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1. Introduction

We present a proposal for a new model of template compilation.
We believe this model is an improvement on both of the existing
models, i.e. the "separation" model of the WP, and the "inclusion"
model of many of today’s implementations.  The key to this improvement
is simpler, better-defined, and less context-dependent name lookup
rules.

The proposal simplifies producing an efficient implementation
of separate compilation, because the new name lookup rules restrict the
amount of template definition context which must be retained and merged
for later instantiation, and allow context-insensitive lookup of names
from the instantiation context.  At the same time, we expect the new
name lookup rules to alleviate the name leakage from the definition
context into instantiations that is a problem with current inclusion
implementations, without preventing a compile-time implementation
nearly as efficient as current full-inclusion implementations.
Finally, we believe that true separate compilation, in which object
modules can be combined without access to source, is also practical
with the new model.

The significant changes from the previous revision (7, in the Stockholm
mailing) are summarized at the end of this message.

1.1 Concepts and Terminology

This subsection is intended as a conceptual framework for the
proposal, not as part of the proposal.

A template ’tmp’ is defined in some translation unit.  We refer to
the full set of declarations visible at the point where tmp is
defined as the "definition context" of tmp.

We refer to the full set of declarations visible at the point of
instantiation of a template as its "instantiation context."  See
Section 3.1 for a definition of the point of instantiation.

When a template tmp1, instantiated in a function f, instantiates
another template tmp2, there are sometimes definitions in the
definition context of tmp1 that a programmer may want to make
available to tmp2.  We regard this as a rare case, and provide
special syntax for it.  We call this situation (instantiation of
tmp2 by a template tmp1) an "indirect instantiation," and we call
the special set of declarations which tmp1 furnishes to tmp2 an
"intermediate context."



The primary focus of this proposal is on specifying
which declarations, from the various contexts involved, may be
used to resolve functions and operators invoked in the body of
the template definition.  We classify the names to be resolved
into two categories:  dependent names, which depend for their
interpretation on the template arguments, and non-dependent names,
which do not.  "Phase 1" resolves non-dependent names.  "Phase 2"
resolves dependent names.

(These distinctions are already present in the Working Paper, but
our definition of "dependent name" is new.)

1.2 Summary of the Proposal

The key features of our proposal are:

A. Definition context precedence:  Non-dependent names are resolved
using only the template definition context.  These names are
identified using a more precise definition of the concept of
dependent names.  (See Section 2.)

Rationale:  If template writers reference types that are
entirely known in the template definition context, we presume
that they know the operations they intend to apply, and that
any contributions from the template users’ contexts would be
accidental.  From an implementation perspective, it is useful to
be able to process such references when the definition is first
encountered, without knowledge of any possible instantiation
contexts.

B. Dependent name resolution:  Dependent names are resolved using
a generalization of Koenig’s operator resolution rule,  using
the definition context and the namespaces of the argument types.
There may also be a contribution from intermediate contexts, but
any such contribution must be explicit.  (See Section 3).

Rationale:  Use of names from the instantiation context makes
instantiation highly dependent on that context, and accordingly
makes ODR implications extremely difficult.  Restricting
dependent name resolution to functions or operators closely
linked to the argument types is much cleaner and makes true
separate compilation much easier to implement efficiently.

>From an implementation perspective, given the massive contexts
commonly #included in C++ programs, it is important to limit how
much of the definition context must be remembered for later use
in indirect instantiations of other templates that it induces.
Restricting this intermediate context both limits the sizes of
files containing template definitions for separate compilation
and limits name leakage between definition contexts.

C. Separate vs. compile-time instantiation:  An instantiation may
occur in the context of a given translation unit at any point
after any point of instantiation with given argument types,
or it may take place in a global context with access to
full namespaces, as described in Section 3.4 below.  If the choice
makes a difference, the program behavior is undefined.

Rationale:  We want a compile-time implementation to be able to
compile an instantiation either the first time it sees a request,
or at the end of the translation unit after it has collected all of
the requests and possibly looked up definitions from other files,
without saving subsets of the translation unit’s declarations.  We
also want a separate compilation implementation to be oblivious to
the precise point of instantiation of a template.



D. A template body may use only declarations with external
linkage for dependent name resolution.

Rationale:  For efficient separate compilation (by which we mean
the truly separate case where source is not available), it
is important to limit the amount of context that must be saved
with an instantiation request.  This suggests depending only on the
information in the external symbol table of object files.

