
WG21/N0915
X3J16/96-0097

Clause 24 (Iterators) Issues List (Rev. 3)

David Dodgson
dsd@tr.unisys.com

UNISYS

The following list contains the issues for Clause 24 on Iterators. The list is divided based upon the status of the issues. The status is either active - under
discussion, resolved - resolution accepted but not yet in the working paper, closed - working paper updated, or withdrawn - issue withdrawn or rejected. They
are numbered chronologically as entered in the list. Only the active and resolved issues are presented here. Those wishing a complete list may request one.

The proposed resolutions are my understanding of the consensus on the reflector.

1. Revision History
 Revision 0 - 5/26/95 pre-Monterey N0702/95-0102
 Revision 1 - 9/25/95 pre-Tokyo N0773/95-0173
 Revision 2 - 11/30/95 pre-Santa Cruz N0832/96-0014
 Revision 3 - 5/23/96 pre-Stockholm N0915/96-0097

2. Active Issues

--
 Work Group: Library Clause 24
 Issue Number: 24-021
 Title: Separate Header for Stream Iterators
 Section: 24.4
 Status: active
 Description:
 From public review:
 Drawing iostream into an implementation that just needs iterators
 is most unfortunate.

 The current iterator header includes headers <ios> and <streambuf>
 to handle the stream iterators in 24.4. This requires all of I/O
 to be included in the iterators header. Yet I/O only needs this if
 the iterators are used.

 If a new header is used should it be in clause 24 or in clause 27?
 Is <iositer> a good name for the new header?
 Should the stream iterators be incorporated into current I/O headers?

 From Nathan Myers:
 Message c++std-lib-4174
 There are natural places for each of these iterator templates.
 Move istream_iterator<> to <istream>.
 Move ostream_iterator<> to <ostream>.
 Move istreambuf_iterator<> and ostreambuf_iterator<> to <streambuf>.
 Add forward declarations of all four to <iosfwd>.

 Proposed Resolution:
 Move the stream iterators into the I/O headers.

 Remove #include's for iosfwd, ios, and streambuf from 24.1.6
 [lib.iterator.tags] Header <iterator> synopsis and tags for
 subclause 24.4.

WG21/N0915 Clause 24 Issues List 2 of 10
X3J16/96-0097
__

 Move istream_iterator to <istream>, ostream_iterator to <ostream>,
 and the streambuf iterators to <streambuf>. Add forward
 declarations of all four to <iosfwd>. Add #include <iterator> in
 these headers.

 Requestor: Public Review & Library WG
 Owner: David Dodgson (Iterators)
 Emails: lib-4174,4186,4191,4199,4202
 Papers:

--
 Work Group: Library Clause 24
 Issue Number: 24-024
 Title: Operator ->* Issues for Iterators
 Section: 24.1.3, 24.1.1
 Status: active
 Description:
 24.1.1, 24.1.3 p24-2,4:
 Should operator->* be added for iterators?
 Section 14.3.3 [temp.opref] specifically allows operator-> to
 appear in a template where its return type cannot be dereferenced
 if it is not used. No such guarantee is made for operator->*.
 If operator->* is desired, the same guarantee should be made.

 A proposal to change the core language to have operator->* work
 in a similar fashion to operator-> was rejected at the Santa Cruz
 meeting.

 Including operator->* in an iterator (or auto_ptr) requires a
 series of member templates, helper classes, and partial
 specialization.

 Does operator-> work correctly for input iterators? (*a can
 return an rvalue).

 Resolution:
 Requestor: Library WG
 Owner: David Dodgson (Iterators)
 Emails: lib-4301,4559-4560
 Papers:

--
 Work Group: Library Clause 24
 Issue Number: 24-028
 Title: Const Attribute in Iterator Requirements
 Section: 24.1
 Status: active
 Description:
 24.1:
 The tables in Clause 24 of Iterator Requirements include
 mutative operations such as ++ and =, but make no mention
 of constness. We should distinguish which operations require
 a non-const operand and which can be performed on a const
 operand. (e.g. is *a allowed on a const iterator?)

