
X3J16/96-0088 WG21/N0906

A Proposed New Template Compilation Model (rev 7)

John Wilkinson, Jim Dehnert, and Matt Austern
Silicon Graphics, Inc.

1. Introduction

We present here a proposal for a new model of template compilation.
We believe this model is an improvement on both of the existing
models ("separation" and "inclusion"). It is clearly easier to
implement than the separation model, and we believe it is almost
as easy to implement as the inclusion model. It avoids both the
"name-leakage" problems of the inclusion model and the "merged-context"
problems of the separation model. We believe also that true separate
compilation, in which object modules can be combined without access to
source, is feasible with the new model.

The key features of our proposal are the following.

1.1 Definition context precedence: Non-dependent names
are resolved strictly in the context of the template
definition. We suggest also a simpler definition of
the concept of dependent names (see Section 2).

Rationale: If a template writer references types that are
entirely known in the context of the template definition, we
presume that he knows the operations he intends to apply, and that
any contributions from the template user’s contexts would be
accidental.

1.2 Dependent name resolution: Dependent names are resolved using
a generalization of Koenig’s operator resolution rule, i.e. using
the definition context plus the namespaces of the operand types.
(See Section 3.)

Rationale: Use of names from the instantiation context makes
instantiation highly dependent on that context, and accordingly
makes ODR implications extremely difficult. The template writer
can allow arbitrary contributions from the instantiation via
template parameters, and the template user can inject operations by
wrapping the template argument types in a class with the required
members. Absent these approaches, however, it is much cleaner to
restrict free name resolution to those functions/operators closely
linked to the original argument type definitions.

1.3 Separate vs. inclusive instantiation: An instantiation may
occur at any point after any point of instantiation as defined
in the DWP, or it may take place in a global context, as described
below. If the choice makes a difference, the program is ill-formed.

1.4 A template body may use only names from the definition context and
external names.

Rationale: For efficient separate compilation (by which we mean
the truly separate case where source is not readily available), it
is important to limit the amount of context that must be saved
with an instantiation request. This suggests depending only on the
information in the external symbol table of object files, without
regard to the precise subset(s) of a namespace that was defined at
the point(s) of instantiation. At the same time, we want to be

able to immediately instantiate a template in the case where the
compiler sees both the template definition and the instantiation at
the same time.

2. Dependent Names

We say that a type depends on a template parameter T if any of
the following conditions holds:

It is T itself, where T is a type.

It is a type defined in terms of a constant expression that
uses either T (where T may be a type or a non-type template
argument) or a type that depends on T.

It is a (cv-qualified) pointer or reference to a type that
depends on T.

It is a nested type whose containing class depends on T.

It is a template one of whose arguments or parameters depends
on T.

It is a function pointer whose return type or one of whose
arguments is a type that depends on T.

It is an array the types of whose elements depend on T.

It is a pointer to data member where the type either of the
containing class or of the member depends on T.

It is a pointer to member function where the type either of
the containing class or of one of the member function’s
arguments or of its return type depends on T.

We say that a function argument or operator operand is dependent
if either of the following holds:

It has a dependent type.

It is the result of a dependent operator or function call
(defined recursively below), except for explicit casts to
non-dependent types. (Intuitively, we don’t know its type
until we resolve the operator or function name.)

If an operator has one or more dependent operands, the operator
name is said to be dependent.

If a function call has one or more dependent arguments, the
function name is said to be dependent.

3. Dependent Name Resolution

In resolving dependent names, we consider only declarations in
the scope of the template definition and names from namespaces
associated with the types of function arguments (including
operands of overloadable operators). This is closely analogous
to what is already done under the Koenig rules for overload
resolution for operators.

We resolve dependent names using ordinary overload resolution,
with special rules for finding candidate functions and user-defined
conversions.

3.1 Associated Namespaces

With each type T we associate a set of namespaces.

If T is a fundamental type, its associated set of namespaces
is empty.

If T is a class type, its associated namespaces are the namespaces
in which the class and its direct and indirect base classes are
defined.

Example:

namespace NB {
class B {...};
int f(char *);

};
namespace ND {
class D: public B {...};
int f(float);

};

The associated namespaces of a D are NB and ND. A name
lookup for f(x) in a template instantiation, if x is a D,
will find both the f in NB and the f in ND. A match is
possible if appropriate conversions can be found, e.g. if
B has an operator char *. (See below for more on
conversions).