E. A template definition is not visible outside a translation
unit where it is defined unless it is explicitly declared
"extern" to make it visible externally.  (See Section 4.1.)
Implementations may place compilation-order restrictions on
separately-compiled templates.  (See Section 4.2.)

Rationale:  Requiring extern declarations allows a compile-time
implementation to avoid unnecessarily "remembering" templates
defined entirely within header files.  The compilation-order
restrictions allow such an implementation to easily locate the
definitions required by an instantiation.

2.  Dependent Names

The key issue in template instantiation is the resolution of names
to specific functions and operators.  Names whose resolution
depends on the template arguments are called "dependent" names,
and we now describe how to distinguish such names syntactically.

The following is a proposed replacement for the definition of
dependent names in Revision 11 of this proposal, based more closely
on the syntactic elements of the language.  It was inspired by the
approach suggested by Erwin Unruh in c++std-ext-3611.

A simple-type-specifier is dependent if
(1) It is a template parameter
(2) It is a typedef name whose type-id is dependent

A type-specifier [dcl.type] is dependent if it contains a dependent
simple-type-specifier [dcl.type.simple].

A type-id [dcl.name] is dependent if:
(1) It contains a dependent type-specifier.
(2) It contains a constant expression that is value-dependent

on a template parameter.

An identifier is dependent if its type-id, as obtained from its
declaration according to the rules in [dcl.meaning], is dependent.

Within the context of a class template definition, the following
additional rules apply.

(1) The name of the class template itself, and of any of its
nested classes, is a dependent type-specifier.

(2) Within the context of the class template and any of its
nested classes, ’this’ is a type-dependent primary-expression.

A primary-expression [expr.prim] is type-dependent if it is a
dependent identifier, or if it is of the form (E), where E is a
type-dependent expression.

An expression [expr] is type-dependent if:
(1) It is a dependent primary-expression
(2) It is a cast or a constructor call [expr.type.conv] to a

dependent type-id.
(3) It is a new-expression whose type-id is dependent.



(4) It is an operator expression with an operator other than
?:, sizeof, and typeid, where one or more operands is
a type-dependent expression.

(5) It is of the form E1 ? E2 : E3, where E2 or E3 is a
type-dependent expression.

(6) It is a dependent function call.

A constant-expression [expr.const] is value-dependent if
(1) It is type-dependent.
(2) It is a non-type template parameter [temp.param].
(3) It is of the form T::x, where T is a dependent type-id.
(4) It is an identifier initialized with a value-dependent

expression.
(5) It is sizeof or offsetof applied to a dependent type-id.
(6) It is a cast operator applied a value-dependent operand.
(7) It is any operator expression where one or more operands

is value-dependent.

[Note: by these rules, expressions like "sizeof(T) ? 2 : 2" and
"sizeof(T) - sizeof(T)" are value-dependent.  There’s no reasonable
way to exclude these pathological cases.]

A function call (including an operator expression for an
overloadable operator) is dependent if one of the function arguments
is a type-dependent expression.

By a dependent name we mean the name of the function or overloadable
operator in a dependent function call.

3.  Dependent Name Resolution

In resolving dependent names, we consider names from three sources
(other than the actual template parameters):

- Declarations from the instantiation context, identified by
lookup in namespaces associated  with the types
of function arguments, including operands of overloadable
operators (See 3.3).
[Note: This is closely analogous to what is already done under
the Koenig rules for overload resolution for operators, and we
refer to it as "Koenig lookup" below.]

- Declarations from the template definition context.

- Declarations from the intermediate context (See 3.2).

We resolve dependent names using ordinary overload resolution,
with special rules for finding candidate functions and user-defined
conversions.

3.1 Point of Instantiation

We believe that the concept of "point of instantiation" is not
adequately defined in the current working paper.  We propose the
following more precise definition:

If the instantiating reference of an implicit template function
specialization is a dependent function call, then the point of
instantiation of the specialization is the point of instantiation
of the template function specialization containing the
instantiation reference.

Otherwise the point of instantiation of the specialization is
the point immediately preceding the definition containing the
instantiating reference.  (For the purposes of this definition,



we consider the definition of a member function defined in its
class definition to follow the outermost class definition
containing the member function definition.)

