
Document Number: WG21/N0905
X3J16/96-0087

Date: 28 May 1996
Project: Programming Language C++
Reply to: William M. Miller

wmm@world.std.com

QUALIFIED NAME LOOKUP IN USING DECLARATIONS

I. SUMMARY OF THE ISSUE

In reflector message core-6506, Mike Anderson pointed out the
following example from 7.3.3 [namespace.udecl], paragraph 11:

namespace B {
struct g { };
void g(char); // OK: hides struct g

}
void func() {
using B::g;
g(’a’); // calls B::g(char)
struct g g1; // g1 has class type B::g

}

The issue is whether the declaration of g1 is well-formed. If it is,
then the lookup in the using declaration is required to find both
declarations of g in namespace B and introduce both into the
function’s scope. If, on the other hand, references in using
declarations are subject to the normal hiding rules (in which the
declaration of struct g can only be referred to in an elaborated type
specifier), the declaration of g1 is ill-formed.

II. REFLECTOR REFERENCES

The following messages on the core reflector dealt with this topic:

6508-6510; 6513-6520; 6522-6524; 6526-6528; 6580-6585, 6684,
6688.

III. ANALYSIS

Paragraph 2 of 3.4.2.2 [namespace.qual] describes the lookup of a
namespace-qualified name as resulting in a set of declarations (as
opposed to entities). In a case such as the example cited above, the
set will contain _both_ the declarations of g from namespace B:

Given X::m, where X is a namespace, if m is declared directly
in X, let S be the set of all such declarations of m.

The question then becomes what to do with the declarations so found.
Later in the cited paragraph, the following restriction is made:

If S has exactly one member then X::m refers to that member.
Otherwise if the use of m is not one that allows a unique
declaration to be chosen from S, the program is ill-formed.
[Note: the choice could be made by overload resolution
(_over.match_) or resolution between class names and non-class
names (_class.name_).

It is clear that this wording is deficient with respect to using
declarations; taken literally, it would prohibit using declarations

that refer to overloaded functions. A better formulation might be:

If S has exactly one member then X::m refers to that member.
Otherwise, if the use of m is a using-declaration, then X::m
refers to all the declarations in S. Otherwise, if the use of
m is not one that allows a unique declaration to be chosen
from S, the program is ill-formed.

Given this rewording, which is necessary to allow for using
declarations that refer to a set of overloaded functions, the question
is not whether the lookup finds or does not find a hidden class name,
as was supposed in the early part of the reflector discussion, but
only whether a hidden class name found by the lookup is introduced
into the scope of the using declaration as a hidden class name or not.

IV. ALTERNATIVES

Option 1:

All declarations found by the lookup are introduced into the scope of
the using declaration, hence the example cited above is correct.

This would seem to be the most consistent approach -- since multiple
declarations (of overloaded functions) are already being "cloned" into
the scope of the using declaration, it would seem strange to exclude
the declaration of the class name, since it also is a member of the
set resulting from the lookup.

Bjarne Stroustrup indicated (in reflector message core-6513) that he
believes that the example "reflected the intent of the extensions
group at the time," and Tom Wilcox opined (in reflector message
core-6508) that, as a user, he would expect the example to work.

Small changes to the current wording of 7.3.3 [namespace.udecl] would
be required to implement this resolution, mainly to pluralize
references to the "entity" whose declaration is introduced by the
using declaration. (This is primarily due to the current text’s
definition in paragraph 3 of clause 3 [basic] that a set of overloaded
functions constitute a single "entity" and the use of that concept
rather than the perhaps more natural concept of "declaration" in the
description of using declarations.) These references are:

paragraph 1: "That name is a synonym for the name of _one or
more entities_ declared elsewhere."

paragraph 8: "The _entities_ declared by a using-declaration
shall be known in the context using _them_ according to _their
definitions_ at the point of the using-declaration."

No additional normative changes are required to support this option;
in particular, paragraph 9 already refers in the plural to the
referents of a using declaration ("A name defined by a
using-declaration is an alias for its original declarations..."), and
paragraph 10 handles the case in which a class name and non-type
entities are both declared. It would probably be helpful to the
reader to add a footnote something like the following to paragraph 2
or paragraph 9:

Class names hidden by non-type names declared in the same
namespace are found by namespace qualified lookup
[namespace.qual] and thus are declared as hidden names in the
using declarative region, as well.

Option 2:

If a class name is hidden by a non-type name in the scope in which it
is declared, only the non-class names from the result of the lookup
are introduced into the scope of the using declaration, hence the
example above is incorrect.

This approach would be more consistent with the statement in paragraph
2 of 9.1 [class.name] that class names hidden by non-type names can
only be referred to by an elaborated type specifier. Those advocating
this position in the reflector discussion (John Spicer, core-6515, and
Bill Gibbons, core-6520) expressed support for allowing an elaborated
type specifier in the using-declaration syntax, thus allowing either
the class name or the non-type name to be used.

The changes required to the current wording to support this option
would include:

paragraph 1: change the syntax to read as follows:

using-declaration:
using class-keyopt ::opt nested-name-specifier

unqualified-id ;
using class-keyopt :: unqualified-id ;

paragraph 2: "The member names specified in a
using-declaration are declared in the declarative region in
which the using-declaration appears, _except that if a
class-name is hidden by a non-class name in its scope
[class.name] and class-key is omitted from the
using-declaration, the hidden class-name is not declared in
the using declarative region_."

paragraph 11: change the example to read:

struct g g1; // error: struct g not declared

In message core-6684, Bill Gibbons offered the following points in
support of this option:

1. Access declarations are now defined as exactly equivalent to using
declarations, so the behavior of existing implementations with respect
to access declarations should be considered in resolving this
question. Of the three compilers Bill surveyed, two handled using
declarations in a manner consistent with this option.

2. All other lookups in the language except for those in elaborated
type specifiers ignore hidden class names, so using declarations
should do so for consistency.

3. This option allows a finer-grained control over which names are
made visible.

V. RECOMMENDATIONS

1. Make the change to 3.4.2.2 [namespace.qual] described in III above
(as noted, this is mandatory to allow using declarations to refer to
sets of overloaded functions).

2. Option 1 of IV. This option appears to be what was originally
intended; several committee members, speaking as users, expressed
their expectation that using declarations would work this way; and
this approach seems most consistent with the idea of importing a set
of declarations of overloaded functions with a single using
declaration.