If T is a union or enumeration type, its associated namespace is the
namespace in which it is defined.

If T is a pointer to U, a reference to U, or an array of U,
its associated namespaces are the associated namespaces of U.

If T is a function type, its associated namespaces are the namespaces
of its argument types and of its return type.

If T is a pointer to a member of a class X, its associated namespaces
are the namespaces associated with X and with the member type.

If T is a template class, its associated namespaces are the
namespace of the template and the namespaces of the template class
arguments.

3.2 Candidate Functions

One set of candidate functions comes from the scope of the template
definition. Only names with external linkage are considered.

The others come from the associated namespaces of the types of
the arguments of the function call or of the operands of the
operator. Again, only names with external linkage are considered,
and default arguments are ignored.

In this context, "namespace" may mean either "complete namespace,"
comprising all declarations in all translation units; or "namespace
at point of instantiation," comprising only declarations that
are in scope at any point of instantiation with the given argument
types. A program is ill-formed if this choice makes a difference.
The translator is not required to issue a diagnostic for this
error. Note that in any case it is the contents of the namespace
(including enclosing namespaces) that are significant, not any
declarations in the instantiation context that might be imported
by means of "using" declarations.

3.2 Conversions

All standard conversions are permitted in matching candidate
functions. A user-defined conversion must be defined either in
the template definition context or in the associated namespace set
of its argument type. Note that the set of candidate functions is
formed first, before conversions are considered, so the possible
conversions do not affect the choice of candidate functions.

Example:

namespace NB {
struct B {...};

struct X {X(B);...};

int f(X);
}

namespace NA {
struct A: NB::B {...};

}

...

NA::A a;
f(a);

Here we can resolve the dependent name f taking an a of type NA::A,
because we can promote a to NB::B using a standard conversion, and
then use that as argument to the constructor for X, since NB is
in the associated namespace set of A.

4. Implications

Some existing code will break, for example code that resolves
functions whose parameters are of built-in types using declarations
in the instantiation context, either because no declaration was
present in the template definition context, or because there was
a better match in the instantiation context. We believe, however,
that such code is already inherently fragile.

Our model encourages a style of programming that makes extensive
use of namespaces to organize types and related functions. We
would expect the use of namespace-related header files, which
would be included by template users and which would guarantee
consistent contexts.

5. Working Paper Changes

Remove all boxes referring to Template Compilation Model

14.5 paragraph 6, third item: delete "from scopes that are
visible at the point of a template instantiation."

14.5.2: replace entire section by Section 2 above.

14.5.4: change title to "Dependent Name Resolution" and
replace contents by Section 3 above.

6. Implementation

To facilitate understanding the proposal and its implications for
implementations, we discuss two approaches to implementing it.
The first is a technique based on an inclusion model. The second

is an approach to true separate compilation, with pre-link and DSO
versions.

6.1 A Simple Inclusion Technique

Consider the problem of doing an inclusion-based compilation, by
which we mean to include models where the implementation "knows"
where to find the source of a template definition but it isn’t
necessarily explicitly included by an #include.

We maintain a master symbol table, and a pair of lists. The first
list is of pre-processed template bodies; the second of template
instantiation requests. The compilation proceeds in two phases:

First process the translation unit we were given to translate.
This is straightforward except for two sorts of events. If we
encounter a template body definition, preprocess it, doing phase 1
lookup based on the current symbol table. Depending on the
implementation, also either note the current state of the symbol
table (e.g. if it’s linear, keep track of where we are so later
lookups will know what was visible here), or save part of it for
use as definition context when it is instantiated. The part of
it needed for that purpose is very limited. It consists only of
what is needed for phase 2 lookup of instantiations of this template
body, which is (a) functions/operators with names referenced in
the body, (b) conversion operators which yield the types of
arguments to such functions (externals only in both cases), and
(c) the declarations of the types involved. Put this on the
template body list with the preprocessed body and its local symbol
table, and call it a pre-processed template.

The second interesting event is a required template instantiation.
In this case, just add the template to be instantiated and the
actual template parameters to the instantiation request list.