Example:

template <class T> void g(T t);

// point of instantiation of g(2.5)

template <class T> void f(T t)
{
g(t);
g(2.5);

}

...

// point of instantiation of g(t)

void h()
{

f(5);
}

Here the call f(5) results in two instantiations of g.  The
first call to g is a dependent function call, so its point
of instantiation is the point of instantiation of f, which
is just before the definition of h, since f(5) is not a
dependent call.  On the other hand the second call to g is
not a dependent function call, so its point of instantiation
is just before the definition of f.

(Note that these determinations can not be made from [temp.point]
Paragraph 1 and [temp.inst] Paragraph 10 of the current Working
Paper.)

3.2 The Intermediate Context

Template using declarations may be used to create intermediate
contexts so that a declaration may be made available by a calling
template function to a called template function.

template-declaration ::=
template <template-parameter-list>
using-declaration-seq [opt] declaration

using-declaration-seq ::=
using-declaration-seq [opt] using-declaration

A using-declaration-seq in a class template definition applies to
all member functions defined by the class definition.  Using
declarations appearing in this context are restricted to functions
and function-style operator names, and must have external linkage.

If the instantiating reference of an implicit template function
specialization is not a dependent function call, the intermediate
context of the specialization is empty.  Otherwise, it comprises
all declarations specified by using declarations in the template
function specialization containing the instantiating reference,
together with the declarations in the intermediate context of that
specialization.

Example:



template <class T> void g(T t);
void p(int);

template <class T> using ::p;
void h(T t)
{
p(t);
g(t);

}

--------------------------------------

template <class T> void f(T t);
void q(int);

template <class T> using ::q;
void g(T t)
{
p(t);
q(t);
f(t);

}

---------------------------------------

template <class T> void f(T t)
{
p(t);
q(t);

}

---------------------------------------

int main()
{
h(1);

}

Here main calls h which calls g which calls f.

The specialization of h has no intermediate context, since
its instantiating reference is not a dependent call.

The instantiating reference for the specialization of g is
a dependent call, so its intermediate context consists of
the declaration of p from the template using declaration for
h, and nothing else, since the the intermediate context of h
is empty.

The instantiating reference for the specialization of f is
again a dependent call; its intermediate context consists
of the declaration of q from the template using declaration
for g, together with the declaration of p from the intermediate
context of g.

3.3 Associated Namespaces

With each type T we associate a set of namespaces.

If T is a fundamental type, its associated set of namespaces
contains only the global namespace.

If T is a class type, its associated namespaces are the namespaces
in which the class and its direct and indirect base classes are
defined.



Example:

namespace NB {
class B {...};
int f(char *);

};
namespace ND {
class D: public NB::B {...};
int f(float);

};

The associated namespaces of a D are NB and ND.  A name
lookup for f(x) in a template instantiation, if x is a D,
will find both the f in NB and the f in ND.  A match is
possible if appropriate conversions can be found, e.g. if
D has an operator float.  (See below for more on
conversions).

If T is a union or enumeration type, its associated namespace is the
namespace in which it is defined.

If T is a pointer to U, a reference to U, or an array of U,
its associated namespaces are the associated namespaces of U.

If T is a pointer to function type, its associated namespaces are
the namespaces of its parameter types and of its return type.

If T is a pointer to a member function of a class X, its associated
namespaces are the namespaces of its parameter types and of its
return type, together with the namespace associated with X.

If T is a pointer to a data member of a class X, its associated
namespaces are the namespace associated with X and the namespaces
associated with the member type.

If T is a template-id, its associated namespaces are the
namespace of the template and the namespaces of the type template
arguments.

3.4 Candidate Functions

One set of candidate functions comes from the definition context.

A second set comes from the intermediate context.

The others come from the associated namespaces of the types of
the arguments of the function call or of the operands of the
operator (3.3 above).  Again, only names with external linkage are
considered.

Example:

using std::sqrt;

template <class T> hypot(T x, T y)
{
return sqrt(x*x + y*y);

}

-----------------------------------------------------

namespace NReal {
class Real {...};



Real operator+(Real, Real);
Real operator*(Real, Real);

}

Real sqrt(Real);

void f(Real x, Real y)
{
Real z = hypot(x, y);
...

}

void g(double x, double Y)
{
double z = hypot(x, y);
...

