
1

N0892 = 96-0074

Working Paper changes for Small Template Issues

Sean A Corfield, ocs@corf.demon.co.uk
Bill Gibbons, bill@gibbons.org

John Spicer, jhs@edg.com

13 March, 1996 - Santa Cruz

This document shows the proposed WP changes for resolutions to issues raised in
N0841 = 96-0023 Template Issues and Proposed Resolutions - Revision 14.

2.28

Replace 7.1.5.3 [dcl.type.elab] paragraph 2 with:

If an elaborated-type-specifier is the sole constituent of a declaration, the
declaration is ill-formed unless it is a specialization (_temp.spec_), an explicit
instantiation (_temp.explicit_) or it has one of the following forms:

class-key identifier;

2.29 (different resolution to N0841 = 96-0023)

No Working Paper changes.

2.30

In 14.5 [temp.spec] paragraph 1, replace the first sentence of paragraph 1 with:

An explicit specialization of any of the following:

function template
class template
member function of a class template
static data member of a class template
member class of a class template
member class template of a class template
member function template of a class template

can be declared by a declaration introduced by template <> ; that is:

And insert before “A specialization of a static data member...”:

Member function templates and member class templates of nontemplate
classes and class template specializations may be specialized in the same
manner as function templates and class templates.

2

A specialization of a member function template or member class template of a
nonspecialized class template is itself a template.

3.28 (different resolution to N0841 = 96-0023)

Add to 7.1.5.3 [dcl.type.elab], paragraph 5 after “resolves to a typedef-name” insert
“or a template type-parameter”

Remove 14.2.1 [temp.local] paragraphs 2 and 3.

3.29 part 1

Replace 14.10.2 [temp.deduct] paragraph 2 with (changes indicated in boldface):

Type deduction is done for each parameter of a function template that
contains a reference to a template parameter that is not explicitly
specified. The type of the parameter of the function template (call it P) is
compared to the type of the corresponding argument of the call (call it
A), and an attempt is made to find types for the template type arguments,
templates for the template template arguments, and values for the
template non-type arguments, that will make P after substitution of the
deduced values and explicitly-specified values (call that the deduced P)
compatible with the call argument. Type deduction is done independently
for each parameter/argument pair, and the deduced template argument
types, templates and values are then combined. If type deduction cannot
be done for any parameter/argument pair, or if for any parameter/argument
pair the deduction leads to more than one possible set of deduced values, or
if different parameter/argument pairs yield different deduced values for a
given template argument, or if any template argument remains neither
deduced nor explicitly specified, template argument deduction fails.

Replace 14.10.2 [temp.deduct] paragraph 5 first sentence with:

A template type argument T, a template template argument TT or a
template non-type argument i can be deduced if P and A have one of the
following forms:

Add to 14.10.2 [temp.deduct] paragraph 5 the following forms:

TT<T>

TT<i>

TT<>

3

Replace 14.10.2 [temp.deduct] paragraph 6, sentence 2 with:

Similarly, <T> represents template argument lists where at least one
argument contains a T, <i> represents template argument lists where at
least one argument contains an i and <> represents template argument
lists where no argument contains a T or an i.

Remove ediorial box 32.

6.30

Replace 14.4 [temp.explicit] paragraph 2 with:

The syntax for explicit instantiation is:

explicit-instantiation :

template declaration

Where the unqualified-id in the declaration shall be either a template-id or,
where all template parameters can be deduced, a template-name.
[Example:

template class Array<char>;

template void sort(Array<char>&);

-- end example]

Remove editorial box 29.

6.31

Add after14 [temp] paragraph 2:

In a function template declaration, the declarator-id shall be a template-
name (i.e., not a template-id).

6.32

Add to 14.4 [temp.explicit] paragraph 3:

If the declaration names a compiler-generated function, the program is ill-
formed.

In 14.5 [temp.spec] paragraph 1, insert before “A specialization of a static data
member...”:

4

If the declaration names a compiler-generated function, the program is ill-
formed.

6.33 and 6.38

In 8.3 [dcl.meaning], replace “the definition of a function, variable, or class member
of a namespace outside of its namespace” with “the definition or explicit
instantiation of a function, variable, or class member of a namespace outside of its
namespace, or the definition of a previously declared explicit specialization outside
of its namespace”.

6.34

Add to 14.4 [temp.explicit] paragraph 5:

A member class of a template class may be explicitly instantiated.

6.35 option 2

Replace 7.3.3 [namespace.udecl] paragraph 1, syntax with:

using-declaration :

using typename opt :: opt nested-name-specifier unqualified-id ;

using :: unqualified-id ;

Add to 14.7 [temp.param] paragraph 1:

typename followed by an unqualified-id names a template type parameter.
typename followed by a qualified-name denotes the type in a nontype
parameter-declaration.

6.36

Delete 14.2 [temp.res] paragraph 3, last sentence "The qualified-name shall
include...".

6.37

Add to 14.2 [temp.res] paragraph 3:

The usual qualified name lookup (_basic.lookup.qual_) is used to find the
qualified-name even in the presence of typename.

6.39 (different resolution to N0841 = 96-0023)

Replace 14.7 [temp.param] paragraph 2 with:

5

Default template arguments shall not be specified in a declaration or a
definition of a function template. Default function arguments shall not be
specified in the declaration or definition of an explicit specialization.

6.40

Add after 14.4 [temp.explicit] paragraph 5:

The usual access checking rules do not apply to explicit instantations. In
particular, the template arguments and names used in the function
declarator (e.g., including parameter types, return types, and exception
specifications) may be private types or objects which would normally not be
accessible and the template may be a member template or member function
which would not normally be accessible.

6.41 (different resolution to N0841 = 96-0023)

Replace 14 [temp] paragraph 4 with:

A template, explicit specialization (14.5 [temp.spec]), or guiding declaration
(14.10.5 [temp.over.spec]) shall not have C linkage. If the linkage of one of these is
something other than C or C++, the behavior is implementation-defined.

