

Where Does the WP Require Complete Types

Jerry Schwarz
X3J16/96-0033 WG21/N0851

I intend this paper to examine all sections in the WP that require or
ought to require that class types be complete by some point. That is,
where a definition must have occurred before that point. If I have
omited any (and there is a non-trivial probability that I have) then I
hope someone will point it out.

I also propose some changes to these sections of the WP. Most of
these proposed changes are editorial, but it is useful to mention them
here.

There are a few places where there are substantive issues. I have
highlighted those sections containing substantive issues with *****.
These occur in sections 3.1, 3.9, 5.1, 5.2.7, 5.5, and 14.3.2. The
most delicate issues relate to templates. (Section numbers are those
of the September 95 WP.)

I sometimes need a phrase to refer to all the relevant requirements in
the WP. I am using "context at which a class type needs to be
complete", but this is wordy, a little vague, and might be hard to
search for automatically. I would like to replace it with a simple
phrase and then go in and use that phrase at each point enumerated
here. Unfortunately, I’m not happy with any of the phrases I have
invented. Maybe someone else can suggest one.

The proposals in this paper are numbered by the section they would
affect and (to allow reference when more than one proposal affects a
particular section) a letter.

The notation "pN" where N is a number refers to paragraph N of the
section being discussed.

3.1[basic.def] *******

 I propose to add to this section a new paragraph.

(A) A program is ill-formed if the definition of any data
object of a non template class gives the object a type that is
incomplete at the point of declaration (see 3.9[basic.types]);
or if the declaration of a non-static data member of a class
gives the member an incomplete type.

(B) Members of a class template may be given incomplete types
when the template is defined, but section 14.3.2 requires that
certain types be complete at any point of instantiation.

[Example

class I;
class A;
template<class T> class X {

T i;
A a; // allowed even though A is not dependent

} ;
X<I> xi ;

// X<I> is "complete", but instantiation of X<T>
// requires that I be complete and so the example
// is ill-formed.

class I { } ;

]

 Something similar to 3.1A is currently said in section 3.9, but I

 think this section is the more appropriate place to say it, and
 that my proposed wording is clearer than the existing wording in
 3.9.

 The deliberate exclusion of members of class templates in 3.1B is
 substantive, but represents my best reading of the current WP. It
 says to defer the completeness requirement as much as possible,
 and allows the declaration of X in the above example.

 An interesting consequence is that explicit specializations are
 treated differently than ordinary classes.

 class A ;
 class B {

A a ; // ill-formed. Even if B is never used, the declaration
// of a member requires that A be complete.

 };
 template<class T> X ;
 template<> X<A> { // explicit specialization

A a ; // well-formed.
 };

 This is certainly a change from existing practice, but I think is
 consistent with the current WP.

3.2[basic.def.odr]

 p4 currently states an unclear requirement on when a definition of
 a class is required. I propose to replace this with an example
 but no normative text. The example would contain one of each of
 the cases enumerated in this paper. It is best not to attempt a
 complete enumeration in normative text. Even if we get it correct
 today, we might decide to add something tomorrow and forget to
 change the text in 3.2 An example is a good way to put the list
 into the WP without risking a contradiction if we have forgotten
 something.

3.9[basic.types] *******

 p6 says "Arrays of unknown size ... are incomplete".

 This creates a slight definitional problem because it doesn’t take
 into account the possibility that the element type might be
 incomplete. For example

 class X ;
 extern X a[10] ; // type of a is incomplete.

 I propose to replace this with

(A) Arrays of unknown size or whose element type is incomplete
... are incomplete

3.9[basic.types] *****

 We need to address the question of when template specializations
 are complete. This paper enumerates contexts where the WP requires
 some type to be complete or disallows an incomplete type. What we
 really mean is that at some place in a translation unit the type
 must be complete or that, if it is a template specialization, it
 can be instantiated. We could either go through and edit the WP
 everywhere to say that, or we can try to patch the definition of
 "complete type".

 I propose to do the latter here with a new paragraph:

(B) A class specialization(see 14.3) is regarded as complete
if the definition of its template has been seen.

The point of instantiation of a class specialization (see
14.3.2) may create requirement that other classes
be complete.

 So according to this definition a specialization might be
 "complete", but still unusable in contexts that normally require a
 complete type.

 For example

 template<class T> class X ;
 template<class T> class Y {

X<T> x;
 };
 Y<int> yi ; // Y<int> is "complete" but unusable because X<int> is

// not complete.

3.9[basic.types]

 p6 says: "No object shall be created to have incomplete type". I
 think this statement is vague, since it is unclear exactly what
 program constructs "create an object". I think its intent is
 covered by my proposed additions to 3.1 and 14.3.2.

(C) I propose to delete this sentence or replace it with a
reference to 3.1 and 14.3.2.

3.9[basic.types]

 p7 says a "... classes that have been declared but not defined
 are called incomplete types".