}

Here in function f, hypot is instantiated with Real for both
argument types.  The dependent operators resolve to the operator+
and operator* in the namespace NReal.  The dependent
sqrt function resolves to the sqrt(Real) declared in the global
namespace, which contains the namespace NReal.

In function g, on the other hand, hypot is instantiated with double
for both argument types, so the operators are builtin.  The dependent
sqrt function resolves to std::sqrt in the definition context.  Note
that the instantiation context has no way of supplying a sqrt(double)
except to use a forwarding function, since only the global namespace
is available.

int value(int * p) {return *p;}

int diff(int x, int y) {return x - y;}

template <class T> bool isequal(T x, T y);

template <class T> using ::diff;
bool values_are_equal(T x, T y)
{
return isequal(value(x), value(y));

}

------------------------------------------------------------

template <class T>
bool isequal(T x, T y)
{
return diff(x, y) == 0;

}

------------------------------------------------------------

void f(int * x, int * y)
{
if (values_are_equal(x, y))...
...

}

Here values_are_equal is instantiated with int *.  The
dependent calls to value are resolved by the function
int value(int*) declared in the definition context.  Since
it returns an int, the template function isequal is instantiated
with int.  The dependent call to diff is resolved in the
intermediate context, as specified by the template using



declaration for values_are_equal.  If this declaration were
removed, diff would not be found, since it is not in either
the declaration context nor in the instantiation context.

Explicitly qualified names (e.g. X::f) may be used to modify the
selection of candidate functions.  For a call of X::f, the
candidates come from (a) static member functions X::f of class
X from the namespaces named in the template’s template using
clause, (b) static member functions X::f of class X from the
namespaces associated with t, and (c) names "f" from namespace
"::X" (i.e. ignoring the associated namespaces of t).
(Note we know this is not quite right, but we haven’t had time
to fix it).

In all cases, only functions actually declared in a given namespace
are considered, not functions imported into the namespace by
using declarations or directives.  This is consistent with the
current rules for operator lookup, and is essential in limiting
the dependence on instantiation context and the amount of
information that needs to be saved from that context for
separate compilation.

>From these namespaces only declarations visible in the declaration
context, the intermediate context, and the instantiation context
are considered.  If a function with external linkage declared in
one of these namespaces is a better match for a given dependent call
than any of the functions declared in that namespace in one of the
permitted contexts, then the program has undefined behavior.

Example:

(Here and in subsequent examples, the dashed lines indicate a
possible division between translation units.)

template <class T> void f(T t)
{
g(t);

}

--------------------------------------------------

void g(int);

f(’a’);

--------------------------------------------------

void g(char) {}

Here the function g(char) in the global namespace is a better
match than the legitimate candidate g(int) declared in the
global namespace in the instantiation context, so the program
has undefined behavior.

3.5 Conversions

All standard conversions are permitted in matching candidate
functions.  A user-defined conversion must be either a member
conversion from its argument class, or a member constructor from
its result class.  It must come from the definition context, from
an intermediate context, identified by a using declaration in the
template header, or from the instantiation context.  [Note: the
set of candidate functions is formed first, before conversions are
considered, so the possible conversions do not affect the set of
candidate functions.]



Example 1:

namespace NA {
struct A {
operator B();
...

};

struct C {
C(A);
...

};

void f(B);
void g(C);

}

...

template <class T> void h(T t)
{

f(t);
g(t);

}

...

NA::A a;
h(a);

Here the dependent names f and g may be resolved from namespace
NA, but f takes a B and g takes a C.  f is a match because of
the operator B in A, and g is a match because of the constructor
C(A) in C.

Example 2:

namespace NB {
struct B {...};

struct C {
C(B*);
...

};

void f(C);
}

namespace ND {
struct D: NB::B {
operator D*();
...

};

void g(B*);
}

template <class T> void h(T t)
{
f(t);
g(t);

}

...



ND::D* dp = new ND::D;
h(d);

Here the dependent name f may be resolved from NA, but f takes
a C.  But dp can be converted to a B* by a standard conversion,
and the result can be converted to a C by a constructor.

g may be resolved from ND, but it takes a B*.  But in this
case, D can be converted to a D* via the operator D*,
and the result can be converted to a B* by a standard conversion.

4.  Template Compilation Model

[Note:  This rules of this section are intended specifically to
facilitate an efficient compile-time implementation of template
instantiation.]

