
Document Number: WG21/N0952
X3J16/96-0134

Date: 25 September 1996
Project: Programming Language C++
Reply to: Dan Saks

dsaks@wittenberg.edu

X3J16 Meeting No. 21
WG21 Meeting No. 16
8 - 12 July 1996

Sheraton Towers
Stockholm, Sweden

1 Opening activities

Clamage convened the meeting as chair at 09:10 (MESZ) on Monday, 7 July
1996. Lajoie was the vice-chair, and Saks was the secretary.

Ericsson (represented by Jonnson) hosted the meeting.

1.1 Opening comments

1.2 Introductions

Saks circulated an attendance list each day, which is attached as Appen-
dix A of these minutes.

1.3 Membership, voting rights, and procedures for the meeting

Clamage explained that this is a simultaneous meeting of WG21 and X3J16.
WG21 and X3J16 will conduct separate votes on each formal motion.

Clamage explained who has voting rights in X3J16: an X3J16 member organ-
ization may vote at this meeting if it has paid its dues and has met
X3’s attendance requirements. Representatives of new X3J16 member
organizations may not vote at this meeting.

1.4 Distribution of position papers, WG progress reports, WG work plans for
the week, and other documents not distributed before the meeting

1.5 Approval of the minutes of the previous meeting

Saks submitted the minutes from the previous meeting (N0880 = 96-0062)
for approval with this correction:

Add the following agenda items before item 9:

7 WG sessions (if any time is left)

8 Distribution of formal motions

He explained that nothing happened here, but the numbering was obviously
incorrect.

Motion by Saks/Bruck:

Move we approve N0880 = 96-0062 with this correction as the minutes
of the previous meeting.

Motion passed X3J16: lots yes, 0 no, 0 abstain.
Motion passed WG21: 6 yes, 0 no, 0 abstain.

1.6 Agenda review and approval

Clamage submitted the proposed agenda (N0947 = 96-0129) for approval.
Saks suggested elevating the work of the drafting committee to scheduled
agenda items. (See further discussion under agenda item 1.10 below).
Specifically, he recommended adding:

3.1 Drafting Formal Motions (9 pm)
4.1 Drafting Formal Motions (7 pm)
7.1 Drafting Formal Motions (10 pm)

Also, Plum asked to schedule a US TAG meeting immediately after
adjournment on Friday.

Motion by Saks/Lajoie:

Move we accept N0947 = 96-0129 with these additions as the agenda
for this meeting.

Motion passed X3J16: lots yes, 0 no, 0 abstain.
Motion passed WG21: 6 yes, 0 no, 0 abstain.

1.7 Report on the WG21 Sunday meeting

Harbison summarized the outcome of Sunday’s WG21 meeting. He said WG21
discussed the schedule for the drafting committee meeting(s). Further
discussion is scheduled for item 1.10, below.

Harbison said this is his last meeting as WG21 convener. If all goes as
planned, Plum will be confirmed as the new convener at the SC22 meeting
in September, and will be convener at the November meeting.

Harbison also explained that Soop presented a liaison request from
SC24/WG6 for extensions to support multithreading and concurrency.
Bruck offered to look into the issue, but WG21 decided not to do
anything about this until after this IS (international standard) is
complete.

Finally, Harbison said WG21 decided to try to get all substantive
technical issues resolved at this meeting. The hope is that no open
issues will be carried forward to future meetings.

1.8 Liaison reports

==== WG14+X3J11 (C) ====

Plum reported that WG14 and X3J11 met in Amsterdam, Netherlands in June.
They are working on the revision of the C standard, which they refer to
as C9x. Their work on extended characters in identifiers and literals
may affect C++, and he referred to issue to the C Compatibility WG to
consider this week.

Plum said WG14+X3J11 also discussed the following issues that may also
affect C++:
-- complex numeric types
-- IEEE arithmetic
-- LIA (language independent arithmetic)
-- future standard status of errno

Regarding the last item, Plum said he proposed to WG14+X3J11 the
possibility of deprecating errno. It inhibits optimization on many
architectures. He suggested discussing this in the C Compatibility WG.

Bruck asked Plum if WG14+X3J11 discussed the integer division issue he
raised. Plum said he couldn’t remember if they discussed it this time.
He thought the answer from a previous meeting was "it’s the same as in

Fortran".

Hartinger said he had heard that long long was accepted. Plum said he
didn’t think all the issues were resolved, but something along these
lines will be part of C9x.

Stroustrup asked about the proposal to add classes to C9x. Plauger said
it’s a dead issue; the chief proponent (Jervis of Sun Microsystems) is
no longer on the committee.

Plum also said that a complex arithmetic type, without a distinct imagi-
nary type, is now part of C9x. WG14+X3J11 discussed what you must do to
write complex math that compiles as both C and C++. The consensus was
that it’s possible, but just barely.

1.9 New business requiring actions by the committee

Clamage explained that Lajoie has resigned as vice-chair of X3J16. He
said X3 no longer requires that technical committees have a vice-chair;
however, he thought we should still have one. Clamage said we have two
volunteers. We also need a new IR (international representative) to
replace Plum should he become the convener. Harbison said he hoped we
could get one of the volunteers to offer to be IR instead of vice-chair.

1.10 Drafting committee

Saks briefly explained that the drafting committee is responsible for
preparing the formal motions in advance of the voting so that all com-
mittee members have the opportunity to understand the issues and con-
sider how they will vote. Normally, the drafting committee meets on
Wednesday evening to draft the formal motions. Unfortunately, our host
scheduled a reception for Wednesday evening, so we scheduled the work
for Monday and Tuesday nights as well. Saks asked each WG to do what it
could to draft on Monday and Tuesday night, so that we can recover time
lost Wednesday to the reception.

2 WG sessions

The committees recessed to WGs at 10:10 on Monday.

3 Technical session

4 WG sessions

The committees reconvened at 8:50 on Wednesday.

Clamage explained that X3J16 is responsible to respond to all of the
ANSI (US) public comments. We have drafted replies to nearly all the
comments, and they are available by ftp. X3J16 should vote to approve
the replies. Clamage asked that anyone who presents a proposal that
closes an issue should please note this for the record. We need to be
sure we’ve addressed them all.

5 Working Paper for Draft Proposed Standard

Koenig presented the project editor’s report (N0981 = 96-0163). He said
there was an editing session immediately after the Santa Cruz meeting
(in March). He thanked those who participated, and also those who
helped edit the draft in the weeks that followed.

Koenig said he made numerous "bold changes" since the last WP. (A bold
change is one that incorporates the effect of an editorial box without a
specific vote by the committees.) He listed the bold changes, using the
notation B(C) to mean "editorial box B in clause C": 6(5), 12(12.1),
13(12.4), 14(12.8), 15(12.8), 45(20.1.4), 46(20.1.4), 47(20.4.1),
48(20.4.1), 51(21.1.2), 56(22.1.1.1.1), 60(21.2.1.1.1), 61(22.2.1.5.1),

62(22.2.1.5.2), 63(22.2.2.1.2), 65(22.2.2.1.2), 67(22.2.2.2.2),
69(22.2.2.2.2), 73(22.2.3.1.1), 74(22.2.5.1.2), 76(23.3.1), 77(23.3.2),
78(24.2), 82(24.4.2.1), 86(24.5.3), 88(24.5.3.2), 89(24.5.3.2),
97(26.2.1), 101(27.1.2), 109(27.4.3), 119(27.6.1.2.1), 120(27.6.1.2.2),
121(27.6.1.2.2), 127(27.6.1.3), 128(27.6.2.3), 129(27.6.2.4.1),
130(27.6.2.4.1), 137(27.8.1), 138(27.8.1.1), 139(27.8.1.1),
141(27.8.1.4), 143(27.8.1.4), 145(27.8.1.4).

6 General session I

6.1 Core Language I WG

Lajoie reported that there was only one core issue from the US public
comments still open, core-78, regarding whether extern "C" is part of
the type system. She summarized a few alternative proposals (N0950 =
96-0132). The WG recommended the first of those, namely, that language
linkage (extern "LANG") affects functions types (rather than just
declarations).

Lajoie presented several examples from the paper, including:

extern "C" typedef void FUNC();
FUNC* pf1;
void (*pf2)();
pf1 = pf2; // ill-formed

Someone noted that extern "C" and extern "C++" are equivalent on some
systems, and bemoaned the lack of an implicit conversion between the
pointers pf1 and pf2. Lajoie explained that there may be architectures
where the conversion is impossible. Implementations may allow the
conversion using

pf1 = reinterpret_cast<FUNC*>(pf2); // undefined

Lajoie explained the effect of language linkage on overload resolution
using the example from the paper. She also explained that

void f(int);
extern "C" void f(int); // ill-formed

is ill-formed (as always) because it attempts to overload functions that
differ only in language linkage. Unruh noted that

extern "C" void f(int);
void f(int); // okay

is okay because the second declaration redeclares f with the same
linkage as in the prior declaration.

