
Doc. No. X3J16/96-0151R2
WG21/N0969R2

Project: Prog. Lang. C++
Date: 11 July 1996
Reply to: Dag Brück

dag@dynasim.se
Ref. Doc. WG21/N0928

Core-3 working group: exception handling issues.

Issue 647

Amend the working paper 15.1 [except.throw] paragraph 4 (beginning) by changing:

The memory for the temporary copy of the exception being thrown is allocated in an
implementation-defined way.

to

The memory for the temporary copy of the exception being thrown is allocated in an
unspecified way.

Issue 541

Amend the working paper 15.3 [except.handle] by adding the following paragraph after paragraph
11:

Exceptions thrown in destructors of objects with static storage duration or in constructors of
namespace-scope objects are not caught by a function-try-block on main().

Issue 542

Amend the working paper 15.3 [except.handle] by replacing paragraph 2 including editorial box with
the following text:

A handler is a match for a throw-expression with an object of type E if

- The handler is of type cvopt T or cvopt T&, and T and E are the same type (ignoring the
top-level cv-qualifiers), or

- The handler is of type cvopt T or cvopt T&, and T is an unambiguous public base class of
E, or

- The handler is of type cvopt T* cvopt, and E is a pointer type that can be converted to the
type of the handler by a standard pointer conversion (4.10) not involving conversions to
pointers to private or protected or ambiguous base classes, or a qual-ification conversion
(4.4), or a combination of these two.

Footnote: handler.is(cv_opt_T_star_cv_opt) && E.is(pointer type) &&
handler.type().standard_pointer_conversion(E, 4.10) &&
!find_if(T.standard_pointer_conversion(E), conversion(private_base ∧
protected_base ∧ ambiguous_base) conversion(qualification))

Issue 587

Amend the working paper 15.3 [except.handle] paragraph 1 by appending:

The exception declaration shall not denote a pointer or reference to an incomplete type,
other than void*, const void*, volatile void* or const volatile
void*.

Issue 648

No change to working paper. Whether the stack is unwound before or after terminate() is called
is implementation-defined, not unspecified.

Issue 588

Amend the working paper 15.4 [except.spec] by adding the following text to paragraph 1 (after the
example):

A type denoted in an exception-specification shall not denote an incomplete type. A type
denoted in an exception-specification shall not denote a pointer or reference to an incomplete
type, other than void*, const void*, volatile void* or const volatile
void*.

Issue 631

Amend the working paper in the following way:

1. Remove paragraph 5 of 15.4 [except.spec].

2. Split paragraph 2 of 15.4 [except.spec] after the first sentence, giving paragraphs 2a and 2b.

3. Append the following text to paragraph 2a of 15.4 [except.spec]:

A diagnostic is only required if the sets of type-ids are different within a single translation
unit.

Issue 657

Follows from resolution of issue 631.

Issue 649

Amend the working paper 15.5.1 [except.special] by deleting:

when the implementation's exception handling mechanism encounters some internal error.

Issue 651

Amend the working paper 15.5.2 [except.unexpected] paragraph 1 by changing

is called (_lib.exception.unexpected_).

to

is called (_lib.exception.unexpected_) immediately after completing the stack unwinding for
the former function.

Single definition of uncaught_exception()

Amend the working paper by changing the “Returns” part of 18.6.4 [lib.uncaught] to:

Returns: true after completing evaluation of a throw-expression until completing
initialization of the exception-declaration in the matching handler (_except.uncaught_). This
includes stack unwinding (_except.ctor_).

and changing the contents of 15.5.3 [except.uncaught] to:

See 18.6.4 [lib.uncaught].

Unexpected handler during stack unwind

Amend the working paper by changing paragraph 1 of 18.6.2.4 [lib.unexpected] to:

Called when a function exits via an exception not allowed by its exception-specification
(_except.unexpected_).

Effects: Calls the unexpected_handler function in effect immediately after evaluating the
throw-expression (_lib.unexpected.handler_).

Terminate handler during stack unwind

Amend the working paper by changing the Effects part of paragraph 1 of 18.6.3.3 [lib.terminate] to:

Effects: Calls the terminate_handler function in effect immediately after evaluating the
throw-expression (_lib.unexpected.handler_).

No incomplete type in throw-expression

Amend the working paper 15.1 [except.throw] by changing paragraph 3 to:

A throw-expression initializes a temporary object of the static type of the operand of throw,
ignoring the top-level cv-qualifiers of the operand’s type, and uses that temporary to
initialize the appropriately-typed variable named in the handler. The type of the throw-
expression shall not be an incomplete type, nor a pointer or reference to an incomplete type,
other than void*, const void*, volatile void* or const volatile
void*. Except for these restrictions and the restrictions on type matching mentioned in
except.handle, the operand of throw is treated exactly as a function argument in a call
(_expr.call_) or the operand of a return statement.