4.1 Extern Template Declarations

A template definition is not visible outside the translation
unit where it is defined, unless it is explicitly declared
"extern" to make it visible externally.  Notwithstanding this
visibility restriction, all template definitions must satisfy the
ODR.  [Note: this implies that, in order to use truly different
templates with the same name in different translation units, it is
necessary to put them in different namespaces, possibly the unnamed
namespace.]

4.2 Template Compilation Order

An implementation may require that all template definitions
needed by an instantiation be either included in the
instantiation’s translation unit (TU), or have been previously
compiled as part of another TU.  For this purpose, an instantiation
of B invoked by a definition of template A is deemed to occur in
template A’s definition TU if it is resolved by phase 1 name
lookup (i.e. it is non-dependent), or in the TU which instantiates
A if it is resolved by phase 2 name lookup.

[Note: this requirement means that circular dependencies between
files instantiating and defining templates may be disallowed by an
implementation.  For instance, if "n1 -> n2" means that TU n1
instantiates a template defined in TU n2, then an implementation
may forbid (for n>=2):

f1 -> f2 -> ... -> fn -> f1
This requirement is at the TU level, not at the template level.
Such circularities are allowed within a TU; conversely, the
dependencies yielding the above circularity need not all be part of
a single chain of instantiations.]

[Note: this requirement would not prevent putting a template
definition in a library, which would normally be compiled before
its clients, but it would prevent those clients from providing
those functions/operators needed for phase 2 lookup as templates.]

5.  Implications and Issues

Some existing code will break, for example code that resolves
functions with non-dependent parameters to declarations visible
in the instantiation context, either because no declaration was
present in the template definition context, or because there was
a better match in the instantiation context.  We believe, however,
that such code is already inherently fragile.

Our model encourages a style of programming that makes extensive



use of namespaces to organize types and related functions.  We
would expect the use of namespace-related header files, which
would be included by template users and which would guarantee
consistent contexts.

Generalizing the Koenig lookup rules to include all function calls,
instead of just for phase 2 of template compilation (as proposed
by John Skaller in c++std-core-6780), would affect our proposed
model only by extending the definition-context candidate set (in
both lookup phases).  We therefore consider it to be an independent
suggestion and do not take a position on it here.

It has been observed that allowing use of static names from the
definition context during phase 1 lookup means that some scheme
must be implemented to make them externally visible to the linker
for use by all object files containing instantiations, but uniquely
named to avoid conflicts.  This is a nuisance, but a manageable one.

6.  Working Paper Changes

(Note:  this section is incomplete.)

Remove all boxes referring to Template Compilation Model.

14.5 paragraph 2: delete "definition" of "depends on" and replace
by reference to (revised) 14.5.2.

14.5 paragraph 3: delete second comment in Box 26.

14.5 paragraph 6: add references to 14.5.4.  Change the second item
to:

-- Names from scopes which are visible within the template
definition (see 14.5.4 for dependent names, or 14.5.5 for
non-dependent names).

Change the third item to:
-- Names from scopes which are visible at the point of a

template instantiation, if dependent on a template parameter
(see 14.5.4).

14.5 paragraph 7: ..., the usual lookup rules (3.4.1) are applied
for names independent of the template arguments, in the context
of the template definition.  Names dependent (14.5.2) on the
template arguments are resolved according to the lookup rules in
14.5.4.  [Example...

14.5.2: replace paragraphs 2-3 by Section 2 above.

14.5.3: add "If a suitable resolution of a non-dependent name
cannot be found using the normal name lookup in the context of
the template definition, this is an error."

14.5.4: change title to "Dependent Name Resolution" and
replace contents by Section 3 above, retaining parts of
paragraphs 1, 2, and 4 as appropriate.

Somewhere: add the rules from Section 4 (Template Compilation
Model).

7.  Implementation

To facilitate understanding the proposal and its implications for
implementations, we discuss several approaches to implementing it.
The first is a compile-time approach.  Then we discuss true



separate compilation, with pre-link and DSO versions.

In all cases, we concentrate on name resolution, which is the focus
of our proposal.  It should be noted that there are other
substantial aspects of template implementation, which result from
the fact that an instantiation draws information from two contexts
(or more if it is an indirect instantiation) and must necessarily
become more complex than most compilation tasks as a result.  For
instance, after name resolution is complete, there are a myriad of
semantic checks that must occur which depend on knowledge of the
actual instantiated types.  If the instantiation is done in two
phases (as we assume below, but which is not necessary), an
implementation will need to determine when to do semantic checking,
and how to make the required information available to do it.  Given
a name resolution, the semantic checks required do not depend
dramatically on the template compilation model, so we do not
concern ourselves with this issue here.  But the following should
not be read to imply that it is not a complex issue for template
compilation.

