
WG21/N0966R1 X3J16/96-0148R1

Document Number: WG21/N0966R1 X3J16/96-0148R1
Date: 11 July 1996
Project: Programming Language C++
Reply to: Matt Austern, Randy Smithey

austern@sgi.com, smithey@roguewave.com

Empty sections in clause 23

Motivation

Clause 23 contains requirements for generic containers, and also˝describes the classes bitset , deque ,
list , queue , priority_queue , stack , vector , map, multimap , set , and multiset . Many
of the sections that describe these classes, however, are incomplete:˝the subclauses for set , multiset ,
and multimap , for example, document nothing other than swap. Several subclauses are missing
entirely, and 24 subclauses are empty.

The amount of missing text is daunting. Fortunately, there is a˝shortcut: subclauses 23.1
[lib.container.requirements] document the behavior of generic˝containers, and those subclauses can be
reused in the remainder of clause 23. Vector , for example, is a reversible sequence whose iterators are
random access iterators, and that provides constant-time insertion and˝removal of elements at the end of
the sequence but not at the beginning. This means that vector supports all of the operations in tables
75, 76, and 77, and some of the operations provided in table 78. The˝only things we have to do to
document vector are to refer to the Sequence and Reversible Container requirements,˝specify which of
the “optional sequence operations” in table 78 are supported,˝and describe any of vector ’s operations
that aren’t present in those tables or that have special semantics.˝ In fact, then, the definition of vector
in [lib.vector] is almost complete even though it appears to be˝almost empty! All that is missing is an
explanation of why most of its members are undocumented in that˝section. There is still a fair amount of
text to be added, but this shortcut makes the task much more˝manageable.

An additional problem is that class bitset is numbered as 23.2.1; it is thus a subsection of
[lib.sequences], which describes STL sequences. This is incorrect and˝confusing: bitset is an
encapsulation of bitmask operations, and has an interface that is˝completely unrelated to that of sequences.
It should be moved to another location so that it is not a subsection˝of 23.2 (sequences) or 23.3
(associative containers).

Working paper changes

bitset

• Renumber [lib.template.bitset], currently numbered as 23.2.1, as˝23.4.
• Move the header <bitset> synopsis from [lib.sequences] to [lib.template.bitset].

deque

WG21/N0966R1 X3J16/96-0148R1

• Add the following paragraph after paragraph 1 of [lib.deque]:
A deque satisfies all of the requirements of a reversible container
([lib.container.requirements]) and of a sequence˝([lib.sequence.reqmts]), so it provides
all operations described in Table 75 (Container requirements), Table˝76 (Reversible
container requirements) and Table 77 (Sequence requirements).˝ Additionally, it
provides all operations described in Table 78 (Optional sequence˝operations).
Descriptions are provided here only for operations on deque that are not described in
one of these tables or for operations where there is additional˝semantic information.

• Add the following text at the beginning of [lib.deque.cons]

explicit deque(const Allocator& = Allocator());

Effects: Constructs an empty deque , using the specified allocator.
Complexity: Constant.

explicit deque(size_t n, const T& value = T(),
 const Allocator& = Allocator());

Effects: Constructs a deque with n copies of value , using the specified allocator.
Complexity: Linear in n.

template<class InputIterator>
deque(InputIterator first, InputIterator last,

const Allocator& = Allocator());

Effects: Constructs a deque equal to the range [first, last) , using the specified allocator.
Complexity: If the iterators first and last are forward iterators, bidirectional iterators, or random
access iterators the constructor makes only N calls to the copy˝ constructor, and performs no
reallocations, where N is last - first . It makes at most 2N calls to the copy constructor of T and
logN reallocations if they are input iterators. [Footnote: The˝complexity is greater in the case of input
iterators because each element must be added individually: it is˝impossible to determine the distance
between first and last before doing the copying.]

template <class InputIterator>
void assign(InputIterator first, InputIterator last);

Effects:
 erase(begin(), end());
 insert(begin(), first, last);

template <class Size, class T> void assign(Size n, const T& t =˝T());

Effects:
 erase(begin(), end());
 insert(begin(), n, t);

• Delete lib.deque.types, lib.deque.iterators, and lib.deque.access

list

• Add the following paragraph after paragraph 1 of [lib.list]:
A list satisfies all of the requirements of a reversible container
([lib.container.requirements]) and of a sequence˝([lib.sequence.reqmts]), so it provides

WG21/N0966R1 X3J16/96-0148R1

all operations described in Table 75 (Container requirements), Table˝76 (Reversible
container requirements) and Table 77 (Sequence requirements.) A list also provides
most operations described in Table 78 (Optional sequence˝operations). The exceptions
are the operator[] and at member functions, which are not provided. [Footnote:
These member member functions are only provided by containers whose˝iterators are
random access iterators.] Descriptions are provided here only for˝operations on list
that are not described in one of these tables or for operations where˝there is additional
semantic information.