 I propose to expand on this slightly

(D) Within a class’es definition it is regarded as complete
within function bodies, default arguments and constructor
class’es ctor-initializers (including such things in nested
classes.) Otherwise it is regarded as incomplete within its
own definition.

 This description is taken from 3.3.6 where it is used to describe
 the scope of members.

4.1[conv.lvalue]

 This section makes ill-formed a program that requires an lvalue to
 rvalue conversion of an expression with incomplete type.

5[expr]

 p10 says "Whenever an lvalue expression appears as an operand of
 an operator that expects an rvalue ..."

 What seems to be implicit is that all operands are rvalues unless
 otherwise noted. It is editorial to make this implicit assumption
 explicit, and I suggest below some places where such explicit
 statements would clarify that a context requires a completed class
 type.

5.1[expr.prim] *********

 p8 describes the scope operator(::). But it doesn’t require the

 class before the :: to be complete. I propose to add

(A) A program is ill formed if the nested-name-specifier names
an incomplete class.

 Note that this taken together with 3.9D implies

 class X {

enum E { z = 0 } ;
int a[z] ; // well formed
int b[X::z] ; // ill-formed

 };

 I’m not sure whether this is a change. It is certainly a
 substantive issue. A special exception to 5.1A could be made for
 this purpose, but I would prefer to keep the simple rule.

5.2.1[expr.sub]

 WP requires complete type for "element".

 No exception is made for the common idiom &x[0].

5.2.2[expr.call]

 p2 requires a complete type for return type. As written it
 applies only to explicit calls and not to implicitly called
 conversions. See my proposal for 13.3

 This section says nothing about arguments, that seems to be
 covered by my proposed words in in 12.8, but I suggest adding
 something to p3 anyway. Specifically:

(A) If an argument is copied (see 12.8) it shall have a
complete type.

 I deliberately am not proposing to take this into account in
 determining viable functions. I think it would be a mistake to
 allow completing a type to change overload resolution.

5.2.3[expr.type.conv]

 With regard to T(e1,....) the WP says "the type shall be a class
 with a suitably declared constructor". This seems to require the
 type to be completed, although I don’t think it would hurt to
 change "class" to "complete class".

 However with regards to T() it doesn’t say anything. I propose to
 add

(A) If T is a class type it shall be complete.

5.2.4[expr.ref]

 WP requires type of object in "." or "->" to be complete.

5.2.6[expr.dynamic.cast]

 In dynamic_cast<T>(v) the WP requires T to be a ptr to or ref of a
 complete class type, and v to be a ptr to or lvalue of a complete
 class type.

5.2.7[expr.typeid] *********

 I’m not sure what the intention is here. Do we allow typeid’s for
 incomplete type? The WP currently doesn’t explicitly require this

 although it hints at it. It says you do certain things if certain
 types are polymorphic. It’s possible that you can check the
 runtime data structures to determine if the type is polymorphic,
 but otherwise we would need to require a complete type. So as a
 straw proposal I have

(A) The type of the expression shall not be an incomplete
class type.

 That is, I don’t feel strongly about this one way or the other, but I
 think we should make an explicit decision and if we decide not to make
 this change then I believe a footnote is desirable to indicate that this
 is an explicit decision.

5.2.8[expr.static.cast]

 Static cast’s do not impose any requirements on completeness, but
 the WP does allow certain conversions to be applied to "class
 types" which obviously require knowledge of the definitions. I
 propose to change these references from "class type" to "complete
 class type".

 It isn’t clear when v is subject to rvalue conversions. p5 clearly
 assumes that it isn’t always subject to such conversions. The
 case that is relevant here is casting to void. I propose a
 footnote to p4.

(A) Casting to void does not subject the operand to rvalue
conversions.

5.3.1[expr.unary.op]

 unary * requires a complete type.

 No exception is made here for the common idiom

 class X ;
 X* f() ;
 X& xr = &f();

 However, Josee tells me that such an exception was accepted in
 Tokyo and will be in the next version of the WP.

5.3.3[expr.sizeof]

 The WP forbids the operand to have incomplete type, or that when
 applied to a typeid, the type to be incomplete.

5.3.4[expr.new]

 The WP requires a complete type for new expressions.

5.3.5[expr.delete]

 The WP explicitly allows deleting of pointer to incomplete type.

5.4[expr.cast]

 The WP applies semantic requirements of other forms of cast.

 This section also contains the same glitch as 5.2.8. Namely when
 describing possible conversions there is a reference to "class
 type" that ought to read "complete class type"

(A) change "class type" to "complete class type" as
appropriate

5.5[expr.mptr.oper] ********

 This deals with using pointer to members. The WP does not require
 that the type of the object be complete. This imposes some severe
 constraints on the representation of pointer to members. I am not
 certain whether all existing implementations can satisfy this
 constraint.

 As a straw proposal I propose adding

(A) The type T shall be a complete class type.