Bruns objected that the cast’s behavior should be "implementation-
defined", not "undefined". Lajoie explained that "implementation-
defined" means that all implementations must support it in some way.
She said the WG did not want to obligate all implementations to support
it, and undefined behavior avoids any such obligation. Unfortunately,
if the behavior is undefined, a compiler need not issue a diagnostic if
it does not allow the conversion.

Lajoie said the WG preferred that an implementation issue a diagnostic
if it can’t do the conversion, but the WP has no name for behavior that
needs to be diagnosed if and only if it is not supported. Plum said
WG14+X3J11 considered using the term "implementation-specified" to
describe such behavior. Glassborow suggested that using static_cast is
a way to get a compiler diagnostic if the implementation does not
support the conversion.

Stroustrup this proposal is both a step forward and a step backward. It

breaks every C++ program ever written under Unix.

Lajoie said the WG would reconsider the use of "undefined" and whether
static_cast is more appropriate than reinterpret_cast.

Straw Vote: Who favors making language linkage part of function types as
above? lots yes, 0 no, 3 abstain.

(See Motion 2 for the final form of the proposal.)

Lajoie presented the WG’s resolution to issue core-420, namely, language
linkage is ignored for member functions and operator functions (N0950 =
96-0132). Some people were confused about what "ignored" means here.
Lajoie it means that means extern "C++" is redundant.

Straw Vote: Who favors this proposal? 14 yes, 5 no, 8 abstain.

Ball and others objected that ignoring language linkage for operator
functions makes it impossible to pass the address of an operator func-
tion to a C function. He asked for another straw vote on "language
linkage is ignored for member functions" by itself.

Straw Vote: Who agrees that language linkage should be ignored for
member functions? lots yes, 0 no, 0 abstain.

Lajoie said the WG would simply treat "language linkage is ignored for
member functions" as an editorial clarification.

Lajoie presented the WG’s resolution to issue core-556 (from N0941 =
96-0123). (See Motion 3.)

Straw Vote: Who agrees with this recommendation? lots yes.

Miller presented a proposal to clarify name lookup in using declarations
(N0905 = 96-0087). (See Motion 4.) The proposal addressed deficiencies
in the wording of clause 3.4.2.2 paragraph 2 [namespace.qual]. In
particular, the current wording prevents a using declaration from
referring to a set of overloaded functions, as in:

namespace N {
void f(int);
void f(float);

}

void g() {
using N::f; // ill-formed: not a single-selection context

}

Miller summarized the two options from the paper and asked the committee
to choose one:

Option 1: Import all names.
-- This is consistent with the treatment of overloaded functions (it

brings in multiple declarations).
-- It makes the result of

using X::m; ...m...;
just like

...X::m...
-- Stroustrup believes this was the original intent.

Option 2: Import only non-hidden names.
-- This is consistent with lookup in other contexts.
-- It requires a syntax change to allow an elaborated-type-specifier in

a using declaration.
-- It offers fine-grained control over the effect of a using declara-

tion.

Stroustrup said a using declaration is supposed to introduce names, not
types, into scope. He said he favored Option 1.

Straw Vote: Who favors...
Option 1? 13
Option 2? 1
No change except clarification? 6

Lajoie presented the WG’s proposed resolution to issue core-646, namely,
that a using declaration cannot refer to a hidden base class member.
(See Motion 5.)

Straw Vote: Who agrees with this proposal? 7 yes, 2 no, lots abstain.

Lajoie presented a proposal regarding issue core-636. The issue is
whether a typedef-name can be used to declare an operator function. She
gave this example:

typedef int FUNC();
class X {
public:

operator FUNC; // ill-formed?
};

Ball noted that this is already a syntax error. Lajoie withdrew the
proposal.

Lajoie presented proposal regarding issue core-641, to clarify which
allocation and deallocation functions are predeclared. (See Motion 6
for details.)

Corfield asked if a program can call ::operator new(size_t) without
including <new.h>. Lajoie said it could. She added that this proposal
clarifies that new with placement is not predeclared.

Straw Vote: Who favors this proposal? 21 yes, 4 no.

Lajoie presented the WG’s proposed resolution to issue core-453 (N0942 =
96-0124), namely, that a program can call operator new only for new
expressions or from other standard library functions. It cannot call
operator new to allocate temporaries or to allocate data structures for
exception handling or run-time type information. (See Motion 7.)

Straw Vote: Who agrees with this proposal? lots yes, 0 no, 8 abstain.

Anderson presented the WG’s proposal regarding issue core-639, to
clarify the lifetime of declarations in conditions. He presented this
example:

void f(int i) {
while (T t = i) { }

}

and explained that the proposal clarifies that t is constructed and
destroyed (after }) on each iteration.

No one objected.

Lajoie presented the WG’s proposal to resolve issue core-598 regarding
reference initialization and rvalues. She gave this example:

class X {
const int& ri;
X() : ri(16) { } // ill-formed

^ temporary destroyed here

};

and this example:

const T& f(...) {
return T(); // ill-formed

}
^ temporary destroyed here

She said the WG recommended that both should be ill-formed.

Adamczyk said he didn’t want to vote for this without seeing the pro-
posed WP changes. He expected that it’s very hard to specify what it
means to return a temporary.

Corfield asked what the WG proposed to do about

const T& f(...) {
T t;
return t;

}

He observed that the return value is not bound to a temporary, but it
has the same problem as the second example above.

Ball suggested that what the WG is proposing may not be computable.

Lajoie agreed to take this back to the Core WG.

Straw Vote: Who wants to make these programs ill-formed? 9 yes, 15 no.

Lajoie presented a proposal to specify the exception specifications of
implicitly-declared functions (N0903 = 96-0085). (See Motion 8.)

Lajoie presented this example (similar to one near the top of page 2 in
N0903 = 96-0085):

struct A {
virtual ~A() throw(X);

};

struct B {
virtual ~B() throw(Y);

};

struct D : A, B { }; // ill-formed

Gibbons thought the error should be generated when the destructor is
generated, not when the class is defined.

Straw Vote: Who favors this proposal? 18 yes, 1 no, 6 abstain.

Stroustrup presented his proposal to acknowledge that garbage collection
is possible in a C++ implementation (N0932 = 96-0114). He explained
that a common complaint about C++ is that it can’t do garbage collec-
tion. He says this is not true. It’s permitted but not required, and
it’s in commercial use.

Stroustrup explained that the proposal has only one normative part: to
add __COLLECTING as a macro that programmers can test to determine if
collecting is on. He said the WG discussed the meaning of the value of
__COLLECTING. They agreed that if __COLLECTING is 1, then collecting is
on. However, there was disagreement about whether a value of 0 should
mean "not on" or "not guaranteed to be on". Stroustrup said he recom-
mended the latter, which is the same guarantee as in the current WP.
Koenig said he preferred that 0 mean "not on".

Straw Vote: Who favors this proposal? 8 yes, 10 no, 13 abstain.

6.2 Core Language II WG

Adamczyk presented a pair of proposals to make "narrowing" conversions
less favorable in overload resolution (N0922 = 96-0104 and N0923 =
96-0105). He said the WG was sympathetic to the goals of the paper;
however, the suggested approach didn’t solve enough of the problems and
adds additional complexity to overload resolution. He suggested that
the "right" solution would be to eliminate implicit narrowing conver-
sions, but that’s not practical. However, we can deprecate them.

Straw Vote: Who favors deprecating implicit narrowing conversions?
7 yes, 12 no, 9 abstain.

Adamczyk then presented a proposal to change the type of string literals
to be const-qualified (N0896 = 96-0078). Under this proposal, string
literals would have type "array of const char" and wide string literals
would have type "array of const wchar_t". (See Motion 9.)

Adamczyk said this issue has been raised before and rejected. However,
this proposal has a new "wrinkle" -- it includes a standard conversion
from string literal to char *, or wide string literal to wchar_t *,
which would allow much existing code to continue to work as before.

For example,

char *p = "abc"; // still OK

would work as before, but

char *q = i ? "abc" : "de"; // becomes ill-formed
char (&r)[4] = "abc"; // becomes ill-formed

would not. Furthermore,

catch (char *)

would no longer catch

throw "abc";

Straw Vote: Who favors this proposal?
WG21 only: 4 yes, 0 no, 2 abstain.
X3J16 only: 18 yes, 7 no.

Someone noted that, given:

void f(void *);
void f(char *);

this proposal makes the call f("abc") ambiguous.

Adamczyk presented a proposal to require that programs #include
<typeinfo> before using typeid. (See Motion 10.) He explained that the
WG agreed that you can’t really do anything with typeid before including
<typeinfo>, so there’s little reason to allow even mentioning typeid
prior to including <typeinfo>. About the only thing you can do is:

int main () {
&typeid(int) == &typeid(int);
return 0;

}

Straw Vote: Who favors this proposal? 23 yes, 5 no.