• Add the following text at the beginning of [lib.list.cons].

explicit list(const Allocator& = Allocator());

Effects: Constructs an empty list, using the specified allocator.
Complexity: Constant.

explicit list(size_type n, const T& value = T(),
 const Allocator& = Allocator());

Effects: Constructs a list with n copies of value , using the specified allocator.
Complexity: Linear in n.

template <class InputIterator>
list(InputIterator first, InputIterator last,
 const Allocator& = Allocator());

Effects: Constructs a list equal to the range [first,last) .
Complexity: Linear in last - first.

template <class InputIterator>
void assign(InputIterator first, InputIterator last);

Effects:
 erase(begin(), end());
 insert(begin(), first, last);

template <class Size, class T> void assign(Size n, const T& t =˝T());

Effects:
 erase(begin(), end());
 insert(begin(), n, t);

• Delete lib.list.types, lib.list.iterators, and lib.list.access

vector

• Add the following paragraph after paragraph 1 of [lib.vector]:
A vector satisfies all of the requirements of a reversible container
([lib.container.requirements]) and of a sequence˝([lib.sequence.reqmts]), so it provides
all operations described in Table 75 (Container requirements), Table˝76 (Reversible
container requirements) and Table 77 (Sequence requirements.) A vector also
provides most operations described in Table 78 (Optional sequence˝operations). The
exceptions are the push_front and pop_front member functions, which are not

WG21/N0966R1 X3J16/96-0148R1

provided. Descriptions are provided here only for operations on vector that are not
described in one of these tables or for operations where there is˝additional semantic
information.

• Delete lib.vector.types, lib.vector.iterators, and˝lib.vector.access

map

• Add the following paragraph after paragraph 1 of [lib.map]:
A map satisfies all of the requirements of a reversible container
([lib.container.requirements]) and of an associative container˝([lib.associative.reqmts]),
so it provides all operations described in Table 75 (Container˝requirements), and Table
76 (Reversible container requirements). A map also supports the requirements of Table
79 (Associative container requirements) for unique keys. This˝means that a map
supports the a_uniq operations in Table 79, but not the a_eq operations. For a
map<Key,T> the key_type is Key and the value_type is pair<const
Key,T>. Descriptions are provided here only for operations on map that are not
described in one of these tables or for operations where there is˝additional semantic
information.

• Add the following text at the beginning of [lib.map.cons]

explicit map(const Compare& comp = Compare(),
 const Allocator& = Allocator());

Effects: Constructs an empty map using the specified comparsion object and allocator.
Complexity: Constant

template <class InputIterator>
map(InputIterator first, InputIterator last,
 const Compare& comp = Compare(), const Allocator& =˝Allocator());

Effects: Constructs an empty map using the specified comparison object and allocator, and inserts
elements from the range [first,last) .
Complexity: Linear in N if the range [first,last) is already sorted using comp and otherwise
NlogN, where N is last - first.

• Add the following paragraph in lib.map.ops:

iterator find(const key_type& x);
const_iterator find(const key_type& x) const;

iterator lower_bound(const key_type& x);
const_iterator lower_bound(const key_type& x) const;

iterator upper_bound(const key_type& x);
const_iterator upper_bound(const key_type& x) const;

pair<const_iterator,const_iterator>
equal_range(const key_type& x) const;
pair<iterator,iterator> equal_range(const key_type& x);

WG21/N0966R1 X3J16/96-0148R1

 The find , lower_bound , upper_bound and equal_range member functions each have two
versions, one const and the other non const. In each case the˝behavior of the two versions is identical
except that the const version returns a const_iterator and the non-const vesion an iterator .
See Table 79 for a description of the behavior of these functions.

• Delete lib.map.types, lib.map.iterators, lib.map.capacity,˝lib.map.modifiers, lib.map.observers.

multimap

• Add the following paragraph after paragraph 1 of [lib.multimap]:
A multimap satisfies all of the requirements of a reversible container
([lib.container.requirements]) and of an associative container˝([lib.associative.reqmts]),
so it provides all operations described in Table 75 (Container˝requirements), and Table
76 (Reversible container requirements). A multimap also supports the requirements
of Table 79 (Associative container requirements) for equal keys.˝ This means that a
multimap supports the a_eq operations in Table 79, but not the a_uniq operations.
For a multimap<Key,T> the key_type is Key and the value_type is
pair<const Key,T>. Descriptions are provided here only for operations on
multimap that are not described in one of these tables or for operations where˝there
is additional semantic information.

