
1

Doc: X3J16/96-0100=WG21/N0918
Date: May 25, 1996
By: Philippe Le Mouël

Insertion and Extraction of
char, signed char, unsigned char

Description

The current WP does not specify the following:

• Insertion and Extraction of characters of type char into or from streams instantiated on other
character types.

 
• Insertion and Extraction of characters of type signed char or unsigned char into or from streams

instantiated on other character types.

Discussion

The problem of inserting and extracting char from streams instantiated on other character types can be
divided into two parts, technical and semantic. The technical part can be resolved by using partial
specialization, as pointed out by Jerry Schwarz. His solution is to remove the insertors on the character
type from basic_ostream and to replace them by the following global insertors:

template<class charT, class traits>
basic_ostream<charT, traits>& operator<< (basic_ostream<charT, traits>&, charT);

Inserts a character of type charT different from char into a stream instantiated on charT.

template <class charT, class traits>
basic_ostream<charT, traits>& operator<< (basic_ostream<charT, traits>&, char);

Inserts a tiny character into a stream instantiated on other character types.

template <class traits>
basic_ostream<char, traits>& operator<< (basic_ostream<char, traits>&, char);

Inserts a tiny character into a stream instantiated on tiny character.

template<class charT, class traits>
basic_ostream<charT, traits>& operator<< (basic_ostream<charT, traits>&, const  charT*);

template <class charT, class traits>
basic_ostream<charT, traits>& operator<< (basic_ostream<charT, traits>&, const char*);

template <class traits>
basic_ostream<char, traits>& operator<< (basic_ostream<char, traits>&, const char*);

The same scheme can be applied to extract tiny characters.



2

The remaining problem is to find the meaning of inserting or extracting tiny characters from or into an
arbitrary stream. A conversion needs to occur between tiny characters and characters of type charT. There
are several schemes that can be used to perform such a conversion:

• We can require the character type charT to have an explicit constructor taking a char argument; we
already have it for ‘/n’  and 0.

• We can use the locale ctype member functions widen and narrow to convert between tiny characters
and characters of type charT.

• We can use the codecvt facet member functions to convert between tiny characters and characters of
type charT.

The two last solutions are the most reasonable. If we use the ctype member functions widen and narrow,
we assume that the user wants to convert only between the code set used by its machine to encode tiny
characters, and the code set used to encode characters of type charT. Therefore, we do not consider the
case where inserting tiny characters has the meaning of inserting a multibyte sequence of characters, as in
reading shift JIS encoding from a file and converting it as Unicode internally. If we insert a null
terminated sequence of char we may want to treat it as a shift JIS multibyte sequence, and therefore use
the codecvt facet to perform the conversion.

If we look closely at the solution using the codecvt facet, we see that we have two locale objects used in
iostreams: The first one is located in the streambuf, and the second one in the stream. For design
consistency, we should use the one located in the stream, therefore the extra flexibility we gain translates,
to a new burden for the user, who has to take care of imbuing the right codecvt facet in the stream object.
We also need to be careful in resolving the iostreams issue 27-205. Imbuing in the stream object must
have no effect on the locale imbued in the streambuf.

The ideal solution is to use a combination of both schemes. With this approach, insertion and extraction of
tiny characters from or into streams instantiated on other character types, use the codecvt facet imbued in
the stream object to perform the conversion between tiny characters and characters of type charT. The
default behavior of the codecvt facet is-as using the ctype<charT> facet member functions narrow and
widen to perform the conversion between tiny characters and characters of type charT. This solution
allows users to attach particular meaning to the insertion and extraction of tiny characters, and still get a
reasonable default behavior.

Proposed resolutions

There are three proposed resolutions for this first problem:

1. Do not allow insertion or extraction of tiny characters from or into streams instantiated on some other
character types.

 
2. Allow insertion and extraction of tiny characters from or into streams instantiated on some other

character types. Resolve the technical aspect as described above by removing insertors and extractors
on the character type from respectively basic_ostream and basic_istream and adding global member
template functions to insert and extract characters. Resolve the semantic aspect by using the ctype
facet member functions widen and narrow to perform the conversion between characters of type char
and charT.

 
3. Same as 2 except for the semantic aspect, which is resolved by using the codecvt facet from the locale

object imbued in the stream to perform conversion between characters of type char and charT. By



3

default the conversion performed by the codecvt facet member functions is-as using the ctype facet
member functions narrow and widen.

Discussion

The second problem we have to deal with is the insertion and extraction of characters of type signed char
or unsigned char into or from streams instantiated on other character types. This problem is closely
related to the one presented above, and therefore the same comments and solutions apply. However, we
have to consider another possibility, which is to allow insertion and extraction only on streams
instantiated on tiny characters. This will maintain compatibility with the “old iostreams” library. This
option which maintains compatibility with the “old iostreams” library, would add the following global
template functions:

template <class traits>
basic_ostream<char, traits>& operator<< (basic_ostream<char, traits>&, unsigned char);

template <class traits>
basic_ostream<char, traits>& operator<< (basic_ostream<char, traits>&, signed char);

template <class traits>
basic_ostream<char, traits>& operator<< (basic_ostream<char, traits>&, const unsigned char*);

template <class traits>
basic_ostream<char, traits>& operator<< (basic_ostream<char, traits>&, const signed char*);

The same scheme can be applied to extract unsigned char and signed char.

Note: The semantic behavior of these functions is the same as in the “old iostreams” library.

Proposed resolutions

They are the same as the ones proposed in the case of  insertion and extraction of tiny characters in
arbitrary streams, plus the following:

4.   Allow insertion and extraction of signed char and unsigned char only from or into streams
instantiated on tiny characters (as described above).


