ssue Nunber:

Title:
Resol uti on:

| ssue Nunber:

Title:
St at us:

| ssue Nunber:

Title:
Resol uti on:

| ssue Nunber:

Title:
Resol uti on:

| ssue Nunber:

Title:
Resol uti on:

| ssue Nunber:

Title:
St at us:

| ssue Nunber:

Title:
Resol uti on:

| ssue Nunber:

Title:
Resol uti on:

| ssue Nunber:

Title:
St at us:

| ssue Nunber:

Title:
St at us:

| ssue Number:

20- 003
Al l ocator requirenments inconplete
passed

20- 004
al | ocator paraneter "hint" needs hints on usage
passed

20- 005
Default allocator nenber all ocate<T>() doesn’t
passed

"new T".

20- 006
al | ocator:: max_size() not docunented
passed

20- 007
C functions asctine() and strftime() use gl oba
cl osed

| ocal e

20- 008
construct() and destroy() functions should be nmenbers
passed

20- 009
Al l ocator nmenber init_page size() no | onger appropriate.
cl osed

20- 010
auto_ptr specification wong.
passed

20- 011
speci al i zation of allocator::types<voi d> inconplete
passed

20- 012
get _tenporary buffer has extra argunent decl ared
passed

20- 013
get _tenporary_buffer semantics inconplete
passed

20-014
al l ocator could be a tenplate again
passed

20- 015
class unary_negate ill-specified.
passed

20- 016
bi nder{1st| 2nd}: : val ue types w ong.
passed

20- 017
inmplicit_cast tenplate wanted
cl osed, no action (Tokyo)

20- 018
auto _ptr::reset to self
cl osed, inplenented choice 2 (Tokyo)

20-019

* %

* %

* %

* %

* %

* %

* %

* %

* %
* %

* %

* %

* %

* %

* %

* %

* %

* %

* %

* %

* %

* %

* %

* %

* %

* %

* %

* %

* %
* %

* %

* %

* %

* %

* %

* %

* %

* %

* %

* %

* %

* %

* %

* %

* %

* %

Title:
St at us:

| ssue Nunber:

Title:
St at us:

| ssue Nunber:

Title:
St at us:

| ssue Nunber:

Title:
St at us:

| ssue Nunber:

Title:
St at us:

| ssue Nunber:

Title:
St at us:

| ssue Nunber:

Title:

St at us:

| ssue Nunber:

Title:

St at us:

| ssue Nunber:

Title:
St at us:

| ssue Nunber:

Title:
St at us:

| ssue Nunber:

Title:
St at us:

| ssue Nunber:

Title:
St at us:

| ssue Nunber:

Title:
St at us:

| ssue Nunber:

Title:
St at us:

| ssue Nunber:

Title:
St at us:

| ssue Nunber:

Title:
St at us:

no default ctors on many lib classes

cl osed, no action (Tokyo)

20- 020

Tenpl ate constructor for pair<>
passed

20- 021

shoul d pair<> have a default constructor?
cl osed, inplenented (Tokyo)

20- 022
unary_conpose and bi nary_conpose m ssing.
cl osed, no action (Tokyo)

20- 023
pai r<> shoul d have typedefs
cl osed, inplenmented

20- 024
poi nter _to_unary/binary_function pass-by-val ue
passed

20- 025

St ack, queue, and priority_queue adaptor tenplates should
not have all ocator paraneter.

passed

20- 026

raw storage iterators and others described in
ternms of nonexi stent conponents.

passed

20- 027
al | ocator new and del ete inconplete
passed

20- 028
auto_ptr<> need throw() specifications
passed

20- 029
Cenera
passed

poi nter conparisons needed for use in set<> map<>

20- 030
auto_ptr<> descriptions inproperly inply undefined behavi or
cl osed

20- 031
Functi on obj ect
passed

"tinmes" collides with commpn C function name

20- 033
al | ocator::address nenbers need clarification
cl osed

20- 034
Use of
passed

"hint" argument to allocate need clarification

20- 035
Al'l ocator requirements table typo cleanup
passed

* %

* %

* %

* %

* %

* %

* %

* %

* %

| ssue Nunber:

Title:
St at us:

| ssue Nunber:

Title:
St at us:

| ssue Nunber:

Title:
St at us:

20- 036
Conpl exity specifications neani ngl ess?
passed

20- 037
Al l ocator::deal |l ocate needs count argumnent
passed

20- 038
class allocator specialization for void has extra nmenbers
passed