7.1 A Compile-Time Technique

Consider the problem of doing a compile-time implementation, by
which we mean to include both full-inclusion models and models
where the implementation "knows" where to find the source (possibly
pre-processed) of a template definition but it isn’t necessarily
explicitly included by an #include.

We maintain a master symbol table, which is initially just the
global symbol table for the translation unit being processed,
and a pair of lists.  The first list is of pre-processed template
bodies; the second of template instantiation requests.  The
compilation proceeds in two phases:

First process the translation unit we were given to translate.
This is straightforward except for two sorts of events.  If we
encounter a template body definition, preprocess it, doing phase 1
lookup based on the current symbol table.  Extract the list of
possible candidate names identified by the template using clause
(per 3.2 above), and the list of definition context names which
might be used in phase 2 lookup of this template, put them on the
template body list with the preprocessed body and its local symbol
table, and call it a pre-processed template.

The second interesting event is a required template instantiation.
In this case, just add the template to be instantiated and the
actual template parameters to the instantiation request list.

The second phase is instantiation.  Take each request off the
request list and perform the requested instantiation as follows.
First, if we don’t already have the body from this translation unit,
go find it.  Process the translation unit which contains it much as
we did the main one in phase 1, with a separate symbol table, except
that we don’t need to deal with any definitions (except as
declarations) except the template body needed, and any other
template bodies which might end up being instantiated by it.  Again,
put aside the body with the list of possible candidates identified
by its template using clause and the list of possible definition
context names on the list of pre-processed templates,
and merge the list of possible candidates with the master symbol
table (for use in instantiations invoked by this one).  Observe that
this processing of the separate template body might have been done
earlier (in a distinct compilation), and saved, so that it need not
be redone each time an instantiation is encountered.



Now we can do the instantiation.  Non-dependent expressions have
all been resolved in the pre-processing step.  Dependent expressions
are handled by looking them up either in the candidate list
associated with the body (the definition context) or in the master
symbol table with Koenig lookup.  The fact that we’ve merged the
candidate lists derived from template using clauses into the master
symbol table means that it contains the accumulated instantiation
contexts of all of the elements of a cascaded instantiation.  Hence,
the rule about not depending on the position of the point of
instantiation in the lookup namespaces means that we can just use
this merged master symbol table and never deal with more than the
two symbol tables.

The instantiation may require others.  They are added to the
instantiation request list, and this second phase is repeated until
we’re done.

7.2 Separate Compilation Pre-Link Implementation

Suppose one wants separate compilation, but can live with
restrictions present in some implementations today that the
source files (in particular those containing the template body
definitions) are all available at link time.  Observe that this
condition might involve keeping those sources as part of
libraries.

Following is a sketch of an approach to separate compilation of
template definitions under these conditions.  The information that
must be preserved for template definitions is the same as for the
compile-time implementation described above, so this section
concentrates on the instantiation contexts.

Points of instantiation now need to provide information about their
contexts to the instantiation process.  This proposal makes the
required information independent of the order (and presence) of
declarations in scope at the point of instantiation (by stating
that program behavior is undefined if it matters), with the intent
that the information in the aggregated symbol tables of the
component object files can be used directly.  So one way to think
about separate implementation is to consider how the external
symbol tables must be augmented to describe instantiation contexts.
The additions might be placed in the object file, or in some
auxiliary file(s), e.g. a "program library." They include:

- external function/operator return types

- the namespace hierarchy (probably encoded in names already)

- the class hierarchy, including information about any members,
data and function, which might be referenced in a template
body

- inline function definitions, perhaps size-limited

- template declarations in scope for instantiation

This list is probably incomplete, but we believe it includes most
of what is needed.

If one works to avoid duplication (e.g. by storing class
declarations in a file associated with the header file where
declared, or in the object file containing the definition of the
first non-inline member function, instead of for all files that
reference it), then this should be acceptable.  We believe, based
on our current C++ implementation, that this is work one needs to



do anyway so that debugging information doesn’t explode.