 Proposed Resolution:
 All operations found in the tables can be applied to const
 operands except: ++a a++ --a a-- a= a+= a-=.

 Requestor: Nathan Myers
 Owner: David Dodgson (Iterators)
 Emails: lib-4172
 Papers:

--
 Work Group: Library Clause 24
 Issue Number: 24-029
 Title: Streambuf Iterator Issues

WG21/N0915 Clause 24 Issues List 3 of 10
X3J16/96-0097
__

 Section: 24.1.6 and 24.4
 Status: active
 Description:
 24.1.6 header and 24.4 on streambuf iterators:
 These issues are raised by P.J. Plauger in N0795:

24.1.6:
Class istreambuf_iterator should be declared with public base
class input_iterator. There is then no need to add a special
signature for iterator_category (which is missing from the
<iterator> synopsis).

24.1.6:
Template operator==(istreambuf_iterator) should not have
default template parameters.

24.1.6:
Template operator!=(istreambuf_iterator) is ambiguous in the
presence of template operator!=(const T&, const T&). It should
be struck.

24.1.6:
Class ostreambuf_iterator should be declared with public base
class output_iterator. There is then no need to list a special
signature for iterator_category.

24.1.6: (Done 1/96)
Template operator==(ostreambuf_iterator) and corresponding
operator!= are nonsensical and unused. They should be struck.

24.4.3: (Withdrawn 3/96)
istreambuf_iterator should have a member ``bool fail() const''
that returns true if any extractions from the controlled
basic_streambuf fail. This is desperately needed by istream
to restore its original approved functionality when these

iterators are used with facet num_get.

24.4.3.2:
istreambuf_iterator(basic_istream s) should construct an
end-of-stream iterator if s.rdbuf() is null. Otherwise, it
should extract an element, as if by calling s->rdbuf()->sgetc(),
and save it for future delivery by operator*(). (Lazy input,
however, should be permitted.)

24.4.3.2: (Done 1/96)
istreambuf_iterator(basic_streambuf *) has no description

24.4.3.3: (Done 1/96)
istreambuf_iterator::operator*() should deliver a stored
element, or call sgetc() on demand, then store the element.
It should *not* extract a character, since this violates the
input_iterator protocol.

24.4.3.4: (Done 1/96)
istreambuf_iterator::operator++() Effects should say that it
alters the stored element as if by calling s->snextc(), where
s is the stored basic_streambuf pointer.

24.4.3.7:
template operator==(istreambuf_iterator&, istreambuf_iterator&)
should have const operands.

24.4.3.8:
template operator!=(istreambuf_iterator&, istreambuf_iterator&)
should have const operands. It also is ambiguous in the presence
of template<class T> operator!=(T, T) (as are many operators
in the library).

24.4.4: (Done 1/96)
ostreambuf_iterator::equal is silly, since output iterators
cannot in general be compared. It should be struck.

WG21/N0915 Clause 24 Issues List 4 of 10
X3J16/96-0097
__

24.4.4: (Done 1/96)
ostreambuf_iterator should remove all references to equal, operator==,
and operator!=. Output iterators cannot be compared.

24.4.4: (Done 1/96)
ostreambuf_iterator should have a member ``bool fail() const''
that returns true if any insertions into the controlled
basic_streambuf fail. This is desperately needed by ostream
to restore its original approved functionality when these
iterators are used with facet num_put.
ostreambuf_iterator should add the member `bool failed() const',
which returns true only if an earlier insertion failed. It is needed
by num_put in 22.2.2.2 to communicate insertion failures to inserters
in 27.6.1.2. With this change, I believe the following example inserter
from basic_ostream satisfies all the exception-handling requirements
in the current draft:

Mytype& operator<<(long X)
 {iostate stat = goodbit;
 if (opfx())
 {const Myfacet& fac = use_facet<Myfacet>(getloc());
 try {
 if (fac.put(Myiter(rdbuf()), Myiter(0), (ios_base&)*this,
 stat, X).failed()
 stat |= badbit; }
 catch (...) {
 setstate(badbit, Rethrow); }} // added argument
 osfx();
 setstate(stat);
 return (*this); }

24.4.4.1: (Done 1/96)
ostreambuf_iterator::ostreambuf_iterator() produces a useless
object. It should be struck.

