
X3J16/96-0009 WG21/N0827 1

Revision History

Pre-Santa Cruz X3J16/96-0009 WG21/N0827
Post-Tokyo X3J16/95-0221 WG21/N0821
Pre-Tokyo X3J16/95-0194 WG21/N0794
Pre-Monterey X3J16/95-0089 WG21/N0689
Pre-Austin X3J16/95-0034 WG21/N0634

Summary of Issues

27.4.2 ios_traits P. 5

Active 27-001 Making newline locale aware
Active 27-002 is_whitespace is inconsistent
Active 27-004 example of changing the behavior of is_whitespace is incorrect.
Active 27-005 not_eof specification
Active 27-007 ios_traits typedefs are ‘char’ oriented
Active 27-008 ios_traits::length is missing Returns: clause
Active 27-009 (27-050 in Post Tokyo) ios_traits::get_state should be specified
Active 27-010 (27-051 in Post Tokyo) ios_traits::get_pos should be specified
Active 27-011 Return type for ios_traits::copy is incorrect

Closed 27-003 Mention of base struct string_char_traits (Tokyo)
Closed 27-006 streamsize should be SZ_T not INT_T (Tokyo)

 27.4.3 ios_base P. 14

Active 27-101 ios_base manipulators
Active 27-102 (27-151 in Post Tokyo) ios_base::width semantics are incorrect
Active 27-103 (27-152 in Post Tokyo) proposal for adding ios_base::maxwidth
Active 27-104 ios_base unitbuf and nounitbuf manipulators
Active 27-105 ios_base storage functions are not exception safe

 By: Philippe Le Mouël Doc. No.: X3J16/96-0009
 Rogue Wave Software Inc. WG21/N0827
 philippe@roguewave.com Date: January 30 1996

IOStreams Issues List
Library Clause 27

X3J16/96-0009 WG21/N0827 2

27.4.4 basic_ios P. 18

Active 27-203 operator bool() needs to be fixed

Closed 27-201 remove throw specifications for clear and setstate (Tokyo)
Closed 27-202 tie not required to be associated with an input sequence (Tokyo)
Closed 27-204 replace int_type by char_type in int_type fill() and int_type fill(int_type) (Tokyo)

27.5.2 basic_streambuf P. 19

Active 27-301 imbuing on streambufs. When, how often, etc...
Active 27-303 not_eof needs to be used where appropriate
Active 27-304 uflow needs editing
Active 27-305 basic_streambuf::showmanyc Incorrect return clause
Active 27-306 basic_streambuf::uflow has incorrect default behavior
Active 27-307 basic_streambuf::uflow has nonsense returns clause
Active 27-308 streambuf inlines
Active 27-309 (27-350 in Post Tokyo) two return clauses for streambuf::underflow
Active 27-310 (27-351 in Post Tokyo) streambuf::pbackfail has incorrect Notes: clause
Active 27-311 (27-352 in Post Tokyo) caching results of calls to locale functions

Closed 27-302 sungetc has an incorrect return type (Tokyo)

27.6.1 basic_istream P. 24

Active 27-401 isfx what does it do?
Active 27-402 ipfx example is incorrect
Active 47-403 Clarification of exceptions thrown
Active 27-404 istream functions need to check for NULL streambuf
Active 27-405 (27-450 in Post Tokyo) confusing English in formatted requirements
Active 27-406 (27-451 in Post Tokyo) operator>>(char_type *) failure
Active 27-407 (27-452 in Post Tokyo) operator>>(char_type) failure
Active 27-408 (27-453 in Post Tokyo) ws manipulator
Active 27-409 unsigned short extractors cannot use unsigned long get function

27.6.2 basic_ostream P. 29

Active 27-501 op<<(char) needs to be consistant with the other formatted inserters
Active 27-502 op<<(void *) should it be const volatile void *
Active 27-503 ostream functions need to check for NULL streambuf
Active 27-504 (27-550 in Post Tokyo) exceptions in ostream
Active 27-505 (27-551 in Post Tokyo) incorrect conversion specifier for operator<<(unsigned long)
Active 27-506 wrong default behavior for padding

27.6.1-27.6.2 basic_istream, basic_ostream P. 35

Active 27-601 op[<<|>>](ios_base&) needed for manipulators
Active 27-602 positional typedefs in istream/ostream derived classes are not needed
Active 27-603 read/write should take a void * instead of a char_type *
Active 27-604 Should we require ios::in to be set for istream’s and ios::out to be set for ostream’s?

