
N0964/96-0146 -- iostream in Stockholm -- page 1

Doc. No. : WG21 N0964
 x3j16 96-0146

Date: July 27, 1996
Project: Programming Language C++
Reply to : Jerry Schwarz

 jerry@intrinsa.com

iostream actions at Stockholm
Jerry Schwarz

The iostream working group met in Stockholm and recommends the
following actions with regards to open issues

27-607: void* inserter and extractor
There should be members of num_get and num_put to control formatting of pointers, and the
extractor and insertor for void* should indicate that these are used.

Add public member to class num_get in [lib.locale.num.get]
iter_type get(iter_type in, iter_type end, ios_base&,

ios_base::iostate& err, void* p) const;

Add protected member to class num_get in [lib.locale.num.get]
virtual iter_type do_get(iter_type in, iter_type end, ios_base&,

ios_base::iostate& err, void* p) const;

Add above variant of get to [lib.facet.num.get.members]
iter_type get(iter_type in, iter_type end, ios_base&,

ios_base::iostate& err, void* p) const;

Add above variant of do_get to [lib.facet.get.virtuals]
iter_type get(iter_type in, iter_type end, ios_base&,

ios_base::iostate& err, void* p) const;
and include in description of effects

For conversions to void* the specifier is %p .

Add public member to class num_put in [lib.locale.num.put]
iter_type put(iter_type s, ios_base&f, char_type fill, void* p) const;

Add protected member to class num_put in [lib.locale.num.put]
virtual iter_type do_put(iter_type s, ios_base&f, char_type fill,

void* p) const;
Add above variant of put to [lib.facet.num.put.members]

iter_type put(iter_type s, ios_base&f, char_type fill, void* p) const;

Add above variant of do_put to [lib.facet.put.virtuals]

N0964/96-0146 -- iostream in Stockholm -- page 2

iter_type get(iter_type in, iter_type end, ios_base&,
ios_base::iostate& err, void* p) const;

and include in description of effects
For conversions from void* the specifier is %p .

27-312 streambuf::sync
There was a discussion of various alternatives of what streambuf::sync ought to do with an non-empty
get area. It was finally agreed that it should do nothing, and to emphasize that we recommend adding
a sentence to the description of the effects of streambuf::sync in [lib.streambuf.virt.buffer]

If gptr() is non-null and gptr() != egptr() then do nothing.

27-414 check good()
In the definition of readsome, putack and unget in [lib.istream. unformatted] add as the first sentence

If !good() calls setstate(failbit) which may throw an exception and returns.

27-501 padding for char inserter
The working group has discussed a change to the char extractor many times in the past. It has always
been understood that the current description in the WP describes a misfeature of iostreams classic.
At this meeting the working group took a straw vote and recommended by 4 to 2 that the time is ripe
for changing this misfeature.

Change thedescription in [lib.ostredam.insertors] of
basic_ostream<charT,traits>& operator<<(char_type c);

to
Effec t s : Convert the char_type c with the conversion specifier c.
Returns: *this

If N0918/96-0100 is accepted then make the corresponding change in both the template functions
for char_type and char.

�27-651 behavior of setfill
The definition of setfill needs to be different than that for other manipulators because there may not
be a conversion from int to char_type. The working group considered several possibilities and
finally choose the following variation.

Change the description of setfil in [lib.std.manip] to
template<class charT> smanip setfill(charT c);
Returns : An object s of implementation specified type such that if out is (or
is derived from) basic_ostream<charT,traitsT> and c has type charT then
out << setfill(c) behaves as if f(s) were called where f could be defined as ...

27-203 testing state of stream
iostream classic operator void* to test the state of a stream. We changed that to operator
bool when bool was introduced into the language. However, because the presense of operator
bool turns the common beginner’s mistake of cout >> 1 into a well formed program we recommend
reverting to operator void*.

Replace the declaration from 27.4.4[lib.ios]
operator bool() const;

to

N0964/96-0146 -- iostream in Stockholm -- page 3

operator void*() const;
Replace the definition in 27.4.4.3[lib.iostate.flags] with

operator void*() const;
Returns: If fail() a null pointer, otherwise some non-null value.

