
X3J16/96-0155R1 WG21/N0973R1

Working Paper Changes for the Template Compilation Model
John Wilkinson, Silicon Graphics
Bjarne Stroustrup, AT&T

Note: N0973 (no revision) was an interim copy distributed only at
the Stockholm meeting and not included in any mailing.

The following Working Paper changes are required for the new
template compilation model proposal.

Part 1: The following changes are required only to support separation.

2.11: Add keyword "export" to Table 3.

14 paragraph 3: Replace the grammar for template-declaration by:

template-declaration:
export (opt) template<template-parameter-list> declaration

14 paragraph 6: Delete

to have external linkage

14: Add paragraph 7:

A non-inline template function or a static data member template is
called an exported template if its definition is preceded by the
keyword "export" or if it has been previously declared using the
keyword "export" in the same translation unit. Declaring a class
template exported is equivalent to declaring all of its function
members, static data members, and member templates which are
defined in that translation unit exported.

Templates defined in an unnamed namespace shall not be exported.
A template shall be exported only once in a program. An
implementation is not required to diagnose a violation of this
rule. A non-exported template that is neither explicitly
specialized nor explicitly instantiated must be defined in every
translation unit in which it is implicitly instantiated (14.7.1)
or explicitly instantiated (14.7.2); an exported template need
only be declared (and not necessarily defined) in a translation
unit in which it is instantiated. A template function declared
both exported and inline is just inline and not exported.

14: Add paragraph 8: (Note that this probably belongs with phases
of translation (2.1 paragraph) instead of here.)

An implementation may require that a translation unit containing
the definition of an exported template be compiled before any
other translation unit instantiating that template.

14.7.2 paragraph 3: Replace

A definition of the static data member template

by

A declaration of the static data member template

Replace box 29 by

The definition of a non-exported function template or non-exported
data member template shall be present in every translation unit
in which it is explicitly instantiated.

Part 2: The following changes are independent of whether separation
is permitted or not:

Remove boxes 16 and 27.

14.6 paragraph 6: replace by

Three kinds of names can be used within a template definition:

-- The name of the template itself, the names of the template
parameters (14.1), and names declared within the template itself.

-- Names dependent on a template parameter (14.6.2).

-- Names from scopes with are visible within the template definition.

14.6.4: replace entire section by the following:

14.6.4 Dependent Name Resolution

In resolving dependent names, we consider names from the following
sources:

-- Declarations that are visible at the point of definition of the
template.

-- Declarations from namespaces associated with the types of the
function arguments, both from the instantiation context (14.6.4.1)
and from the definition context.

14.6.4.1 Point of Instantiation

If the instantiating reference of an implicit template function
specialization is a dependent function call, then the point of
instantiation of the specialization is the point of instantiation
of the template function specialization containing the instantiating
reference.

Otherwise, the point of instantiation of the specialization is the
point immediately preceding the definition containing the instantiating
reference. (For the purposes of this definition we consider the
definition of a member function defined within its class to follow
the outermost class definition containing the member function
definition.)

By the instantiating context of a dependent call, we mean the set of
declarations with external linkage visible at the point of instantiation
of the template function specialization containing the call.

14.6.4.2 Associated Namespaces

With each type T we associate a set of namespaces.

If T is a fundamental type, its associated set of namespaces is empty.

If T is a class type, its associated namespaces are the namespaces
in which the class and its direct and indirect base classes are
defined.

If T is a union or enumeration type, its associated namespace is the
namespace in which it is defined.

If T is a pointer to U, a reference to U, or an array of U, its
associated namespaces are the associated namespaces of U.

If T is a pointer to function type, its associated namespaces are the
namespaces of the function parameter types and of the return type.

If T is a pointer to member function of a class X, its associated
namespaces are the namespaces of the function parameter and return
types, together with the namespaces associated with X.

If T is a pointer to a data member of a class X, its associated
namespaces are the namespaces associated with X and the namespaces
associated with the member type.

If T is a template-id, its associated namespaces are the namespace
of the template and the namespaces of the type template arguments.

14.6.4.3 Candidate Functions

One set of candidate functions comes from the definition context.

The others come from the associated namespaces of the types of the
arguments of the function call or of the operands of the operator
(14.6.4.2). Only names with external linkage are considered.

Only functions actually declared in a given namespace are considered,
not functions imported into the namespace by using directives,
or functions declared in enclosing namespaces.

From these namespaces only declarations from the definition context
or the instantiation context are considered. If a function with
external linkage declared in one of these namespaces is a better
match for a given dependent call than any of the functions declared
in that namespace in either the definition or the instantiation
context, then the program has undefined behavior.

14.6.4.4 Conversions

All standard conversions are permitted in matching candidate functions.
A user-defined conversion must be either a member conversion from its
argument class, or a member constructor from its result class. It must
come from either the definition context or the instantiation context.
(Note that the set of candidate functions is formed first, before
conversions are considered, so the possible conversions do not affect
the set of candidate functions.)