X3J16/96-0009 WG21/N0827 3

Active 27-605 Should get/put use iterators?

27.6.3 Standard manipulators P. 39

Active 27-651 setfill description is wrong
Active 27-652 smanip is not a single type

27.7 string streams P. 40

Active 27-701 str() needs to clarify return value on else clause
Active 27-702 string stream classes need to have string_char_traits and allocator parameters
Active 27-703 (27-750 in Post Tokyo) stringbuf postconditions
Active 27-704 (27-751 in Post Tokyo) stringbuf::stringbuf constructor
Active 27-705 (27-752 in Post Tokyo) Incorrect calls to setg and setp in Table 14
Active 27-706 (27-753 in Post Tokyo) Incorrect calls to setg and setp in table 16
Active 27-707 setbuf function is missing

27.8 fstreams P. 44

Active 27-801 filebuf::underflow example is incorrect
Active 27-802 filebuf::is_open is a bit confusing
Active 27-803 (27-850 in Post Tokyo) ofstream constructor missing trunc as openmode
Active 27-804 (27-851 in Post Tokyo) ofstream::open missing trunc in openmode
Active 27-805 (27-852 in Post Tokyo) filebuf::imbue semantics
Active 27-806 (27-853 in Post Tokyo) filebuf::seekoff Effects: clause needs work
Active 27-807 (27-854 in Post Tokyo) filebuf::underflow performance questions
Active 27-808 (27-855 in Post Tokyo) Editorial fixes in wording for fstreams
Active 27-809 description of function setbuf is missing
Active 27-810 openmode notation is not consistent in basic_ifstream and basic_ofstream
Active 27-811 description of function sync is missing

Miscellaneous P. 49

Active 27-901 input/output of unsigned char, and signed char
Active 27-902 default locale (Tokyo) and add new issue 27-921
Active 27-903 ipfx/opfx/isfx/osfx not compatible with exceptions.
Active 27-904 iosfwd declarations incomplete
Active 27-905 iostream type classes are missing.
Active 27-906 add a typedef to access the traits parameter in each stream class
Active 27-907 Use of “instance of” vs. “version of” in descriptions of class ios
Active 27-908 unnecessary ‘;’ (semicolons) in tables
Active 27-909 Editorial issues (typo’s)
Active 27-910 remove streampos in favor of pos_type
Active 27-911 stdio synchronization
Active 27-912 removing Notes: from the text
Active 27-913 Incorporating Notes: into the text
Active 27-914 rethrowing exceptions
Active 27-915 (27-950 in Post Tokyo) The use of specialization
Active 27-916 (27-951 in Post Tokyo) missing descriptions of specializations
Active 27-917 (27-952 in Post Tokyo) Editorial changes

X3J16/96-0009 WG21/N0827 4

Active 27-918 (27-953 in Post Tokyo) Validity of OFF_T to POS_T conversion
Active 27-919 (27-954 in Post Tokyo) Question on Table 2 assertions
Active 27-920 (27-955 in Post Tokyo) destination of clog and wclog
Active 27-921 default locale argument to constructor

Annex D P. 66

Active 27-1001 description of function setbuf is not sufficient
Active 27-1002 strstreambuf Editorial issues (typo’s)
Active 27-1003 istrstream Editorial issues (typo’s)
Active 27-1004 ostrstream Editorial issues (typo’s)

X3J16/96-0009 WG21/N0827 5

ios_traits issues

Issue Number: 27-001
Title: changing traits::newline to be locale aware
Section: 27.4.2.1 ios_traits value functions [lib.ios.traits.values]
Status: active
Description:

The problem with traits::newline is that it does not know about the currently imbued locale.