24.4.4.1:
ostreambuf_iterator;:ostreambuf_iterator(streambuf *) should
require that s be not null, or define behavior if it is.

24.4.4.2: (Done 1/96)
ostreambuf_iterator::equal is not needed and should be struck.

24.4.4.3: (Done 1/96)
ostreambuf_iterator::operator== is silly, since output iterators
cannot in general be compared. It should be struck.

24.4.4.3: (Done 1/96)
ostreambuf_iterator::operator!= is silly, since output iterators
cannot in general be compared. It should be struck.

 Resolution: Resolution as suggested in N0795
 Requestor: Bill Plauger
 Owner: David Dodgson (Iterators)
 Emails: lib-4299,4404,4406-4407,4409-4412
 Papers: pre-Tokyo N0795

--
 Work Group: Library Clause 24
 Issue Number: 24-038
 Title: Removal of proxy class
 Section: 24.4.3 [lib.istreambuf.iterator]
 Status: active
 Description:
 24.4.3:

 The changes to input iterator semantics make the proxy class
 an implementation detail. It should not be required as part
 of the standard.

WG21/N0915 Clause 24 Issues List 5 of 10
X3J16/96-0097
__

From P.J. Plauger in N0795:
24.4.3:
istreambuf_iterator should remove all references to proxy, whether
or not Koenig's proposal passes to make more uniform the definition
of all input iterators. It is over specification.

24.4.3.1:
istreambuf_iterator::proxy is not needed (once istreambuf_iterator
is corrected as described below). It should be removed.

24.4.3.2:
istreambuf_iterator(const proxy&) should be removed.

24.4.3.4:
istreambuf_iterator::operator++(int) Effects should say that it
saves a copy of *this, then calls operator++(), then returns
the stored copy. Its return value should be istreambuf_iterator,
not proxy.

Editorial box 69 suggests that proxy be replaced by an opaque
unnamed type.

 Resolution:
 Requestor: David Dodgson
 Owner: David Dodgson (Iterators)
 Emails:
 Papers: N0795, Updated Issues List for Library, pre-Tokyo
 N0833, Proposed Iterators Changes, pre-Santa Cruz

--
 Work Group: Library Clause 24
 Issue Number: 24-039
 Title: Return Type of operator* in istreambuf_iterator
 Section: 24.4.3

 Status: active
 Description:
 24.4.3 24.4.3.3:
The istreambuf_iterator operator* function is declared as returning
char T and its description says it returns the result of sbuf_->sgetc().
However sgetc() returns int_type, so the risk of data truncation exists.

 Proposed Resolution:
 Change the return type for operator* in 24.4.3 and 24.4.3.3
 to traits::int_type.
 Requestor: Cathy Kimmel (kimmel@decc.enet.dec.com)
 Owner: David Dodgson (Iterators)
 Emails:
 Papers:

--
 Work Group: Library Clause 24
 Issue Number: 24-040
 Title: Header Synopsis Includes
 Section: 24.1.6 [lib.iterator.synopsis]
 Status: active
 Description:
 24.1.6 p11:
 From lib-4691:
 Several public comments pointed out that the C++ header synopsis
 #includes of other C++ headers were not correct.

 In the table below, included headers are marked with a single + where
 Judy proposes adding them to the #includes for the indicated header.
 A double ++ indicates that a German public comment also proposed the
 addition. Includes for headers marked with a - are proposed for
 removal, while those with neither a + or - are to remain unchanged.