Adamczyk next presented a proposal to tighten the definition of old-
style casts in terms of new-style casts. He explained that the current
WP says an old-style cast can be any combination of static_cast, rein-
terpret_cast, and const_cast. The WG thought this was too broad. It
allows:

int *p;
(float)p; // OK by WP (reinterpret_cast + static_cast)

The WG recommended restricting the possible meanings for an old-style
cast to more limited combinations of new-style casts. (See Motion 11
for those combinations.)

Straw Vote: Who favors this proposal? lots yes, 0 no.

Adamczyk presented a proposal to specify that converting a null pointer
value to a cv-qualified pointer type is an atomic conversion. For
example, the conversion

0 --> const char *

would be a single atomic conversion, not the conversion sequence

0 --> char * --> const char *

This will affect overload resolution. In particular, given:

void f(char *);
void f(const char *);

then f(0) will be ambiguous. (See Motion 12.)

No one objected.

Adamczyk presented a proposal to clarify that *all* semantic constraints
on a default argument are checked at the argument’s point of declara-
tion. (See Motion 13.) Under this proposal, the following becomes
ill-formed:

struct B;
extern B b;
struct A {

void f(B = b); // ill-formed
};
struct B { };

Adamczyk said the disadvantage of this rule is that writing mutually-
dependent cases (as in issue core-531 of N0902 = 96-0084) becomes
difficult, if not impossible.

Corfield expressed concern about applying this rule to templates.
Adamczyk asked Corfield to discuss this off-line.

Straw Vote: Who favors this proposal? 17 yes, 5 no.

6.7 C Compatibility WG

Plum presented a proposal to close various core issues without action,
and to refer other core issues to the editor. (See Motion 16.)

No one objected to this proposal.

Nelson presented a proposal to change the syntax for UCN (universal-
character-name) to use \ instead of ??. (See Motion 17.) This
clarifies that a UCN is not a trigraph.

No one objected.

Nelson then presented a proposal to clarify the phases of translation.
(See Motion 18.) This proposal makes the file-to-host character mapping
of translation phase 1 implementation-defined. It also clarifies that
producing UCNs via macro "games" would not be portable.

No one objected.

6.3 Core Language III WG

Bruck presented the WG’s proposed resolution to various exception
handling issues (from N0969 = 96-0151). (See Motion 19.)

Hartinger raised a concern about the resolution to issue 541, which
states that a function-try-block in main() can’t catch an exception
thrown from the constructor or destructor of a global static. In
particular, he asked how a program catches such an exception. Bruck
said it can’t. Unruh added that such exceptions result in calling
terminate().

Bruck explained that the proposal for issue 631 requires that exception
specifications must match in a function’s declaration and definition. A
diagnostic is required for a mismatch in a single translation unit, but
not across translation units (as with all other ODR violations).

No one objected to this proposal.

Spicer presented resolutions to various (minor) template issues. (See
Motion 20.)

He noted that the proposed resolution to issue 6.45 eliminates "guiding
declarations". For example, in

template <class T> T max(T, T); // 1
int max(int, int); // 2

the declaration on // 2 used to guide instantiation of the template on
// 2. Now it is a function unrelated to the template.

No one objected to this proposal.

Unruh proposed new rules to define the term "dependent name". (See
Motion 21.) He explained that these rules:
-- are based on syntax
-- determine dependency at template definition time

Gibbons added that this proposal eliminates hidden dependency. Also:
-- dependency propagates up the syntax tree
-- dependency stops at an explicit cast

No one objected to this proposal.

Stroustrup presented a proposal to refine the template compilation model
and affirm separate compilation of templates (based on N0906 = 96-0088,
the "SGI proposal").

Stroustrup explained that one of the problems the WG addressed was that
compilers distinguish template definitions that are supposed to be in
the current translation unit from those that are supposed to be found in
other translation units. The WG had to devise a way to distinguish the
two, and decide which would be the default.

Stroustrup said the WG decided that the inclusion model would be the
default. That is, by default, template definitions must be available,

and are only accessible, in the translation unit where they appear. The
WG proposed to use a new keyword "export" to indicate templates whose
definitions may be compiled separately. For example:

export template <class T> void f(T);

export template <class T> class X;

"export" could appear on either the template declaration or definition
to provide greater flexibility for both library vendors and users. The
ODR applies as ever.

Wilkinson explained changes to the current proposal compared with what
he presented at the technical session on Monday. Among other things,
they removed the part about intermediate context.

Gibbons explained that the WG is actually splitting the proposal into
two parts: (1) affirm the separation model and (2) everything else.
(See Motions 22 and 22b.) Stroustrup encouraged members to accept the
proposal as a whole package.

Gibbons also said the WG recommended changing the default linkage for
inline functions to extern because:
-- it’s necessary for the SGI proposal
-- it’s more consistent with the behavior of inline member functions

Straw Vote: Who favors the model-independent portions of the SGI pro-
posal (including extern inline)? lots yes, 0 no, 1 abstain.

Anderson wondered if changing the default linkage for inline functions
breaks code.

Straw Vote: Who favors extern inline by itself? lots yes, 0 no, 6
abstain.

(See Motion 23.)

WG21+X3J16 discussed the pros and cons of the separation model. Ball
and Spicer expressed concern that we don’t fully understand the model
and it could lead to further problems. Bruck said separation is based
on sound engineering.

Straw Vote: Who favors the SGI proposal with separate compilation?
WG21+X3J16: lots yes, 7 no, 1 abstain.
WG21 only : 4 yes, 1 no, 2 abstain.

Gibbons: presented a proposal to replace name injection at template
instantiation with special lookup rules (N0878 = 96-0060). (See Motion
24.)

Straw Vote: Who favors this proposal?
WG21+X3J16: 15 yes, 1 no, 10 abstain.
WG21 only : 4 yes, 0 no, 2 abstain.

Gibbons presented a proposal to extend the special lookup rules to func-
tion names outside templates. (See Motion 25.) People discussed this
for a while, with some expressing reluctance about it.

Straw Vote: Who wants to...
adopt this proposal now? 10.
defer consideration? 9.

6.4 Library I WG

Dawes reported that the WG resolved 56 issues. He presented the WG’s
recommendations to close various issues from Clause 17 (see Motion 26),

clause 18 (Motion 27), clause 19 (Motion 28), clause 20 (Motion 29), and
clause 21 (Motion 30). Dawes also recommended adding relational opera-
tors to standard library classes (from N0967 = 96-0149). (See Motion
30b.)

Dawes explained that the WG discussed the standard library’s header
inclusion policy. He offered the following background:
-- A template in the C++ standard library may be specialized by users,

but it may be specialized only in its "home" namespace. Thus,
there’s no conforming way a standard library implementor can use
names of standard library templates without exposing those names to
users.

-- A given C++ standard header usually needs access to names from other
standard headers (because signatures from one header often use names
from another).

Dawes presented alternative header inclusion policies:

1) No standard library header may include any other standard library
header (this is policy in Standard C).

2) Any standard library header may include any other standard library
header. This leads to the following problem. This program:

#include <string>
using namespace std;
int main() {

cout << "Hello, C++ World" << endl;
return 0;
}

shouldn’t compile because it uses, but doesn’t include, <iostream>;
however, it might compile inadvertently because <string> might
include <iostream.h>.

3) For each standard library header, specify the other standard headers
it must include, and let it include no others.

Clamage suggested another policy:

4) All standard library names are predeclared in namespace std, thus
eliminating the headers.

Koenig suggested yet another policy:

5) The standard library has a namespace with a documented name in which
all specializable templates are defined. Users who want to special-
ize a standard template must do so in that namespace.

Straw Vote: Who favors policy 2? lots yes, 3 no, 6 abstain.

Straw Vote: Who favors leaving this issue open? 11 yes, 6 no.

6.5 Library II WG

Plum presented the WG’s recommendation to close some iostream and locale
issues (from N0920 = 96-0012) (see Motion 31), and also remove operators
<< and >> from class locale (see Motion 32).

No one objected to these recommendations.

Plum reported that there were no more unresolved locale issues.
Applause.

Schwarz said the WG had numerous recommendations which closed many
iostreams issues. He offered to go over resolutions for anyone who was

interested. No takers. (See Motions 33 through 39.)

He did go into detail on one issue; the effect of width on the char
inserter. Given

cout << setw(10) << ’a’;

the library as in the current WP does not pad the output to write ’a’ in
a width of 10. This is "wrong" but should be retained because it is
historically a "feature".

Straw Vote: What prefers that the padding apply to inserted characters?
23 yes, 0 no.

Issue 27-501 in N0964 = 96-0146 reflects the result of this straw vote.
(See Motion 34.)

Schwarz also explained a proposal regarding insertion and extraction of
char, signed char and unsigned char (N0918 = 96-0100).

No one objected to this proposal.

The committees recessed at 17:30 on Wednesday and reconvened at 08:40 on
Thursday.

6.8 Out of the Blue

Simonsen offered to maintain a WEB site for WG21.

No one objected to having him do so. (See Motion 47.)