This proposal addresses the need for a locale-aware newline.

Possible Resolution:

Change traits::newline by adding a parameter for locale information:

static char_type newline(const ctype<char_type>& ct);

The default definition is as if it returns:
ct.widen(‘\n’);

Some functions in basic_istream have a default parameter that is: traits::newline() (getline, get).
These defaults will have to be changed to use the currently imbued locale. Changing the default
value to: traits::newline(getloc()) won’t work because getloc() is not static. Therefore the
functions that have newline() as a default value must be split into two functions; one function
that has three parameters, and one function that has two parameters and calls the three parameter
function with a “default” value. For example:

istream_type& getline(char_type *, streamsize, char_type delim);

istream_type& getline(char_type *s, streamsize n)
{

 return getline(s, n, newline(
 use_facet<ctype<char_type> >(getloc())));
 }

The functions that need to change are:
istream_type& get(char_type *, streamsize, char_type);
istream_type& get(streambuf_type&, char_type);
istream_type& getline(char_type *, streamsize, char_type);

Requestor: Nathan Myers (ncm@cantrip.org),
John Hinke (hinke@roguewave.com)

X3J16/96-0009 WG21/N0827 6

Issue Number: 27-002
Title: traits::is_whitespace() is inconsistent
Section: 27.4.2.2 ios_traits test functions [lib.ios.traits.tests]
Status: active
Description:

This function is inconsistent throughout the document. For example:

27.4.2 Template struct ios_traits [lib.ios.traits]
static bool is_whitespace(int_type, const ctype<char_type>&);

27.4.2.2 ios_traits test functions [lib.ios.traits.tests]
bool is_whitespace(int_type c, const ctype<char_type>& ct);

 Returns: true if c represents a white space character. The default definition
is as if it returns ct.isspace(c).

The returns paragraph calls a method of ctype that does not exist.
 It should say:

 Returns: true if c represents a white space character. The default definition is as if it
returns ct.is(ct.space, c).

27.6.1.1.2 basic_istream::ipfx [lib.istream.prefix]
Notes: ...uses the function

bool traits::is_whitespace(charT, const ctype<charT>&)

The same paragraph goes on to use ctype<...> in the example.

27.6.1.1.2 Paragraph 4: [lib.istream.prefix]
static bool is_whitespace(char, const ctype<charT>&)

Possible Resolution:

The problem is determining which signature is correct.

As pointed out in Box 6 (27.4.2 Template struct ios_traits [lib.ios.traits]) the locale
functions that actually test for whitespace work on char_type values.

 I propose the following change:

static bool is_whitespace (char_type c, const ctype<char_type>& ct);

Returns: true if c represents a white space character. The default definition is as if it returns
ct.is(ct.space, c).

Requestor: John Hinke (hinke@roguewave.com)
Philippe Le Mouël (philippe@roguewave.com)

X3J16/96-0009 WG21/N0827 7

Issue Number: 27-004
Title: example of changing the behavior of is_whitespace is incorrect.
Section: 27.6.1.1.2 Paragraph 4 basic_istream prefix and suffix [lib.istream.prefix]
Status: active
Description:

The example of changing behavior of is_whitespace is incorrect. It should read:

struct my_char_traits : public ios_traits<char> {
static bool is_whitespace(char c, const ctype<char>& ct)

{ ...my own implementation... }
};

Possible Resolution:

 Change from:

struct my_char_traits : public ios_traits<char> {
static bool is_whitespace(char c, const ctype<charT>& ct)

{ ...my own implementation... }
};

 To:
struct my_char_traits : public ios_traits<char> {

static bool is_whitespace(char c, const ctype<char>& ct)
{ ...my own implementation... }

 };

Requestor: John Hinke (hinke@roguewave.com)

Issue Number: 27-005
Title: not_eof specification
Section: 27.4.2.1 ios_traits value functions [lib.ios.traits.values]
Status: active
Description:

int_type not_eof(int_type c);

Editorial: “Notes:” should also mention it is used for sbumpc and sgetc.