5.7[expr.add]

 p1 and p2 require pointers to completely defined object types in
 the relevant situations.

 No exception is arithmetic involving a constant 0.

5.17[expr.ass]

 There is no explicit statement that the type of an assignment
 cannot be an incomplete class type. It may be implied because the
 rhs is a rvalue. But that isn’t clearly stated either. So I
 propose adding (to p3).

(A) The left operand shall not be of incomplete class type.

6.2[stmt.expr]

 The WP does not require that the expression have a complete type.
 I propose to add.

(A) The expression is evaluated as an rvalue.

 This imposes (somewhat indirectly) the requirement that it not be
 an incomplete class type.

7.1.5.2[dcl.type.simple]

 This is where the WP allows qualified names to designate types.

 For the purposes of this discussion I propose to add

(A) A program is ill-formed if the nested-name-specifier is
present and names an incomplete class.

 Note that this section needs to be expanded that it contains a
 description of the lookup. (The discussion in 5.1 can presumably
 be used as a model)

10[class.derived]

 The WP requires that the base class be "previously defined".

(A) I think this should be changed to "complete class" for
consistency.

13.3 [over.match]

 This sections discusses the implicit calling of functions. I
 propose to add a new paragraph:

(A) If overload resolution succeeds then the return type of
the selected function and the type of any argument that is
copied shall be complete.

 I don’t think this is addressed by the requirements in 5.2.2
 because those apply only to explicit function calls.

 I do not propose to take this requirement into account when
 determining viable functions. I don’t think whether a class has
 been completed should effect the result of overload resolution.

14.3.2 [temp.point]

 This section is the critical one for understanding how the
 requirements for complete types interact with templates. I
 apologize that I haven’t been following the discussion of the
 "extensions" group in as great a detail as I might so some of the
 issues I raise here may already have been resolved.

 p1 says that the point of instantiation is determine by "the first
 use of a template requiring its definition." But an examination
 of the enumeration in this paper will reveal a great many points
 where a class must be complete but the type is not named. I think
 this requires some editorial work, something along the lines of

(A) the first program context that requires a generated class
to be a complete type.

 But I’m not sure about the vocabulary here. The section refers
 repeatedly to point of instantiation for a template, where I would
 have thought it should be point of instantiation for a
 specialization.

14.3.2 [temp.point] *****

 By virtue of making a context a point of instantiation we may
 generate more "needs" for instantiations. I think p9 is trying to
 deal with that issue. It says "The point of instantiation for a
 template used inside another template ..." But this seems to
 create too many points of instantiation.

 template<class T> class X ;
 template<class T> class Y { X<T>* p ; } ;
 Y< int > yx ; // should this be a point of instantiation for X<int>

 By p12 if the above is a point of instantiation for X<int> then
 the program is ill-formed. Unless I’m misreading it, the sentence
 quoted above would create a point of instantiation for X<int>.
 I’m not sure whether this is deliberate, but I propose a
 substantive change to

(B) If within a generated class definition, a context requires
the instantiation of another template then the point of
instantiation for the second template is

 This is still a little vague, as it isn’t clear exactly what
 contexts within a definition might require instantiation. In
 particular my understanding is that the bodies of inclass
 definitions are not instantiated at this point. I propose to
 clarify this with

(C) The contexts that might require instantiation of another
template are:

a) the base-clause of the template declaration.
b) declarations of non-static data members.

c) any expressions occurring outside the function-body and
ctor-initializer of function definitions, and outside
the declarations of members classes

 (c) includes default arguments, constant expressions in arrays and
 non-type template arguments. I think that is an exhaustive list,
 but I’ve phrased (c) in a roundabout fashion so as to cover myself
 if I’ve forgotten anything.

 I have deliberately excluded the bodies of member function
 definitions (and ctor-initializers of constructors.) My
 understanding of the current WP is that member functions have
 their own point of instantiation and so any requirements imposed
 by their bodies are not automatically propagated by the
 instantiation of the class. Specifically p6 says "An
 implementation shall not instantiate a function, nonvirtual member
 function, class or member class that does not require
 instantiation.

 For the same reason I have also excluded declarations of nested
 (member) classes.

 I also propose to add a new paragraph.

(D) At the point of instantiation of a template, the type of
all nonstatic data members and of all base classes shall be
complete object types.

 This is required because the proposed words in 3.1A and 3.1B do
 not cover these members. It isn’t clear to me whether the words
 in 10 would cover the base class case, but it doesn’t hurt to be
 explicit here.

 Note that this proposal has the consequence.

class A ;
template<class T> class X {

A a ;
} ;

X<char> xc ; // ill-formed, A is not complete
class A { } ;
X<int> xi ; // ok, it is completed later.

 A question remains in my mind about static data members. The WP
 seems to contemplate their definition being instantiated, (in a
 fashion similar to template functions), and at that point they
 will need to have a complete type, but it isn’t clear to me where
 to say that.