Simonsen also asked WG21’s permission to put the draft and other com-
mittee documents on WG14’s WEB site. (See Motion 48.)

Straw Vote: Who wants to grant this request? lots yes, 0 no.

6.5 Library II WG (continued)

Schwarz resumed his summary of the WG’s proposals regarding iostreams.
Plum observed that the WG wasn’t unanimous on all of the issues, but all
were willing to support the entire package.

Schwarz explained that basic_ios currently has an operator bool(), where
the classic design used operator void *(). This operator was to support
testing a stream in a conditional, as in:

while (cin >> n)
...

Unfortunately, this allows cout >> 1 as a valid expression. Thus, the
library will revert to using operator void *() and operator!(). (See
issue 27-203 in N0964 = 96-0146.)

Koenig suggested that it should use operator const void *() rather than
operator void *().

Straw Vote: Who favors this proposal (as per the WG’s recommendation)?
15 yes, 0 no.

6.6 Library III WG

Becker summarized the WG’s recommendation to close numerous issues from,
and fix assorted problems in, clauses 23 through 26. (See Motions 40
and 45.)

6.2 Core II WG (more)

Adamczyk presented a proposal to change the pseudo-prototype for built-
in operator[], and others (N0923 = =96-0105). (See Motion 14.) He pre-
sented this example from the paper:

struct S {
operator char *();
char& operator[](unsigned);

};
...
S s;
s[5]; // ambiguous

s[5] might mean either s.operator[](5) or (s.operator char *())[5].
s.operator[](5) has an exact match on the first argument, and uses a
standard conversion on the second. (s.operator char *()) uses a user-
defined conversion on the first argument, and an exact match on the
second.

Adamczyk explained that this proposal changes the pseudo-prototype for
built-in [] from

T& operator[](T*, I);

where I is the promoted integral type, to

T& operator[](T*, ptrdiff_t);

The proposal also makes a similar change to the pseudo-prototypes for
built-in +, +=, - and -= with a pointer parameter.

He said this change:
-- improves the situation for those who have ptrdiff_t == long
-- allows writing portable code with just one function, namely,

char& operator[](ptrdiff_t);

Straw Vote: Who favors this proposal? lots yes, 2 no.

Adamczyk also introduced a proposal to repair some minor problems with
reference binding in overload resolution (N0972 = 96-0154). (See Motion
15.)

No one objected.

6.7 Remarks from the WG21 Convener

Harbison explained what would happen if WG21 were to "vote out" the
committee draft (CD) at this point. An informal editing committee would
edit the draft over the weekend following the meeting. Koenig (the
project editor) would then continue editing the draft over the following
weeks. Volunteers would then review the resulting draft. Harbison (as
convener) would then attach the disposition of comments (from the previ-
ous ballot) and forward the draft to SC22 for a CD ballot to begin at
the end of September.

Plum said he thought WG21 agreed on Sunday to try to get WG21+X3J16 to
agree that all substantive changes will be made this week (regardless of
when we actually do the editing). He asked for a straw vote to support
this. Much discussion followed.

Harbison asked WG chairs for an estimate of the number of issues that
remained open. Lajoie said about 15 core issues (excluding template
issues) were still open. Gibbons said the only remaining template issue
regards intermediate context. Spicer noted that the template issues
list has been empty at end of every meeting for the past year. He

thought more template issues would come up before the next meeting.

Dawes said all important issues from clauses 17 through have been
cleared, but the header inclusion issue will probably come up again.
Schwarz reported that 2 or 3 little issues remain for input/output.
Becker said clauses 23 through 26 have no major issues left open.

WG21+X3J16 discussed the CD ballot. Corfield said the UK preferred to
wait until November to vote on submitting the CD. Plum said he’d go
along, but urged that we hold a straw vote to affirm that we will fix
bugs, but not invent anything new in November. Plauger agreed with
Plum, and urged that we word the resolution as strongly as possible that
we will stop inventing.

Harbison said he’d meet with heads of national delegations to draft such
a resolution.

The committees recessed at 11:50 on Thursday.

7 WG sessions (if any time is left)

8 Distribution of formal motions

The committees reconvened at 16:10 on Thursday.

9 General session II

Harbison presented wording for the resolution to submit the WP for a
second CD ballot. (See Motion 49.) He pointed out that this resolution
acknowledges that all CD ballot comments have been resolved.

Harbison explained that, if we can finish editing the draft during the
week in Hawaii, we could print the draft over the weekend and save
almost two of the four months we’d have lost by slipping the project
schedule one meeting. He asked that the host in Hawaii (Plum Hall) work
out ways to get this done. This plan would also limit the scope of
changes we would accept. He also recommended that NBs (national bodies)
that want changes in the draft should come to the meeting with prepared
wording.

Anderson wondered what we will be able to work on at the meeting in
Nashua (March, 1997) while the CD ballot is in progress. Harbison
replied that we must be careful about making changes during CD ballot,
so should not take any votes to change the CD at that point. In re-
sponse to concerns from Plum, Harbison suggested that X3J16 could work
on drafting replies to US public comments.

Koenig asked what WG21 is allowed to do at the meeting during the CD
ballot. Plum said WG21 could do editorial work. Koenig expressed sur-
prise; he thought we could make no changes. Plauger explained that WG21
can fix typos and improve wording, but make no substantive changes. If
something is demonstrably broken, we can discuss ways to fix it, but not
make changes.

9.1 Core Language I WG

Lajoie explained an open issue regarding the maximum length for bit-
fields. C has a restriction that a bitfield cannot be longer than an
int. She said the WG presented a resolution at the last meeting requir-
ing that the size of a bitfield not exceed the size of its type. The
vote split 18-to-18, so the issue went back to the WG. The WG’s consen-
sus was that the vote didn’t mean "no limits," so they’re now proposing
that the maximum size of a bitfield is the size of the longest integral
type in the implementation, i.e., long, regardless of the bitfield type
(enum, int, whatever).

Clamage asked if this means a program can declare a 64-bit char. Lajoie
said yes; the current WP has no restriction and this proposal would
still allow it.

Koenig asked how many bits does a 64-bit char bitfield have. Lajoie ex-
plained that the memory has the indicated size, but fetching the value
converts it to an rvalue and thus loses the extra bits. A program can-
not access the lost bits in a portable way.

Wilkinson asked if there’s any specification of where the significant
bits are found. Lajoie said no. Charney asked what is the size of such
a bitfield. Lajoie explained that sizeof yields the size of the type,
not the size of the bitfield.

Spicer requested a straw vote on both this proposal and the one from the
last meeting.

Koenig suggested that if bits beyond the size of the underlying type are
just padding, then there’s no obvious reason to have an upper bound at
all. Lajoie replied that that is the status quo. Koenig asked if the
WP says the additional bits are padding. Lajoie said no.

Straw vote: Who favors this [new] proposal? 9 yes, 6 no, 7 abstain.

Straw vote: Who favors the proposal from the last meeting? 8 yes, 7 no,
10 abstain.

Lajoie explained (again) that the status quo imposes no limit on the
size of a bitfield, and leaves the semantics unspecified. Plum sug-
gested voting to affirm the status quo. Stroustrup said the status quo
needs to be clarified with respect to "padding."

Straw Vote: Who favors the status quo with clarification regarding
"padding"? 7 yes, 6 no, 9 abstain.

Straw Vote: Who favors...
1) no size limit (status quo), with padding? 9
2) limit is sizeof(long), with padding? 6
3) limit is sizeof(underlying type) 10

Straw Vote (runoff between 1 and 3):
Who favors 1? 13
Who favors 3? 10

Lajoie agreed to keep the status quo but add editorial clarification
regarding "padding".

9.2 Core Language II WG

No discussion.

9.4 Library I WG

Schwarz explained that an ad hoc group met to discuss the policy for
including standard headers within other standard headers. They con-
sidered seven possible policies, and agreed to one suggested by Koenig:

-- standard templates live not in namespace std, but in namespace
std::implementation

-- no other change to the header inclusion policy for the time being

Clamage suggested abbreviating the name "implementation". Plum said the
group considered "_std" as the name. Schwarz suggested voting separate-
ly on the name. Plum said his vote would depend on the name.

Members discussed the proposal at length. Some members expressed un-

easiness about about approving this change without the time to consider
all the ramifications. They also discussed whether we could remove this
change at the next meeting.

Koenig suggested dropping the issue and leaving it to any NBs that want
to raise this as a concern.

Straw Vote: Who favors this proposal? 3 yes, lots no.

9.3 Core Language III WG

Gibbons explained that the WG failed to consider an alternative proposal
for fixing name injection for friends (N0913 = 96-0095). This proposal
doesn’t eliminate injection, but modifies it to reduce surprises. Some
WG participants felt that all injection was bad, and they preferred to
eliminate it entirely. Thus, the WG did not propose this alternative.
Gibbons suggested that people should consider it before voting on the
formal motion (Motion 24).

Spicer (the author of the alternative proposal) said he had concerns
about the issue, but hadn’t seen the text of the motion. He said he’d
comment on the proposal on Friday. (See the discussion on Motion 24.)