Per Bothner writes:
“The Returns: is incompatible with the traditional masking function for zapeof. This is because
int_type(-2) == -2 while zapeof(-2) == ((-2) & 0xFF). And nowhere else does it say anything
that would allow the traditional implementation.”

“I don’t understand the presentation style well enough to suggest the proper fix. But somewhere
it should say or imply that when charT is specialized with char, then not_eof(c) is
int_type((unsigned char)(c)).”

Possible Resolution:

Requestor: Per Bothner (bothner@cygnus.com)

X3J16/96-0009 WG21/N0827 8

Issue Number: 27-007
Title: ios_traits typedefs are ‘char’ oriented.
Section: 27
Status: active
Description:

We cannot specify int_type, off_type, pos_type, and state_type corresponding to some specialized
charT type.

For example, if in order to think about ‘char’ specialization, we might define

template <class charT> struct ios_traits {
....
typedef charT char_type;
typedef int int_type;
....

};

we would have to accept it as constant definition in all of the specialized traits, not only
ios_traits<char>, but ios_traits<wchar_t>, ios_traits<ultrachar>. This would lead to the
restriction upon implementations that all of the charT must be converted in 'int' range. The
restriction is too heavy for future wide character types and user-defined character types.

Possible Resolution:

Adopt the following definition:

namespace std {
template <class charT> struct ios_traits {};

struct ios_traits<char> {
typedef char char_type;
typedef int int_type;
typedef streampos pos_type;
typedef streamoff off_type;
typedef mbstate_t state_type;

// 27.4.2.2 values:
static char_type eos();
static int_type eof();
static int_type not_eof(int_type c);
static char_type newline();
static size_t length(const char_type* s);

// 27.4.2.3 tests:
static bool eq_char_type(char_type, char_type);
static bool eq_int_type(int_type, int_type);
static bool is_eof(int_type);
static bool is_whitespace(int_type, const ctype<char_type>

ctype&);

// 27.4.2.4 conversions:
static char_type to_char_type(int_type);

X3J16/96-0009 WG21/N0827 9

static int_type to_int_type(char_type);
static char_type* copy(char_type* dst, const char_type* src, size_t n);
static state_type get_state(pos_type);
static pos_type get_pos(streampos fpos, state_type state);

};

struct ios_traits<wchar_t> {
typedef wchar_t char_type;
typedef wint_t int_type;
typedef wstreampos pos_type;
typedef wstreamoff off_type;
typedef mbstate_t state_type;

// 27.4.2.2 values:
static char_type eos();
static int_type eof();
static int_type not_eof(int_type c);
static char_type newline();
static size_t length(const char_type* s);

// 27.4.2.3 tests:
static bool eq_char_type(char_type, char_type);
static bool eq_int_type(int_type, int_type);
static bool is_eof(int_type);
static bool is_whitespace(int_type, const ctype<char_type>

ctype&);

// 27.4.2.4 conversions:
static char_type to_char_type(int_type);
static int_type to_int_type(char_type);
static char_type* copy(char_type* dst, const char_type* src, size_t n);
static state_type get_state(pos_type);
static pos_type get_pos(streampos fpos, state_type state);

};
}

According to the separation of the two specializations, we have to change the descriptions in
[lib.streams.types], as follows;

27.4.1 Types

typedef OFF_T streamoff;

The type streamoff is an implementation-defined type that satisfies the requirements of type
OFF_T.

typedef WOFF_T wstreamoff;

The type wstreamoff is an implementation-defined type that satisfies the requirements of type
WOFF_T.

typedef POS_T streampos;

X3J16/96-0009 WG21/N0827 10

The type streampos is an implementation-defined type that satisfies the requirements of type
POS_T.

typedef WPOS_T wstreampos;

The type wstreampos is an implementation-defined type that satisfies the requirements of type
WPOS_T.

typedef SIZE_T streamsize;

The type streamsize is a synonym for one of the signed basic integral types. It is used to
represent the number of characters transferred in an I/O operations, or the size of I/O buffers.