Keep track of required template instantiations as they’re
encountered.  Prior to linking, run a pre-link step which
determines whether there are any required instantiations not yet
done, and instantiate their definitions (possibly by recompiling
their defining modules) if so.  This may be repeated, since the
instantiations may invoke new instantiations.  (This is analogous
to the process used today in our compiler, with different name
resolution, and potentially other substantial changes to use
saved definitions instead of just recompiling the source.)

When compiling a template instantiation:  Non-dependent names
in an instantiation are resolved normally in the template
definition context.  Dependent expressions are processed bottom-up
as follows:

- We know the types of the operands, from one of several
sources:

* Some operands (at the bottom of the tree, or resulting
from explicit conversions) have non-dependent types, known
from Phase 1.

* Some operands have template parameter types, known at
instantiation time.

* Some operands are results of calls resolved in earlier
steps; we know their results from the external symbol table
extensions.

* Some operands are members of types falling in the other
classes (or this one): we know their types from the class
hierarchy information.

- We look up, in the linker symbol table, all functions in the
right namespaces (i.e. the Koenig associated namespaces), plus
the definition context list, with the right name.  This is the
set of candidate functions.  Ignore those with the wrong number
of arguments.

- For each function, and each argument, determine what
conversion (if any) is required to make it the right type.
Look that up in the same set of namespaces and definition
context operators.  Discard any functions which can’t be
matched.

- Choose the best match according to the usual rules.

- Use the result type from this call to resolve the next call
in the hierarchy until done...

For each resolution, either produce a call to an external routine,
or expand an inline definition.

7.3 Separate Compilation Post-Link Implementation

If one wants to be able to put templates in DSOs (Dynamic Shared
Objects, or runtime-linked libraries), the previous model for
the name resolution process is the same.  In addition, an
implementor must:

- Decide how to represent the template body in the DSO.  Source
would work, but something like an abstract syntax tree with
a distinction between resolved phase 1 calls and postponed
phase 2 calls would probably be better.  We (SGI) would expect



to use a variant of our compiler IR.

- One also needs the external-linkage symbols from the file, but
order and scope aren’t important due to our rules, so this part
is just like the caller treatment (the extended external symbol
table).

- One needs to decide when to do the instantiation (at every
execution of the program isn’t a nice answer), where to put it
(the user running the program may not have write access to
either the program or the DSO), and where to get the compiler
to finish the job.

But fundamentally, this is the same process as the pre-link case.
One just prefers not to require the original source to be available,
and needs to concentrate a lot more on things other than the
semantics of instantiation.

Appendix A.  Changes

The significant changes from version 7 of this proposal are:

- The namespace associated with a builtin type is the global
namespace (instead of empty) (Section 3.2, now 3.3).

- The contribution to dependent name resolution from the
template definition context has been restricted significantly
(Section 3.1, now 3.2).

- The WP changes are more complete (Section 6).

The significant changes from version 8 are:

- Added discussion of explicit name qualification (3.3, now 3.4).

- Added example as new Section 6 (now 7).

The significant changes from version 9/10 are:

- Add concepts and terminology summary (1.1), and use the
terminology defined more consistently.

- The template definition block has become a template using clause
associated with the template definition (3.1, now 3.2).

- Added requirement for explicit "extern" declaration for
templates visible outside the translation unit where defined
(Section 4.1).

- Allow implementations to restrict compilation order (Section
4.2).

The significant changes from version 11 are:

- The definition of dependent names in Section 2 has been
replaced by the contents of the old Appendix A, with some
additional clarifications.

- A new definition of the point of instantiation has been added
(Section 3.1).  We do not believe this changes the intent of
the WP, but it should make the treatment of indirect
instantiations clearer.

- A precise definition of intermediate context has been added.
The restriction that names from a template definition context



used in Phase 2 lookup must appear in its template using
declarations has been removed.    The reason is that
we have determined that the set of names which might
potentially be used for this purpose can be inferred relatively
easily from the set of dependent names appearing explicitly in
the template body, and hence saving the set with the
pre-processed template definition does not present serious
implementation problems.

- Section 3.4 on candidate functions has been rewritten to
clarify some fuzzy points, and examples have been added.

- Section 3.5 on conversions has been rewritten, based on
some incisive observations by Andy Koenig, and examples
have been added.

- The old Examples section has been removed and examples have
been added in the appropriate sections.

- There have been minor changes in wording throughout, and
renumbering as required.