Glassborow asked if the WG decided to change its recommendation.
Gibbons said they did not.

9.5 Library II WG

No discussion.

9.6 Library III WG

Vandevoorde presented a proposal to establish anti-aliasing properties
of valarray arguments, based on work done by Cray and SGI. The proposal
allows a function receiving a valarray argument to assume that only that
function accesses that valarray, and that multiple valarray arguments do
not refer to the same valarray. For example, given

void f(valarray& a, valarray& b);

f can assume that a and b are not aliases for each other or any global
valarray.

Straw Vote: Who agrees with this proposal? 14 yes, 0 no, 7 abstain.

The committeea continued to discuss the proposal for some time. Some
contrasted this with the "restrict" keyword considered for C by WG14+
X3J11. Vandevoorde explained that this anti-aliasing is just for
valarray; it’s not as powerful as "restrict." However, it does allow
using "restrict" where available.

Straw Vote (again): Who favors this proposal? 8 yes, 0 no, 15 abstain.

[No formal motion came from this.]

9.7 ANSI C compatibility WG

No discussion.

The committees recessed to 17:50 on Thursday.

10 WG sessions (if any time is left)

No time.

The committees reconvened at 8:45 on Friday.

Plum reported that Nelson has offered to be the new US International
Representative (IR), and Miller has offered to be the new vice-chair for
X3J16. He requested a brief X3J16 meeting to consider their offers, and
approve the US delegation to WG21.

Straw Vote (X3J16 only): Who supports Nelson for IR? lots yes, 0 no.

Straw Vote (X3J16 only): Who supports Miller for vice-chair? lots yes,
0 no.

X3J16 thanked Plum for his past work as IR and Lajoie for her work as
vice-chair. Applause.

Lajoie said she will handle the post-meeting mailing.

Motion (to approve the new US delegation to WG21) by someone/somebody
else:

Move we approve Nelson, Clamage, Plum, Koenig, as Saks as the US
delegation to WG21.

Motion passed X3J16: lots yes, 0 no, 0 abstain.

X3J16 thanked Vilot for his work as chair of the Library WG. Applause.

Plum closed the X3J16 meeting.

11 Review of the meeting

Clamage explained that we will conduct each X3J16 vote first. The
results of each vote will determine how the US IR (Plum) will cast his
vote in WG21.

Clamage counted 31 X3J16 voting members and 7 WG21 delegations.

Wilkinson explained that changes to N0973 = 96-0155 will appear as
N0973R1 = 96-0155R1. N0973R1 = 96-0155R1 will be in the mailing, with a
note that N0973 = 96-0155 was a first draft distributed only at the
meeting.

11.1 Formal motions

1) Motion (to accept the WP) by Lajoie/Bruck:

Move we accept N0926 = 96-0108 as the current WP.

Motion passed X3J16: 31 yes, 0 no.
Motion passed WG21: 7 yes, 0 no, 0 abstain.

==== Core I (Lajoie) ====

2) Motion (to clarify that extern "C" affects function types) by
Lajoie/Hartinger:

Move we amend the WP as follows

-- insert the following as a new paragraph before 7.5 [dcl.link]
paragraph 1:

All function types, function names, and variable names have a
language linkage, the specific semantics of which are implemen-
tation-defined. [Note: a particular language linkage may be
associated with a particular form of representing external
names, with a particular calling convention, etc.] The default
language linkage of all function types, function names, and

variable names is C++ language linkage. Two function types with
different language linkages are distinct types even if they are
otherwise identical.

-- replace the last three sentences of 7.5 [dcl.link] (former)
paragraph 2 with:

In a linkage-specification, the specified language linkage
applies to all function types, function names, and variable
names introduced by the declaration(s). [Example:

extern "C" void f1(void(*pf)(int));
// the name f1 and its function
// type have C language linkage;
// pf is a pointer to a C function

extern "C" typedef void FUNC();
FUNC f2; // the name of the function f2 has C++

// language linkage and the function’s
// type has C language linkage

extern "C" FUNC f3; // the name of the function f3 and the
// function’s type have C language
// linkage

void (*pf2)(FUNC*); // the name of the variable pf2 has C++
// language linkage and the type of pf2
// is pointer to C++ function that takes
// one parameter of type pointer to C
// function

-- end example]

A non C++ linkage is ignored for the names of class members and
for the top level function type of a class member function.
[Example:

typedef void FUNC();
extern "C" {

typedef void FUNC2();
class C {

void mf1(void(*pf)());
// the name of the function mf1 and the
// member function’s type have C++
// language linkage; the parameter has
// type pointer to C function

FUNC2* mf2(FUNC* pf);
// the name of the function mf2 and the
// member function’s type have C++
// language linkage; the parameter has
// type pointer to C++ function

static FUNC* q; // the name of the data member q has C++
// language linkage and the data
// member’s type is pointer to C++
// function

};
}

-- end example]

-- replace 7.5 [dcl.link] (former) paragraph 6 with:

[Note: because the language linkage is part of the function
type, when a pointer to C function (for example) is
dereferenced, the function to which it refers is considered a C
function.]

and remove the editorial box.

-- add after the third sentence of 5.2.2 (expr.call) paragraph 1:

Calling a function through an lvalue whose function type has a
language linkage that is different from the language linkage of
the function type of the called function’s definition is
ill-formed; no diagnostic is required.

Motion passed X3J16: 28 yes, 3 no.
Motion passed WG21: 6 yes, 0 no, 1 abstain.

3) Motion (to define when a function is used) by Nelson/Lajoie:

Move we amend the WP by replacing 3.2 [basic.def.odr] paragraph 2
with:

An expression is ’potentially evaluated’ unless either it is the
operand of the sizeof operator ([expr.sizeof]), or it is the
operand of the typeid operator and does not designate an lvalue
of polymorphic class ([expr.typeid]). An object or non-over-
loaded function is ’used’ if its name appears in a potentially-
evaluated expression. A virtual member function is used if it
is not pure. An overloaded function is used if it is selected
by overload resolution from a reference in a potentially-
evaluated expression. [Note: This covers operator overloading,
allocation function for placement new, non-default initiali-
zation, user-defined conversions, as well as calls to named
functions.] In addition, a copy-assignment function for a class
can be used by an implicitly-defined copy-assignment function
for another class; see [class.copy]. Also, an allocation or
deallocation function for a class can be used by a new expres-
sion appearing in a potentially-evaluated expression; see
[expr.new] and [class.free]. Similarly, a deallocation function
for a class can be used by a delete expression appearing in a
potentially-evaluated expression; see [expr.delete] and
[class.free]. A default constructor for a class can be used by
default initialization; see [dcl.init]. A constructor for a
class can be used by various constructs; see [class.init]. A
destructor for a class can be used by various constructs; see
[class.dtor].

Motion passed X3J16: 31 yes, 0 no.
Motion passed WG21: 6 yes, 0 no, 1 abstain.

4) Motion (to clarify name look up in a using declaration) by
Miller/Lajoie:

Move we amend the WP as described in Option 1 of N0905 = 96-0087,
and in addition:

-- replace the first 2 sentences of 3.4.2.1 [class.qual] paragraph
1 with:

If the nested-name-specifier of a qualified-id nominates a
class, the name specified after the nested-name-specifier is
looked up in the scope of the class (10.2). The name shall
represent one or more members of that class or of one of its
base classes (10).

-- delete the second note from 3.4.2.1 [class.qual] paragraph 1,
which reads:

[Note: 10.2 describes how name look up proceeds in class scope.]

-- replace the first 11 sentences of 3.4.2.2 [namespace.qual]
paragraph 2 with:

Given X::m, where X is a namespace, let S be the set of all
declarations of m in X and in the transitive closure of all
namespaces nominated in using-directives in X and its used
namespaces, except that using-directives are ignored in any
namespace, including X, directly containing one or more
declarations of m. If S is the empty set the program is
ill-formed. Otherwise, if S has exactly one member, or if the
context of the reference is a using-declaration (7.3.3), S is
the required set of declarations of m. Otherwise if the use of
m is not one that allows a unique declaration to be chosen from
S, the program is ill-formed.

Motion passed X3J16: 29 yes, 2 no.
Motion passed WG21: 7 yes, 0 no, 0 abstain.

5) Motion (to clarify name look up of a class member nominated by a
using declaration) by Lajoie/Anderson:

Move we amend the WP by adding the following to the end of clause
7.3.3 [namespace.udecl] paragraph 15:

The base class members mentioned by a using-declaration shall be
visible in the scope of at least one of the direct base classes
of the class where the using-declaration is specified.

Motion passed X3J16: 30 yes, 1 no.
Motion passed WG21: 7 yes, 0 no, 0 abstain.