 24 iterator
 + istream

WG21/N0915 Clause 24 Issues List 6 of 10
X3J16/96-0097
__

 + ostream
 + functional
 - iosfwd
 - ios
 - streambuf
 cstddef

 Proposed Resolution:
 + istream
 basic_istream is referenced in istream_iterator and
 istreambuf_iterator
 + ostream
 basic_ostream is referenced in ostream_iterator and
 ostreambuf_iterator
 + utility
 utility is used for char_traits and for the library !=
 operator (note: functional is not used)
 - iosfwd
 not referenced because of the istream/ostream references
 - ios
 the stream iterators now reference char_traits
 streambuf
 istreambuf_ and ostreambuf_ iterators both reference
 basic_streambuf ???

 Requestor: Judy Ward / Beman Dawes
 Owner: David Dodgson (Iterators)
 Emails: lib-4691
 Papers:

--
 Work Group: Library Clause 24
 Issue Number: 24-041
 Title: Distance Type for Output Iterators
 Section: 24.1.6

 Status: active
 Description:
 24.1.6:
 All iterators except output iterator use distance type. Input
 iterators have no distance per se but the distance_type is used
 as a count type for certain algorithms. A count type would
 also be useful for certain algorithms using output iterators.
 The proposal is to define distance_type for output iterators.

 The recent addition of the iterator_traits proposal defines a
 separate template iterator for definition of the types associated
 with an iterator. Currently category, value, and distance are
 the types defined. To have distance not defined for output
 iterators will require a partial specialization. It is a cleaner
 and more consistent interface to allow distance to be specified
 for all types of iterators.

 Resolution: See paper 96-0091/N909
 Requestor: Angelika Langer
 Owner: David Dodgson (Iterators)
 Emails:
 Papers: X3J16/96-0091 WG21/N0909

3. Resolved Issues
--
 Work Group: Library Clause 24
 Issue Number: 24-003
 Title: const operation for iterators
 Section: 24.3
 Status: resolved
 Description:
 24.3.1 p24-13 Box 108
 Suggest that the operator *() for STL iterators be made
 into a const operation.

WG21/N0915 Clause 24 Issues List 7 of 10
X3J16/96-0097
__

 The function
 void fn (const ReverseIterator & x) {
 ...
 y = x*;
 ...
 }
 shows that the operation * is not defined as const in the
 reverse_iterator (DRAFT 20 Sept 1994, 24.2.1.2). However, the
 body of the function does not modify the iterator object.

 Of course, const Iterator is different from const_iterator and from

 This change was accepted in Monterey (see N740). However, in
 box 108, Corfield says it seems wrong to have const member
 functions return a reference or a pointer to non-const T. He
 believes this should be reconsidered for operator* and operator->.

 It has been further suggested in public review that const should
 also be used the descriptions in 24.3.1.2.2 and 24.3.1.2.3.
 (Editorial if accepted.) Also, the same decisions should be made
 for reverse_iterator in 24.3.1.3, 24.3.1.4.2, and 24.3.1.4.3.

 The changes to make const uniform were accepted in Santa Cruz.
 Sean Corfield has withdrawn his comments.

 Proposed Resolution:
 Both base() and operator*() should be const.
 Accepted in Monterey - N740

 As stated above, there is a difference between const iterator and
 const_iterator. The template parameters must specify const if
 const T is desired.

 Reverse_iterator should be treated the same as
 reverse_bidirectional_iterator.

 Further changes were accepted in Santa Cruz - N0833

 Requestor: Bob Fraley <fraley@porter.hpl.hp.com>
 David Olsen (public review comment #17)
 Owner: David Dodgson (Iterators)
 Emails: c++std-lib-3135
 Papers: N740 - Small Changes
 N833 - Proposed Iterators Changes