• Add the following text as [lib.multimap.cons]

explicit multimap(const Compare& comp = Compare(),
 const Allocator& = Allocator());

Effects: Constructs an empty multimap using the specified comparsion object and allocator.
Complexity: Constant.

template <class InputIterator>
multimap(InputIterator first, InputIterator last,
 const Compare& comp = Compare(),

 const Allocator& = Allocator());

Effects: Constructs an empty multimap using the specified comparison object and allocator, and inserts
elements from the range [first,last) .

Complexity: Linear in N if the range [first,last) is already sorted using comp and otherwise
NlogN, where N is last - first.

• Add the following paragraph as lib.multimap.ops:

iterator find(const key_type& x);
const_iterator find(const key_type& x) const;

iterator lower_bound(const key_type& x);
const_iterator lower_bound(const key_type& x) const;

WG21/N0966R1 X3J16/96-0148R1

iterator upper_bound(const key_type& x);
const_iterator upper_bound(const key_type& x) const;

pair<iterator,iterator> equal_range(const key_type& x);
pair<const_iterator,const_iterator>
equal_range(const key_type& x) const;

 The find , lower_bound , upper_bound , and equal_range member functions each have two
versions, one const and the other non const. In each case the˝behavior of the two versions is identical
except that the const version returns a const_iterator and the non-const vesion an iterator .
See Table 79 for a description of the behavior of these functions.

set

• Add the following paragraph after paragraph 1 of [lib.set]:
A set satisfies all of the requirements of a reversible container
([lib.container.requirements]) and of an associative container˝([lib.associative.reqmts]),
so it provides all operations described in Table 75 (Container˝requirements), and Table
76 (Reversible container requirements). A set also supports the requirements of Table
79 (Associative container requirements) for unique keys. This˝means that a set
supports the a_uniq operations in Table 79, but not the a_eq operations. For a
set<Key> both the key_type and the value_type are Key. Descriptions are
provided here only for operations on set that are not described in one of these tables
and for operations where there is additional semantic information.

• Add the following text in [lib.set.cons]

explicit set(const Compare& comp = Compare(),
 const Allocator& = Allocator());

Effects: Constructs an empty set using the specified comparsion object and˝allocator.
Complexity: Constant.

template <class InputIterator>
set(InputIterator first, InputIterator last,
 const Compare& comp = Compare(), const Allocator& =˝Allocator());

Effects: Constructs an empty set using the specified comparison object and allocator, and inserts
elements from the range [first,last) .
Complexity: Linear in N if the range [first,last) is already sorted using comp and otherwise
NlogN, where N is last - first.

• Delete lib.set.types, lib.set.iterators, lib.set.capacity,˝lib.set.modifiers, lib.set.observers, and lib.set.ops.

multiset

• Add the following paragraph after paragraph 1 of [lib.multiset]:
A multiset satisfies all of the requirements of a reversible container
([lib.container.requirements]) and of an associative container˝([lib.associative.reqmts]), so it
provides all operations described in Table 75 (Container˝requirements), and Table 76
(Reversible container requirements). A multiset also supports the requirements of Table 79

WG21/N0966R1 X3J16/96-0148R1

(Associative requirements) for duplicate keys. This means that a˝multiset supports the
a_eq operations in Table 79, but not the a_uniq operations. For a multiset<Key> both
the key_type and the value_type are Key. Descriptions are provided here only for
operations on multiset that are not described in one of these tables and for operations˝where
there is additional semantic information.

• Add the following text in[lib.multiset.cons]

explicit multiset(const Compare& comp = Compare(),
 const Allocator& = Allocator());

Effects: Constructs an empty set using the specified comparsion object and˝allocator.
Complexity: Constant

template <class InputIterator>
multiset(InputIterator first, InputIterator last,
 const Compare& comp = Compare(), const Allocator& =˝Allocator());

Effects: Constructs an empty multiset using the specified comparison object and allocator, and inserts
elements from the range [first,last) .
Complexity: Linear in N if the range [first,last) is already sorted using comp and otherwise
NlogN, where N is last - first.

• Delete lib.multiset.types, lib.multiset.iterators,˝lib.multiset.capacity, lib.multiset.modifiers,
lib.multiset.observers, and lib.multiset.ops.