6) Motion (to clarify which allocation and deallocation functions are
predeclared) by Lajoie/Hartinger:

Move we amend the WP by replacing the first 5 sentences of 3.7.3
(_basic.stc.dynamic_) paragraph 2 with:

The library provides default definitions for the global alloca-
tion and deallocation functions. Some global allocation and
deallocation functions are replaceable (_lib.new.delete_). A
C++ program shall provide at most one definition of a replace-
able allocation or deallocation function. Any such function
definitions replace the default version provided in the library
(_lib.replacement.functions_). The following allocation and
deallocation functions are implicitly declared in a program

::operator new(size_t)
::operator new[](size_t)
::operator delete(void*)
::operator delete[](void*)

[Note: a new-expression or delete-expression that refers to one
of these functions without including the header <new> is well-
formed.]

Motion passed X3J16: 27 yes, 4 no.
Motion passed WG21: 5 yes, 0 no, 2 abstain.

7) Motion (to clarify that operator new is only called as the result of
a new expression or by library functions) by Lajoie/Bruns:

Move we amend the WP as proposed in N0942 = 96-0124, core issue 453.

Motion passed X3J16: 31 yes, 0 no.
Motion passed WG21: 7 yes, 0 no, 0 abstain.

8) Motion (to describe the exception specification of implicitly
declared special member functions) by Anderson/Lajoie:

Move we amend the WP as proposed in N0903 = 96-0085.

Motion passed X3J16: 31 yes, 0 no.
Motion passed WG21: 6 yes, 0 no, 1 abstain.

==== Core II (Adamczyk) ====

9) Motion (to make the type of string literals const) by
Glassborow/Bruns:

Move we change the WP as follows:

-- In 2.13.4 [lex.string] paragraph 1, change "array of n char" to
"array of n const char" and change "array of n wchar_t" to
"array of n const wchar_t".

-- Add to 4.2 [conv.array] as a second paragraph:

A string literal (_lex.string_) that is not a wide string lit-
eral can be converted to an rvalue of type "pointer to char"; a
wide string literal can be converted to an rvalue of type
"pointer to wchar_t". In either case, the result is a pointer
to the first element of the array. [Note: this conversion is
deprecated. See Annex D.]

-- Add a new section to Annex D:

D.n [depr.string]

The implicit conversion from const to non-const qualification
for string literals (_ptr.array_) is deprecated.

Motion passed X3J16: 25 yes, 6 no.
Motion passed WG21: 7 yes, 0 no, 0 abstain.

10) Motion (to require inclusion of <typeinfo> before use of typeid) by
Adamczyk/Ball:

Move we amend the WP by replacing 5.2.8 [expr.typeid] paragraph 6,
with the following:

If the header <typeinfo> (_lib.type.info_) is not included prior
to a use of typeid, the program is ill-formed.

Motion passed X3J16: 23 yes, 8 no.
Motion passed WG21: 5 yes, 1 no, 1 abstain.

11) Motion (to correct the definition of old-style cast in terms of new
casts) by Adamczyk/Lajoie:

Move we amend the WP by replacing 5.4 [expr.cast] paragraph 5, with
the following:

The conversions performed by
-- a const_cast (_expr.const.cast_),
-- a static_cast (_expr.static.cast_),
-- a static_cast followed by a const_cast,
-- a reinterpret_cast (_expr.reinterpret.cast_), or
-- a reinterpret_cast followed by a const_cast,
can be performed using the cast notation of explicit type con-
version. The same semantic restrictions and behaviors apply.
If a conversion can be interpreted in more than one of the ways
listed above, the interpretation that appears first in the list
is used, even if a cast resulting from that interpretation is
ill-formed. [Example: continue with the existing example.]

Motion passed X3J16: 31 yes, 0 no.
Motion passed WG21: 7 yes, 0 no, 0 abstain.

12) Motion (to make conversion of a null pointer value to a qualified
pointer type an atomic conversion) by Adamczyk/Bruns:

Move we amend the WP as follows:

-- Add at the end of 4.10 [conv.ptr] paragraph 1:

The conversion of a null pointer constant to a pointer to cv-
qualified type is a single conversion, and not the sequence of a
pointer conversion followed by a qualification conversion
(_conv.qual_).

-- Add at the end of 4.11 [conv.mem] paragraph 1:

The conversion of a null pointer constant to a pointer to member
of cv-qualified type is a single conversion, and not the se-
quence of a pointer to member conversion followed by a qualifi-
cation conversion (_conv.qual_).

Motion passed X3J16: 31 yes, 0 no.
Motion passed WG21: 7 yes, 0 no, 0 abstain.

13) Motion (to define the semantics of default arguments) by
Adamczyk/Lajoie:

Move we amend the WP by replacing 8.3.6 [dcl.fct.default] paragraph
5, sentence 1 with the following:

A default argument expression is implicitly converted (_conv_)
to the parameter type. The default argument expression has the
same semantic constraints as the initializer expression in a
declaration of a variable of the parameter type, using the
copy-initialization semantics (_dcl.init_). The names in the
expression are bound, and the semantic constraints are checked,
at the point of declaration.

Motion passed X3J16: 25 yes, 6 no.
Motion passed WG21: 6 yes, 0 no, 1 abstain.

14) Motion (to change the pseudo-prototypes for built-in [], etc.) by
Adamczyk/Gibbons:

Move we amend the WP as follows:

-- In 13.6 [over.built] paragraph 14, replace the whole sentence
with "For every T where T is a cv-qualified or -unqualified
object type there exist candidate operator functions of the
form" and replace "I" with "ptrdiff_t" in the 5 subsequent
lines.

-- In 13.6 [over.built] paragraph 22, replace the whole sentence
with "For every pair (T VQ), where T is a cv-qualified or
-unqualified object type and VQ is either volatile or empty,
there exist candidate operator functions of the form" and
replace "I" with "ptrdiff_t" in the 2 subsequent lines.

-- In 13.6 [over.built] paragraphs 6, 7, 12, and 15 change
"complete object type" to "object type".

Motion passed X3J16: 29 yes, 2 no.
Motion passed WG21: 6 yes, 0 no, 1 abstain.

15) Motion (to fix small problems with reference binding in overload

resolution) by Adamczyk/Wilcox:

Move we amend the WP as indicated in N0972 = 96-0154.

Gibbons observed that this change will cause functions that may not be
callable to be selected in overload resolution. Adamczyk concurred.

Motion passed X3J16: 31 yes, 0 no.
Motion passed WG21: 7 yes, 0 no, 0 abstain.

==== C Compatibility (Plum) ====

16) Motion (to resolve several Core issues affecting C Compatibility) by
Plum/Nelson:

Move that we close the following issues with no further action:

core-537 (can the implementation accept other constant expressions?)

and refer the following to the Project Editor for editorial action:

core-607 (UK issue 288, USA public comment #7 and #21: definition
needed for character set(s))

core-600 (Swedish issue: should the value returned by integer
division and remainder be defined by the standard?)

core-634 (do the phases of translation need to discuss shared
libraries?)

core-643 (the term "integer code" needs to be defined)

Motion passed X3J16: 31 yes, 0 no.
Motion passed WG21: 7 yes, 0 no, 0 abstain.

==== C Compatibility (Nelson) ====

17) Motion (to change the syntax for universal-character-name) by
Nelson/Plum:

Move we amend the WP by changing all occurrences of "??u" to "\u"
and all occurrences of "??U" to "\U". (The affected clauses are 2.2
[lex.charset], footnote 18 in 2.10 [lex.name], and A.2 [gram.lex].)

Motion passed X3J16: 31 yes, 0 no.
Motion passed WG21: 7 yes, 0 no, 0 abstain.

18) Motion (to clarify phases of translation) by Nelson/Benito:

Move we amend clause 2.1 [lex.phases] of the WP as follows:

-- under phase 1, add to the end of sentence 1: "in an
implementation-defined manner."

-- under phase 2, after sentence 1, add the following new sentence:
"If a character sequence results which matches the syntax of a
universal-character-name, the behavior is undefined."

-- under phase 4, after sentence 1, add the following new sentence:
"If a character sequence is produced by token concatenation
(_cpp.concat_) which matches the syntax of a universal-char-
acter-name, the behavior is undefined."

Motion passed X3J16: 31 yes, 0 no.
Motion passed WG21: 7 yes, 0 no, 0 abstain.

==== Core III (Bruck) ====

19) Motion (to resolve various exception handling issues) by

Bruck/Gibbons:

Move we amend the WP according to the changes proposed in N0969R2 =
96-0151R2.

Motion passed X3J16: 31 yes, 0 no.
Motion passed WG21: 7 yes, 0 no, 0 abstain.

==== Core III (Spicer) ====

20) Motion (to resolve small template issues) by Spicer/Ball:

Move we amend the WP as indicated in N971 = 96-0153.

Motion passed X3J16: 31 yes, 0 no.
Motion passed WG21: 6 yes, 0 no, 1 abstain.

==== Core III (Unruh) ====

21) Motion (to refine the definition of dependent names) by
Unruh/Miller:

Move we amend the WP as indicated in N0921R1 = 96-0103R1.