--
 Work Group: Library Clause 24
 Issue Number: 24-006
 Title: Relaxing Requirement on Iterator++ Result
 Section: 24.4.3
 Status: resolved
 Description:
 24.4.3 p24-23
 The return type of operator++ for istreambuf_iterator is listed
 as 'proxy'. This suggestion is to make the return type an object
 which is "convertible to const X&" rather than "X&".
 Resolution: accepted in Austin
 Requestor: Nathan Myers
 Owner: David Dodgson (Iterators)
 Emails:
 Papers: 95-0021/N0621 (Pre-Austin mailing)

--
 Work Group: Library Clause 24
 Issue Number: 24-007
 Title: Fixing istreambuf_iterator
 Section: 24.4.3
 Status: resolved
 Description:

WG21/N0915 Clause 24 Issues List 8 of 10
X3J16/96-0097
__

 24.4.3 p24-23:
 Proposes the addition to istreambuf_iterator of
 inline istreambuf::proxy::operator istreambuf_iterator()
 { return sbuf_; }
 to better conform to the Forward Iterator specification.
 Resolution: accepted in Austin
 Requestor: Nathan Myers
 Owner: David Dodgson (Iterators)
 Emails:
 Papers: 95-0022/N0622 (Pre-Austin mailing)

--
 Work Group: Library Clause 24
 Issue Number: 24-013
 Title: Const declaration of operator[]
 Section: 24.3.1.3 [lib.reverse.iterator]
 Status: resolved
 Description:
 24.3.1.3 p24-15.16: [Box 109] and
 24.3.1.4.11 p24-19: [Box 110]
 Should operator[] of reverse_iterator be specified as const?
 Proposed Resolution:
 Same resolution as issue 3 (Box 108 in lib.reverse.bidir.iter
 section 24.3.1.1 for reverse_bidirectional_iterator)

 This was accepted and added to the working paper. Box 109 from
 Corfield states that he thinks it is wrong to return a non-const
 T from a const member function.

 Again, this should be resolved as issue 3.

 This was accepted in Santa Cruz

 Resolution: specified as const - See N740
 Requestor: Editorial box

 Owner: David Dodgson (Iterators)
 Emails:
 Papers: Small Changes, 95-0140/N0740, David Dodgson, post-Monterey
 Proposed Iterators Changes, 96-0015/N0833R1, post-Santa Cruz

--
 Work Group: Library Clause 24
 Issue Number: 24-030
 Title: Distance Requirement
 Section: 24.2.6
 Status: resolved
 Description:
 24.2.6 p24-12 [lib.operator.operations]:

24.2.6:
Template function distance should have the requirement that last
is reachable from first by incrementing first.

 Resolution: As suggested
 Requestor: Bill Plauger
 Owner: David Dodgson (Iterators)
 Papers: N0833R1 - Proposed Iterators Changes, post - Santa Cruz

--
 Work Group: Library Clause 24
 Issue Number: 24-032
 Title: Insert Iterator Issues
 Status: resolved
 Description:
 24.3.2 p24-18 [lib.insert.iterator]:

24.3.2.3:
Template class front_insert_iterator should not have a Returns clause.

WG21/N0915 Clause 24 Issues List 9 of 10
X3J16/96-0097
__

24.3.2.5:
insert_iterator::operator++(int) returns a reference to *this,
unlike in other classes. Otherwise, the update of iter by
operator= gets lost.

24.3.2.6.5:
Declaration for template function inserter is missing second
template argument, class Iterator. It is also missing second
function argument, of type Iterator.

 Resolution:
 Requestor: Bill Plauger
 Owner: David Dodgson (Iterators)
 Emails:
 Papers: N0833R1 - Proposed Iterators Changes, post Santa Cruz

--
 Work Group: Library Clause 24
 Issue Number: 24-033
 Title: Iterator Category Defintion
 Section: 24.1.6 [lib.iterator.tags]
 Status: resolved
 Description:
 24.1.6:
 Iterator tags could be related by inheritance. Doing so would allow
 a more generic solution to algorithms which are multiply defined
 based on iterator category. For example, it might be possible to
 define to versions of an algorithm, one based on output_iterator and
 one based on forward_iterator. Iterator categories which inherit
 from forward_iterator could use the second algorithm. If the
 categories are inherited, then the based classes should use
 inheritance.