Comments:

We can find the above approach, "defining nothing in the template version of traits and defining
everything in each specializations", in my original proposal (X3J16/94-0083). I am afraid (and
sorry) that one of the mistakes made in my document for Austin (X1J16/95-0064) introduced
such an inappropriate definitions to the current WP.

I feel this change request is in a kind of 'editorial' class.

We should not put any definitions (static member functions or typedefs) related to int_type,
off_type, pos_type and/or state_type in the template definition of the traits. The reason is that in
fact, these three types depend on the template parameter class 'charT' for variety of environments
(ASCII, stateless encodings for double byte characters, UniCode). For example,

charT char wchar_t
int_type int wint_t
off_type streamoff wstreamoff
pos_type streampos wstreampos
state_type mbstate_t mbstate_t

Note that two of the above types, 'wint_t', 'mbstate_t' are defined in C Amendment 1 (or MSE).

We cannot assume that two implementation-defined types, streampos and wstreampos have the
same definitions because under some shift encodings, wstreampos have to keep an additional
information, the shift state, as well as the file position. We should represent them with two
different symbols, POS_T and WPOS_T so as to give a chance to provide separate definitions in
these two specializations.

For pos_type in both specialized traits, the type 'mbstate_t' is introduced from C Amendment 1(or
former MSE) and is an implementation-defined type that can represent any of shift states in file
encodings.

The type, INT_T is not suitable for the definition of streamsize because INT_T represents
another character type, whose meaning is different to those of streampos. So a new symbol
'SIZE_T' will need to specify the definitions of streampos.

Possible Resolution:

Issue 27-006 closed in Tokyo solves the streamsize problem by defining it as:

typedef SZ_T streamsize;

X3J16/96-0009 WG21/N0827 11

The WP also specifies (27.4.2 Template struct ios_traits [lib.ios.traits] paragraph 2) that an
implementation shall provide the following two instantiations of ios_traits:

struct ios_traits<char>;
struct ios_traits<wchar_t>;

Like Norihiro Kumagai, I feel that the types int_type, pos_type, off_type and state_type have to
be specified in each specialization. But to me, the WP is correct when it says (27.4.2 Template
struct ios_traits [lib.ios.traits]):

namespace std {
 template <class charT> struct ios_traits<charT> {

 typedef charT char_type;
 typedef INT_T int_type;
 typedef POS_T pos_type;
 typedef OFF_T off_type;
 typedef STATE_T state_type;

.

.

I understand by the above that a specialization has to provide the types int_type, pos_type,
off_type and state_type and that these types have to obey the description of type INT_T for
int_type, the description of POS_T for pos_type, the description of OFF_T for off_type, and the
description of STATE_T for state_type.
Therefore you can have the following:

struct ios_traits<char> {
typedef char char_type;
typedef int int_type;
typedef streampos pos_type;
typedef streamoff off_type;
typedef mbstate_t state_type;

 .
 .

Which means to me:

int is following the description of INT_T (27.1.2.2 Type INT_T [lib.iostream.int.t])
streampos is following the description of POS_T (27.1.2.4 Type POS_T [lib.iostream.pos.t])

 streamoff is following the description of OFF_T (27.1.2.3 Type OFF_T
[lib.iostream.off.t])

mbstate_t is following the description of STATE_T (27.1.2.6 Type STATE_T)

May be we should make clarifications in the WP about this fact and also add that an
implementation is required to specialized ios_traits on whatever charT type it is using.

