
Doc. No.: WG21/N0955R1=X3J16/96-0137R1Date: 8 Jul 1996Project: C++ Standard LibraryReply to: Nathan Myers<ncm@cantrip.org>Splitting the codecvt facet (Revision 1)--The locale facet codecvt<> is used to translate codesets betweenthe internal representation (possibly wchar_t) and the external representation (typically multibyte). The current definition specifies a single member convert, from one representation to another.A locale contains a pair of matching codecvt facets, one to use for input, and the other for output, distinguished by template parameters.This means there is no way to specify a conversion between two encodings on the same character type, such as using ISO-8859 (Latin-1) internally and EUC externally, which both use char. (I.e. the intention is to allow conversion between a fixed-width internal codeset and an external encoding that happens to use the same character container type.)The obvious solution is to split the member convert into two members,one in each direction, and eliminate half the codecvt facets.This proposal also resolves issue number 22-070 from N0920 as recommended there by adding a new codecvt<> member, encoding(). (In discussion this was called "conversion_type", a name that has a number of problems, not least that it has the form of a typedef name.)Proposed Resolution-------------------In 22.2.1.5 [lib.locale.codecvt] and 22.2.1.5.1 [lib.locale.codecvt.members], replace the template parameter formal names fromT and toT with internT andexternT, respectively, and replace member convert with two functions:result out(stateT& state, const internT* from, const internT* from_end, const internT*& from_next, externT* to, externT* to_limit, externT*& to_next) const;

result in(stateT& state,
const externT* from, const externT* from_end, const externT*& from_next,
internT* to, internT* to_limit, internT*& to_next) const;

and in 22.2.1.5 and 22.2.1.5.2 [lib.locale.codecvt.virtuals], replace
member do_convert with corresponding members do_in and do_out, the same
way. do_out() is defined identically as the old do_convert(); do_in
is defined identically with the exception of the substitution of "extern"
for "from" and "intern" for "to" in the description; nonvirtual members
in() and out() simply forward to do_in() and do_out(). In 22.2.1.6
[lib.locale.codecvt.byname], replace member do_convert() with do_in()
and do_out().

In Clause 22, Table 2 (Locale Category Facets), remove the entry for

codecvt<char,wchar_t,mbstate_t>

In 27.8.1.1 [lib.filebuf], in paragraph 4, replace the specification
of how conversions are performed to say:

Specifically, the facet to use is obtained ‘‘as if’’ by

const codecvt<charT,char,typename traits::state_type>&
a_codecvt =
use_facet<codecvt<charT,char,typename traits::state_type> >(getloc());

The formal name a_codecvt is used in descriptions of virtuals underflow
and overflow.

In 27.8.1.4 [lib.filebuf.virtuals], in the description of member
underflow, change the definitive code example as follows:

char extern_buf[XSIZE];
char* extern_end;
internT intern_buf[ISIZE];
internT* intern_end;

codecvt_base::result r =
a_codecvt.in(st,extern_buf, extern_buf+XSIZE, extern_end,

intern_buf, intern_buf+ISIZE, intern_end);

In the description of member overflow, change the definitive code
example to use the call as follows:

internT* int_end;
char xbuf[XSIZE];
char* xbuf_end;

codecvt_base::result r =
a_codecvt.out(st, pbase(), pptr(), int_end, xbuf, xbuf+XSIZE, xbuf_end);

In 22.2.1.5 [lib.locale.codecvt],
22.2.1.5.1 [lib.locale.codecvt.members],
22.2.1.5.2 [lib.locale.codecvt.virtuals], and also where appropriate in
22.2.1.6 [lib.locale.codecvt.byname],

add the following member functions to the locale codecvt<> and
codecvt_byname<> facets.

Add the nonvirtual public member:

int encoding() const throw();Returns: do_encoding();and add the virtual protected member:int do_encoding() const throw();Returns: -1 if the encoding applied to the external character sequence is state-dependent; else the constant number of external character(s) needed to produce an internal character; or 0 if this number is not a constant.