 It may also be desirable to provide a mechanism to indicate
 whether an iterator is constant or mutable. Different algorithms

 on iterators could be used if this information was available.

 Resolution: Inheritance in iterator tags accepted in N833R1
 accepted in Santa Cruz.
 input -> forward -> bidirectional -> random
 Requestor: Angelika Langer
 Owner: David Dodgson (Iterators)
 Emails: lib-4305,4308,4312,4315
 Papers: N0833, Proposed Iterators Changes, pre-Santa Cruz

--
 Work Group: Library Clause 24
 Issue Number: 24-034
 Title: Reverse Iterator Description [Box 107]
 Section: 24.3.1 [lib.reverse.iterators]
 Status: resolved
 Description:
 24.3.1 p24-13 p3:
 Box 107 (from Corfield) states that the description for a reverse
 iterator return type should specify the return type, not a reference.
 The Reference and Pointer parameters include the appropriate type
 definitions.
 This paragraph appears to be a holdover from before the parameters
 for the template were reworded. This paragraph should be
 reworded to conform to the new parameters.

 Requestor: Editorial Box
 Owner: David Dodgson (Iterators)
 Emails:
 Papers: N833R1 - Proposed Iterators Changes, post Santa Cruz

--
 Work Group: Library Clause 24
 Issue Number: 24-035

WG21/N0915 Clause 24 Issues List 10 of 10
X3J16/96-0097
__

 Title: Typos in 26 Sept. 95 Draft
 Section: 24.1.6, 24.3.1.4.15
 Status: resolved
 Description:
 24.1.6 p11:
 After paragraph 11 the following title appears:
 Header <iterator> synopsislib.iterator.synopsis
 <- bold - - - - -><- normal - - - ->
 Either the additional wording was added unintentionally or an
 attempt was made to add a header. Since the synopsis does not
 belong in the previous section (Iterator tags), a new header
 should be added. Other clauses seem to have a separate header
 before the synopsis, perhaps "Iterator classes" would serve?

 24.3.1.4.15:
 The header for 24.3.1.4.15 [lib.reverse.iter.opsum] states
 it is "operator==" when it should be "operator+". Operator==
 has already been defined and the code in this section is for
 operator+.

 Resolution:
 Add a new header before the synopsis.
 Change the header for 24.3.1.4.15 to operator+.
 Requestor: David Dodgson
 Owner: David Dodgson (Iterators)
 Emails:
 Papers: N833R1 - Proposed Iterators Changes, post Santa Cruz

--
 Work Group: Library Clause 24
 Issue Number: 24-037
 Title: Iterator Traits
 Section: 24.
 Status: resolved
 Description:

 24.:
 Define the types governing iterators in an iterator_traits class.
 template <class Iterator> struct iterator_traits {
 typedef Iterator::distance_type distance_type;
 typedef Iterator::value_type value_type;
 typedef Iterator::iterator_category iterator_category; }

 The types for any iterator could then be referenced as:
 iterator_traits<Iter>::distance_type ...;

 Partial specialization would be used for pointer types:
 template <class T> struct iterator_traits<T*> {
 typedef ptrdiff_t distance_type;
 typedef T value_type;
 typedef random_access_iterator_tag iterator_category; }

 Additionally, the current base classes for iterators would be
 replaced by:
 template <class Category, class T, class Distance=ptrdiff_t >
 struct iterator {
 typedef Distance distance_type;
 typedef T value_type;
 typedef Category iterator_category; }
 which would be used as:
 class MyIter:public iterator<bidirectional_iterator_tag,
 double, long> { ... }

 Resolution: Accepted in Santa Cruz
 Requestor: Bjarne Stroustrup, Alex Stepanov, Matt Austern
 Owner: David Dodgson (Iterators)
 Emails:
 Papers: N847,Bring Back the Obvious Definition of Count, pre-Santa
Cruz