The second phase is instantiation. Take each request off the
request list and perform the requested instantiation as follows.
First, if we don’t already have the body from this translation unit,
go find it. Process the translation unit which contains it much as
we did the main one in phase 1, with a separate symbol table, except
that we don’t need to deal with any definitions (except as
declarations) except the template body needed, and any other
template bodies which might end up being instantiated by it. When
we’ve put aside the body with its pruned symbol table on the list of
pre-processed templates, merge the symbol table of this translation
unit with the main one.

Now we can do the instantiation. Non-dependent expressions have all
been resolved in the pre-processing step. Dependent expressions are
handled by looking them up either in the pruned symbol table
associated with the body (the definition context) or in the master
symbol table with Koenig lookup. The fact that we’ve merged the
subsequent symbol tables with the original master means that it
contains the accumulated instantiation contexts of all of the
elements of a cascaded instantiation. Hence, the rule about not
depending on the position of the point of instantiation in the
lookup namespaces means that we can just use this merged master
symbol table and never deal with more than the two symbol tables.

The instantiation may require others. They are added to the
instantiation request list, and this second phase is repeated until
we’re done.

6.2 Separate Compilation Pre-Link Implementation

Suppose one wants separate compilation, but can live with
restrictions present in some implementations today that the
source files (in particular those containing the template body
definitions) are all available at link time. Observe that this
condition might involve keeping those sources as part of
libraries.

Modify the compilation steps so that modules with instantiations
retain (in the object file or an auxiliary file):

- external function/operator return types

- the namespace hierarchy (probably encoded in names already)

- the class hierarchy

- inline function definitions, perhaps size-limited

If you work some to avoid duplication (e.g. by storing class
declarations in a file associated with the header file where
declared, instead of for all files that reference it), then this
shouldn’t be excessive. This is work you want to do anyway so
that debugging information doesn’t explode on you.

Keep track of required template instantiations as they’re
encountered. Prior to linking, run a pre-link step which
determines whether there are any required instantiations not yet
done, and recompile their defining modules if so. This may be
repeated, since the instantiations may invoke new instantiations.
(This process is all done today in our compiler, with different
name resolution.)

When compiling a template instantiation: Non-dependent names
in an instantiation are resolved normally in the template
definition context. Dependent expressions are processed bottom-up
as follows:

- We know the types of the operands, from one of several
sources:

* Some operands (at the bottom of the tree, or resulting
from explicit conversions) have non-dependent types, known
from Phase 1.

* Some operands have template parameter types, known at
instantiation time.

* Some operands are results of calls resolved in earlier
steps; we know their results from the external symbol table
extensions.

* Some operands are members of types falling in the other
classes (or this one): we know their types from the class
hierarchy information.

- We look up, in the linker symbol table and in the template
definition context, all functions in the right namespaces with
the right name. This is the set of candidate functions.
Ignore those with the wrong number of arguments.

- For each function, and each argument, determine what
conversion (if any) is required to make it the right type.
Look that up in the same set of namespaces. Discard any
functions which can’t be matched.

- Choose the best match according to the usual rules.

- Use the result type from this call to resolve the next call
in the hierarchy until done...

For each resolution, either produce a call to an external routine,
or expand an inline definition.

6.3 Separate Compilation Post-Link Implementation

If you want to be able to put templates in DSOs (Dynamic Shared
Objects, or runtime-linked libraries), the previous model for
the name resolution process is the same. In addition, an
implementor must:

- Decide to represent the template body in the DSO. Source
would work, but something like an abstract syntax tree with
a distinction between resolved phase 1 calls and postponed
phase 2 calls would probably be better. We (SGI) would expect
to use a variant of our compiler IR.

- One also needs the external-linkage symbols from the file, but
order and scope aren’t important due to our rules, so this part
is just like the caller treatment (the extended external symbol
table).

- One needs to decide when to do the instantiation (at every
execution of the program isn’t a nice answer), where to put it
(the user running the program may not have write access to
either the program or the DSO), and where to get the compiler
to finish the job.

But fundamentally, this is the same process as the pre-link case.
One just prefers not to require the original source to be available,
and needs to concentrate a lot more on things other than the
semantics of instantiation.

