
WG21/N0910 X3J16/96-0092 1

Simpli�cation of reverse iterator adaptors

Matthew Austern (austern@sgi.com) Angelika Langer (langer@roguewave.com)
Alexander Stepanov (stepanov@mti.sgi.com)

May 29, 1996

Abstract

Recent language and library changes make it possible to simplify x24.3.1 [lib.reverse.iterators].
It is possible to eliminate the class reverse bidirectional iterator entirely, without loss of
any functionality.

1 Types of reverse iterators

Reverse iterator adaptors, de�ned in x24.3.1 [lib.reverse.iterators] of the January WP, allow
iteration through a range in reverse order. A reverse iterator has some underlying iterator
(accessible through the member function base()); incrementing a reverse iterator is implemented
by decrementing its corresponding base iterator, and vice versa.

Decrementing an iterator is not part of the requirements for input iterators, output iterators,
or forward iterators, so reverse iterator adaptors are de�ned only for underlying iterators that are
bidirectional iterators or random access iterators. The template class reverse bidirection-

al iterator is to be instantiated with a bidirectional iterator type, and the template class
reverse iterator is to be instantiated with a random access iterator type.

In fact, the two classes are remarkably similar. The di�erences are as follows.

� The �rst template paramater is called BidirectionalIterator for reverse bidirec-

tional iterator and RandomAccessIterator for reverse iterator, thus implying (al-
though in fact it is never stated explicitly) that they must satisfy, respectively, the require-
ments of bidirectional iterators and random access iterators.

� reverse bidirectional iterator is derived from iterator<bidirectional iterator tag,

T, Distance> (in the January WP it is derived from bidirectional iterator<T,Dist-

ance>, but this was changed by the iterator traits proposal), while reverse iterator

is derived from iterator<random access iterator tag, T, Distance>.

� reverse iterator contains de�nitions for operators +, +=, -, -=, and [], but reverse bi-

directional iterator does not. These operators are supported by random access itera-
tors, but not by bidirectional iterators.

The �rst of these items is essentially a documentation issue, while the other two are small
enough that it is reasonable to merge the two classes into a single class reverse iterator. Its



WG21/N0910 X3J16/96-0092 2

template parameter Iterator could be either a bidirectional iterator or a random access iterator,
and its base class would be iterator<iterator traits<Iterator>::iterator category, T,

Distance>. The class would contain operators +, +=, -, -=, and [].
Since unused member functions of template classes are not instantiated, it would not be an

error to instantiate reverse iterator with a bidirectional iterator so long as only those opera-
tions supported by bidirectional iterators are used. We therefore propose to eliminate the class
reverse bidirectional iterator, and to allow the template parameter of reverse iterator

to be a bidirectional iterator. Note that this is essentially the status quo as far as the class
reverse iterator is concerned. The only real change that we are proposing is to change its
iterator category tag from always being random access iterator tag to matching the category
tag of the iterator type with which it is instantiated.

2 Simpli�cation of reverse iterator

An entirely separate issue is that reverse iterator does not actually have a single template
parameter, but rather �ve. The complete declaration in the January WP is

template<class RandomAccessIterator,

class T,

class Reference = T&,

class Pointer = T*,

class Distance = ptrdiff_t>.

The iterator traits proposal added iterator traits<RandomAccessIterator>::val-

ue type as a default for the template parameter T, but made no other changes. In the absence
of iterator traits, the additional four template parameters are necessary: they cannot be
derived from RandomAccessIterator. The iterator traits proposal, however, removes this
necessity.

Keeping these four parameters makes reverse iterator more exible, but we know of no
situation where this additional exibility is actually of any use. We don't know of any reason for
de�ning a reverse iterator whose value, reference, pointer, and distance types are di�erent from
those of the underlying iterator. In the interests of simplicity, we therefore propose to change

reverse iterator to be a template class parameterized only by the iterator type.
Iterator traits provide value type and distance type but not reference or pointer types;

the most sensible way to deal with this problem is simply to add them to iterator traits.
This implies that they should also be added to the base struct iterator, since the whole purpose
of iterator is to provide a set of typedefs used by iterator traits.