Motion passed X3J16: 31 yes, 0 no.
Motion passed WG21: 7 yes, 0 no, 0 abstain.

==== Core III (Stroustrup and Wilkinson) ====

22) Motion (to refine the template compilation model) by
Austern/Gibbons:

Move we amend the WP as indicated in part 2 of N0973R1 = 96-0155R1.

Motion passed X3J16: 30 yes, 1 no.
Motion passed WG21: 7 yes, 0 no, 0 abstain.

22b)Motion (to refine the template compilation model and affirm separate
compilation) by Wilkinson/Corfield:

Move we amend the WP as indicated in part 1 of N0973R1 = 96-0155R1.

Motion passed X3J16: 21 yes, 9 no.
Motion passed WG21: 6 yes, 1 no, 0 abstain.

==== Core III (Gibbons) ====

23) Motion (to change the default linkage for inline functions) by
Gibbons/Corfield:

Move we amend the WP as indicated in N0975 = 96-0157.

Motion passed X3J16: 31 yes, 0 no.
Motion passed WG21: 7 yes, 0 no, 0 abstain.

24) Motion (to replace friend name injection with special lookup rules)
by Gibbons/Glassborow:

Move we amend the WP as indicated in N0968 = 96-0150.

Spicer asked people to vote against this. He said that, while it solves
a problem, it also breaks a lot of code. He mentioned several specific
problems with the proposal. Gibbons rebutted several of Spicer’s
points. He acknowledged that the proposal breaks some code, but it’s
arguable about how much.

After some discussion, the committees took a short break. Upon return-
ing, Spicer said he and others agreed over the break that the changes to
the WP listed in N0968 = 96-0150 do not match the intent as discussed
and approved during the straw votes. Koenig said it’s a close call.

Motion passed X3J16: 19 yes, 11 no.
Motion passed WG21: 7 yes, 0 no, 0 abstain.

25) Motion (to extend Koenig lookup to function names outside templates)
by Gibbons/Corfield:

Move we amend the WP by replacing the second sentence of 13.3.1.1.1
[over.call.func] paragraph 3 with:

The name is looked up in the context of the function call using
the normal rules for name lookup (_basic.lookup.unqual_), and
also in the namespaces of any associated types for the arguments
using the lookup rules described in _over.match.oper_.

Much discussion. Unruh, Spicer and Wilkinson said the WG considered
this proposal rather hastily, and the decision was not unanimous.
Stroustrup argued that this proposal makes lookup rules more consistent,
and that’s no small thing.

Motion passed X3J16: 20 yes, 10 no.
Motion passed WG21: 4 yes, 1 no, 2 abstain.

==== Library I (Dawes) ====

26) Motion (to resolve issues from the Clause 17 [Library Introduction]
Issues List) by Dawes/Rumsby:

Move we amend the WP as described in N0907R1 = 96-0089R1 by adopting
the proposed resolutions for issues 001, 017, 018, 019 option 2, and
020. In addition, close issue 016 without taking any action.

Motion passed X3J16: 28 yes, 2 no.
Motion passed WG21: 7 yes, 0 no, 0 abstain.

27) Motion (to resolve several issues from the Clause 18 [Language
Support] Issues List) by Dawes/Rumsby:

Move we:

-- amend the WP as described in N0935R1 = 96-0117R1 by adopting the
proposed resolutions for issues 020, 022, 023, 025, 027, 028,
and 029.

-- amend the WP as described in N0935R1 = 96-0117R1 by adopting the
proposed resolution for issue 021 option 3, except change
"extern" to "extern const".

-- close issues 015 through 019, 024, and 026 without taking any
action.

Motion passed X3J16: 30 yes, 0 no.
Motion passed WG21: 6 yes, 0 no, 1 abstain.

28) Motion (to resolve an issue from the Clause 19 [Diagnostics Library]
Issues List) by Dawes/Rumsby:

Move we close without taking any action issue 19-001.

Motion passed X3J16: 30 yes, 0 no.
Motion passed WG21: 6 yes, 0 no, 1 abstain.

29) Motion (to resolve several issues from the Clause 20 [Utilities]
Issues List) by Dawes/Rumsby:

Move we amend the WP as described in N0937R1 = 96-0119R1 by adopting
the proposed resolutions for issues 007, 024, 026 through 029, 031,
and 034 through 038. In addition, close without taking any action
issues 025, 030, and 033.

Motion passed X3J16: 30 yes, 0 no.
Motion passed WG21: 6 yes, 0 no, 1 abstain.

30) Motion (to resolve several issues from the Clause 21 [Strings]
Issues List) by Dawes/Rumsby:

Move we amend the WP as described in N0948R1 = 96-0130R1 by adopting
the proposed resolutions for issues 062, 093, 094, 106 through 110,
112. In addition, close without taking any action issues 085, 092,
096, 097 through 105.

Motion passed X3J16: 30 yes, 0 no.
Motion passed WG21: 6 yes, 0 no, 1 abstain.

30b)Motion (to add relational operators to standard library classes) by
Dawes/Rumsby:

Move we amend the WP as proposed in N0967R1 = 96-0149R1.

Motion passed X3J16: 30 yes, 0 no.
Motion passed WG21: 7 yes, 0 no, 0 abstain.

==== Library II (Plum) ====

31) Motion (to resolve certain open locales issues) by Plum/le Mouel:

Move we close, without further action, the following open locales
issues (from N0920 = 96-0112):
22-004 (description of _byname facets too vague)
22-046 (locale facets for money/time/messages need semantics)
22-071 (messages_base isn’t really needed)

Motion passed X3J16: 30 yes, 0 no.
Motion passed WG21: 6 yes, 0 no, 1 abstain.

32) Motion (to remove stream operators for class locale) by Plum/le
Mouel:

Move we amend the WP by removing the shift operators for class
locale from subclause 22.1 [lib.locales] and from subclause 22.1.2
[lib.locale.global.templates]. Specifically remove these operators:

template <class charT, class Traits>
basic_ostream<charT,Traits>&
operator<<(basic_ostream<charT,Traits>& s, const locale& loc);

template <class charT, class Traits>
basic_istream<charT,Traits>&
operator>>(basic_istream<charT,Traits>& s, locale& loc);

Motion passed X3J16: 30 yes, 0 no.
Motion passed WG21: 6 yes, 0 no, 1 abstain.

==== Library II (Schwarz) ====

33) Motion (to distinguish between operations on char and char_type) by
le Mouel/Koenig:

Move we amend the WP to allow insertion of chars into streams

instantiated on some other character types as described in N0918 =
96-0100 proposal 2 (with some changes) and proposal 4. In
particular:

-- remove insertors on the character type from basic_ostream
-- remove extractors on the character type from basic_istream
-- add global member template functions to insert char and other

characters and to extract other characters
-- use the ctype facet member function widen to perform the

conversion between char and other characters
-- allow insertion of signed char and unsigned char into streams

instantiated on char
-- allow extraction of signed char and unsigned char from streams

instantiated on char

Motion passed X3J16: 30 yes, 0 no.
Motion passed WG21: 7 yes, 0 no, 0 abstain.

34) Motion (to close various iostream issues) by le Mouel/Dawes:

Move we amend the WP as described in N0964 = 96-0146.

Motion passed X3J16: 30 yes, 0 no.
Motion passed WG21: 7 yes, 0 no, 0 abstain.

35) Motion (to revise conversions in codecvt facet) by le Mouel/Becker:

Move we amend the WP as described in N0955R1 = 96-0137R1.

Motion passed X3J16: 30 yes, 0 no.
Motion passed WG21: 6 yes, 0 no, 1 abstain.

36) Motion (to take actions on various issues as recommend by the
meeting of the Library WG in May) by le Mouel/Plum:

Move we amend the WP as described generally in N0914 = 96-0096 and
specifically in N0944 = 96-0126, N0945 = 96-0127, N0958 = 96-0140,
N0930 = 96-0112, N0954R1 = 96-0136R1, and N0946 = 96-0128 part 2
with the exception of issue 27-919.

Motion passed X3J16: 30 yes, 0 no.
Motion passed WG21: 7 yes, 0 no, 0 abstain.

37) Motion (to clarify the role of pos_type and off_type traits) by le
Mouel/Becker:

Move we amend the WP as described in N0957R1 = 96-0139R1.

Motion passed X3J16: 30 yes, 0 no.
Motion passed WG21: 7 yes, 0 no, 0 abstain.

38) Motion (to revise description of stringbuf) by le Mouel/Becker:

Move we amend the WP as described in N0963 = 96-0145.

Motion passed X3J16: 30 yes, 0 no.
Motion passed WG21: 7 yes, 0 no, 0 abstain.

39) Motion (to fix problems in string i/o operations) by le Mouel/Dawes:

Move we amend the WP as described in N0965 = 96-0147.

Motion passed X3J16: 30 yes, 0 no.
Motion passed WG21: 7 yes, 0 no, 0 abstain.

==== Library III (Becker) ====

40) Motion (to adopt various changes to clauses 23 through 26) by
Becker/Dawes:

Move we amend the WP as described in N0977 = 96-0159.

