
Cleanup of auto_ptr copy semantics. X3J16/96-0012 WG21/N0830
Greg Colvin. Information Mananagement Research.

Our working paper's auto_ptr (20.4.5) specifies a non-const copy constructor and
assignment operator. This specification makes functions that return auto_ptr less useful
than I intended, due to a language restriction on modifying temporaries (8.5.3). I know of
no small change to the language that allows auto_ptr work as intended and still disallows
the silliness that the current restriction prohibits, so a small change to auto_ptr is in order.

The currrent auto_ptr semantics transfers the ownership and possesion of the held pointer
in a "destructive copy": after the copy the source holds a null pointer. The smallest change
I know of that preserves a semantics of strict ownership is to separate the concepts of
"holding a pointer" and "owning an object", so that more than one auto_ptr can hold a
pointer to an object, but only one auto_ptr can own the object. Copying transfers
ownership but does not invalidate the source.

Note that only the held pointer is directly accessible: which auto_ptr owns an object is
observable at run-time only via the side effects of destructor calls (though it should be
known to the programmer by design). Thus providing const arguments to the copy
constructor and assignment operator and making release() a const function seem to me a
reasonable case of "logical constness". Note also that with this change the idiom
p.reset(q.release()) cannot safely transfer ownership: if q is not the owner p will
nonetheless become an owner. The safest course is to remove the reset() function from the
interface, as its functionality is now subsumed by the assignment operator. Except for this
deletion, existing code, including the motivating examples from our earlier discussions,
continues to work unchanged.

The changed Working Paper text I propose is as follows.

20.4.5 Template class auto_ptr [lib.auto.ptr]
Template auto_ptr holds onto a pointer to an object obtained via new and deletes that
object when it is the owner of that object and is itself destroyed (such as when leaving
block scope 6.7).

namespace std {
 template<class X> class auto_ptr {
 public:
 // 20.4.5.1 construct/copy/destroy:
 explicit auto_ptr(X* p=0);
 template<class Y> auto_ptr(const auto_ptr<Y>&);
 template<class Y> auto_ptr& operator=(const auto_ptr<Y>&);
 ~auto_ptr();
 // 20.4.5.2 members:
 X& operator*() const;
 X* operator->() const;
 X* get() const;
 X* release() const;
 };
}

The auto_ptr provides a semantics of strict ownership. After initial construction an
auto_ptr owns the object it holds a pointer to. An object may be safely owned by only one
auto_ptr, so copying an auto_ptr copies the pointer and transfers ownership to the
destination.

20.4.5.1 auto_ptr constructors [lib.auto.ptr.cons]

explicit auto_ptr(X* p = 0);

Requires: p points to an object of type X or a class derived from X for which delete p is
defined and accessible, or else p is a null pointer.
Postconditions: *this holds the pointer p. *this is the owner of the object **this .

template<class Y> auto_ptr(const auto_ptr<Y>& a);

Requires: Y is type X or a class derived from X for which delete(Y*) is defined and
accessible.
Effects: Calls a.release().
Postconditions: *this holds the pointer returned from a.release(). *this is the owner of
the object **this .

template<class Y>auto_ptr<X>& operator=(const auto_ptr<Y>& a);

Requires: Y is type X or a class derived from X for which delete(Y*) is defined and
accessible.
Effects: If *this is the owner of **this and this != &a then delete get(). Calls a.release().
Returns: *this
Postconditions: *this holds the pointer returned from a.release(). *this is the owner of
the object **this .

~auto_ptr();

Effects: If *this is the owner of **this then delete get().

20.4.5.2 auto_ptr members [lib.auto.ptr.members]

X& operator*() const;

Requires: get() != 0
Returns: *get()

X* operator->() const;

Returns: get()

X* get() const;

Returns: The pointer *this holds.

X* release() const;

Returns: get()
Postcondition: *this is not the owner of the object **this .