3 Working paper changes

The basic changes are the elimination of reverse bidirectional iterator, the elimination
of reverse iterator's four extra template parameters, and the addition of extra typedefs to
iterator traits and iterator. A few other changes follow mechanically: the WP must be
changed in every place where one of those classes is mentioned.



WG21/N0910 X3J16/96-0092 3

3.1 Elimination of reverse bidirectional iterator

� Strike x24.3.1.1 [lib.reverse.bidir.iter] and x24.3.1.2 [lib.reverse.bidir.iter.ops]. Remove
mention of the class reverse bidirectional iterator from the library introduction.

3.2 Changes to iterator traits and iterator

� Add typedefs pointer and reference to iterator traits, and to the specialization of
iterator traits for pointers.

� Change the declaration of iterator from

template<class Category, class T, class Distance = ptrdiff_t>

struct iterator

{

typedef T value_type;

typedef Distance distance_type;

typedef Category iterator_category;

};

to

template<class Category, class T, class Distance = ptrdiff_t,

class Pointer = T*, class Reference = T&>

struct iterator

{

typedef T value_type;

typedef Distance distance_type;

typedef Pointer pointer;

typedef Reference reference;

typedef Category iterator_category;

};.

3.3 Changes to reverse iterator

� Change the declaration of reverse iterator so that it only has a single template param-
eter, Iterator.

� Change reverse iterator so that its base class is

iterator<iterator_traits<Iterator>::iterator_category,

iterator_traits<Iterator>::value_type,

iterator_traits<Iterator>::distance_type,

iterator_traits<Iterator>::pointer,

iterator_traits<Iterator>::reference>.

� Throughout x24.3.1.3 [lib.reverse.iterator] and x24.3.1.4 [lib.reverse.iter.ops], replace Ran-
domAccessIterator by Iterator.



WG21/N0910 X3J16/96-0092 4

� Add a requirements section saying that the template argument Iterator must be a
bidirectional iterator or a random access iterator and that, additionally, the operators +,
+=, -, -=, and [] have the requirement that Iterator must be a random access iterator.

� In x21.1.1.3 [lib.basic.string], x23.2.2 [lib.deque], x23.2.3 [lib.list], and x23.2.5 [lib.vector],
x23.2.6 [lib.vector.bool], x23.3.1 [lib.map], x23.3.2 [lib.multimap], x23.3.3 [lib.set], and
x23.3.4 [lib.multiset], change the reverse iterator and const reverse iterator type-
defs so that they only take the single template argument iterator and reverse iterator,
respectively.

� In table 62, in x23.1 [lib.container.requirements], change the assertion column entries for
X::reverse iterator and X::const reverse iterator to reverse iterator<iterator>

and reverse iterator<const iterator>, respectively.

3.4 Changes to other iterators

� In x20.4. [lib.memory] change the base class of raw storage iterator from iterator<out-

put iterator tag, void, void> to iterator<output iterator tag, void, void, void,

void>.

� In x24.3.2. [lib.insert.iterators] change the base classes of back insert iterator, front in-

sert iterator and insert iterator from iterator<output iterator tag, void, void>

to iterator<output iterator tag, void, void, void, void>.

� In x24.4.2 [lib.ostream.iterator] and x24.4.4 [lib.ostreambuf.iterator], change the base classes
of ostream iterator and ostreambuf iterator from iterator<output iterator tag,

void, void> to iterator<output iterator tag, void, void, void, void>.

� In x24.4.1 [lib.istream.iterator] change the base class of istream iterator from iter-

ator<input iterator tag, T, Distance> to iterator<input iterator tag, T,Dist-

ance, const T*, const T&>.

� In x24.4.3 [lib.istreambuf.iterator] change the base class of class istreambuf iterator

from iterator<input iterator tag, charT, Distance> to iterator<input iterator tag,

charT, Distance, charT*, charT&>.