Motion passed X3J16: 30 yes, 0 no.
Motion passed WG21: 6 yes, 0 no, 1 abstain.

41) Motion (to close various issues without action) by Becker/Dawes:

Move we close the following library issues without taking any
action: 23-041, -044, -045, -048, -050, and -061 in N0916 = 96-0098;
issues 24-024, -028, -039, and -041 in N0915 = 96-0097; issues
25-004 and -014 in N0793 = 95-0193; issues 26-013, -015, -019, -020,
-021, -024, -025, -026, -027, -031, and -033 in N0934 = 96-0116.
Amend the WP by removing box 90, in accordance with closing issue
25-004.

Motion passed X3J16: 30 yes, 0 no.
Motion passed WG21: 7 yes, 0 no, 0 abstain.

42) Motion (to clean up empty sections in Clause 23) by Austern/Becker:

Move we amend the WP as described in N0966R1 = 96-0148R1, thus
closing issues 23-028 and 23-057.

Motion passed X3J16: 30 yes, 0 no.
Motion passed WG21: 6 yes, 0 no, 1 abstain.

43) Motion (to resolve various streambuf and stream iterator issues) by
Becker/Dawes:

Move we amend the WP as described in N0974 = 96-0156, thus closing
issue 24-029.

Motion passed X3J16: 30 yes, 0 no.
Motion passed WG21: 7 yes, 0 no, 0 abstain.

44) Motion (to correct the description of copy) by Becker/Dawes:

Move we amend the WP as described in the Proposed Resolution to
issue 25-006 in N0793 = 95-0193, thus closing issue 25-006.

Motion passed X3J16: 30 yes, 0 no.
Motion passed WG21: 7 yes, 0 no, 0 abstain.

45) Motion (to improve the usefulness of valarray) by le Mouel/Rumsby:

Move we amend the WP as described in N0962 = 96-0144, thus closing
issue 26-009.

Motion passed X3J16: 30 yes, 0 no.
Motion passed WG21: 7 yes, 0 no, 0 abstain.

==== Convener (Harbison) ====

46) Motion (to respond to the SC24/WG6 liason statement) by
Harbison/Bruck:

WG21 directs the convener to transmit document SC22/WG21/N0961R1 =
96-0143R1 as the response to the SC24/WG6 liason statement
SC24/N1577 = SC22/WG21/N0960 = X3J16/96-0142).

Motion passed WG21: 7 yes, 0 no, 0 abstain.

46b)Motion (to endorse the Convener’s Report and the schedule change) by
Harbison/Rumsby:

WG21 endorses the 1996 Convener’s Report to SC22 (N0959R1 =
96-0141R1), including the change to the schedule and the change of
convener.

Motion passed WG21: 7 yes, 0 no, 0 abstain.

47) Motion (to nominate Keld Simonsen as WG21 WWW maintainer) by
Harbison/Bruck:

WG21 authorizes Keld Simonsen to maintain WG21’s web-site within the
guidelines set down by SC22, and directs the Convener to report this
to SC22.

Motion passed WG21: 7 yes, 0 no, 0 abstain.

48) Motion (to distribute C++ documents within the C committee) by
Plum/Bruns:

WG21+X3J16 authorizes ISO/IEC JTC1/SC22/WG14 - C and the US Tech-
nical Committee X3J11 to make available electronic copies of the
WG21+X3J16 working draft and working documents to members of WG14
and X3J11 only. WG21+X3J16 directs its WG14 liaison to request that
WG14+X3J11 permit WG21+X3J16 to distribute C documents.

Motion passed X3J16: 30 yes, 0 no, 0 abstain.
Motion passed WG21: 6 yes, 0 no, 1 abstain.

49) Motion (to submit the WP for a second CD Ballot) by Plum/Lajoie:

WG21+X3J16 agree that the WP, after changes agreed to at this
meeting, incorporates all resolutions to national body comments
submitted during CD ballot. WG21+X3J16 state their intention to
forward the WP to SC22 for a second CD ballot after a satisfactory
review of the WP at their next regularly scheduled meeting.

Ball expressed concern that the synopsis of the motion (in parentheses)
was misleading. Anderson was concerned that there were still technical
problems with the draft that we would need to fix in November. Harbison
said it was hard to phrase this proposal more precisely, so he just
asked people to go along with it. Plum said we all agree to stop
outright invention, and we all agree to allow editorial correction. So
the gray area is somewhere in between.

Motion passed X3J16: 28 yes, 0 no, 3 abstain.
Motion passed WG21: 7 yes, 0 no, 0 abstain.

The committees thanked:
-- Jonsson and Ericsson for the hosting meeting.
-- Harbison for his work as WG21 convener.
-- Rumsby for all his work this week, particular on drafting the

motions.
-- Jim Dennert from SGI for help on the template proposal.
Applause.

11.2 Review action items, decisions made, and documents approved

11.3 Issues delayed until Friday

Gibbons explained that, at the last meeting, the committees approved
Lajoie’s rewrite of clause 14 with the understanding that the rewrite
was purely editorial. That is, if the rewrite included any substantive
changes appeared, they would be removed editorially. Gibbons reported
that there was one such substantive change regarding syntax checking for

templates, and it will be edited out.

12 Plans for the future

12.1 Next meeting

No discussion.

12.2 Mailings

Lajoie said she must receive documents by July 26 for them to make the
post-meeting mailing.

12.3 Following meetings

Harbison listed the dates and locations for the upcoming meetings:
-- 10-15 November 1996, Kona, Hawaii, USA hosted by Plum Hall
-- 9-14 March 1997, Nashua, New Hampshire, USA hosted by Digital
-- 13-18 July 1997, Guilford, UK, hosted by Programming Research
-- 9-14 November 1997 (location and host to be determined)
-- 8-13 March 1998, Sophia Anipolis, France hosted by AFNOR
-- 12-17 July 1998 (location and host to be determined)

13 Adjournment

Motion to adjourn passed WG21+X3J16: lots yes, 0 no.

The meeting adjourned at 12:10 on Friday.

Appendix A - Attendance

Name Affiliation M Tu W Th F

Dawes, Beman . V V V V V
Hesse, Joseph . A A A A A
Myers, Nathan . A A A A A
O’Riordan, Martin . A A A A A
Frennemo, Stefan ABB Industrial Systems A A A A A
Koenig, Andrew AT&T Research V V V V V
Stroustrup, Bjarne AT&T Research A A A A A
Becker, Pete Borland V V V V V
Tooke, Simon Canada A A A A
Charney, Reg Charney & Day V V V V
Whitman, Sandra Digital V V V V V
Simonsen, Keld DKUUG A A A
Bruck, Dag Dynasim AB V V V V V
Adamczyk, Steve Edison Design Group V V V V V
Anderson, Mike Edison Design Group A A A A A
Spicer, John Edison Design Group A A A A A
Jonsson, Fredrik Ericsson V V V V V
Gibbons, Bill Hewlett Packard V V V V V
Lajoie, Josee IBM V V V V V
Soop, Karl IBM Sweden A A A
Nelson, Clark Intel V V V V V
Suto, Gyuszi Intel A A A A
Schwarz, Jerry Intrinsa A A A A A
Andersson, Per Ipso Object Software V V V V V
Stuessel, Marc IST GmbH V V V V V
Kamimura, Tsutomu Japan A A A A
Koshida, Ichiro Japan A A A A A
Umekawa, Ryuichi Japan A A A A A
Munch, Max Lex Hack & Associates A A A A A
Bruns, John NationsBanc-CRT V V V V V
Corfield, Sean Object Consultancy Services V V V V V

Benito, John Perennial V V V V V
Plum, Tom Plum Hall V V V V V
Southworth, Mark Programming Research V V V V V
Wilcox, Thomas R. Rational Software V V V V V
Glassborow, Francis Richfords V V V V V
Le Mouel, Philippe Rogue Wave Software A A A A V
Smithey, Randy Rogue Wave Software V V V V
Vandevoorde, David RPI A A A A A
Saks, Dan Saks & Associates V V V V V
Rouse, Jack SAS Institute V V V V V
Schilling, Jonathan SCO V V V V V
Wengler, Christian SET Software Consulting V V V V V
Hartinger, Roland Siemens Nixdorf V V V V V
Unruh, Erwin Siemens Nixdorf A A A A A
Austern, Matthew Silicon Graphics V V V V V
Wilkinson, John Silicon Graphics A A A A A
Miller, William M. Software Emancipation Tech V V V V V
Ball, Mike Sun Microsystems V V V V V
Clamage, Steve Sun Microsystems A A A A A
Harbison, Sam Texas Instruments A A A A A
Rumsby, Steve UK A A A A A
Welch, Jim Watcom V V V V V
Plauger, P. J. WG14 A A A A
Crowfoot, Norm Xerox V V V V V

Total Voting Attendance 31 30 31 31 31
Total Attendance 54 52 54 55 50