Requestor: Norihiro Kumagai (kuma@slab.tnr.sharp.co.jp)

X3J16/96-0009 WG21/N0827 12

Issue Number: 27-008
Title: ios_traits::length is missing Returns: clause
Section: 27.4.2.1 ios_traits value functions [lib.ios.traits.values]
Status: active
Description:

ios_traits::length has an Effects: clause but no Returns: clause. The Effects: clause
should be reworded as a Returns: clause.

Possible Resolution:

Remove the Effects clause and add:

Returns: The length of a null terminated character string pointed to by s.

Requestor: Public Comment

Issue Number: 27-009
Title: definition for get_state
Section: 27.4.2.3 ios_traits conversion functions [lib.ios.traits.convert]
Status: active
Description:

The definition of ios_traits::get_state is incomplete. Here is the complete description:

state_type get_state(pos_type pos);

Returns: A state_type value which represents the conversion state in the object pos .

Possible Resolution:

 In section 27.1.2.4 Type POS_T paragraph 2 of the WP it is specified:

 “ The type POS_T describes an object that can store all the information necessary to restore an
 arbitrary sequence to a previous stream position and conversion state. “

 So I think we can safely change the return clause, as proposed by Norihiro Kumagai, to:

Returns: A state_type value which represents the conversion state in the object pos .

Requestor: Norihiro Kumagai (kuma @ slab.tnr.sharp.co.jp)

X3J16/96-0009 WG21/N0827 13

Issue Number: 27-010
Title: definition for get_pos
Section: 27.4.2.3 ios_traits conversion functions [lib.ios.traits.convert]
Status: active
Description:

The definition of ios_traits::get_pos is incomplete. Here is the complete description:

pos_type get_pos(streampos pos , state_type s);

Effects: Constructs a pos_type value which represents the stream position corresponding to
the pair of pos and s .

Returns: A pos_type value which consists of the values of pos and s .

Possible Resolution:

Requestor: Norihiro Kumagai (kuma @ slab.tnr.sharp.co.jp)

Title: Return type for ios_traits::copy is incorrect
Section: 27.4.2.3 ios_traits conversion functions [lib.ios.traits.convert]
Status: active
Description:

The return type for ios_traits::copy says to return dst . It should return dest .

Possible Resolution:

 Change the returns clause to: Returns: dest

Requestor: John Hinke (hinke@roguewave.com)

X3J16/96-0009 WG21/N0827 14

ios_base issues

Issue Number: 27-101
Title: ios_base manipulators
Section: 27.4.5 ios_base manipulators [lib.std.ios.manip]
Status: active
Description:

There is only one ios_base manipulator that says, “Does not affect any extractors.” (showbase)

This implies that the rest of the manipulators affect extractors. If the manipulators only affect
insertors (ignoring skipws), then perhaps they should be ostream manipulators instead of
ios_base manipulators. If they are left as ios_base manipulators, then they should affect
extractors as well as insertors.

The locale num_get facet says, “Reads characters from in, interpreting them according to
str.flags()...” This implies that the manipulators affect the extraction of values from a stream.

A couple of cases:

unsigned int ui;
int i;

cout << -10;
cin >> ui; // What should this read in?
cout << showpos << 10; // +10
cin >> ui; // What about this?

cout << showbase << hex << 10; // 0xa
cin >> i; // Should this be valid?
cout << showbase << hex << 10; // 0xa
cin >> showbase >> hex >> i; // What about this?

Possible Resolution:

 John wrote the following possible resolution:

“Keep all manipulators as they are but say something to the effect that the manipulators affect
both insertors and extractors. Remove the Notes on showbase. This is different behavior than
the original AT&T implementation.

Editorial Issue: These manipulators should be moved to the ios_base clause.”

In section 27.4.3.1.2 type ios_base::fmtflags, Table 3 specifies how input and output are affected
by the different fmtflags fields (therefore by the fmtflags manipulators).
So if you do:

cin >> i; // enter 0xa
cout << dec << i; // print 10
cin >> hex >> i; // enter 10
cout << dec << i; // print 16

X3J16/96-0009 WG21/N0827 15

We should remove the note on showbase or add a note to all the other manipulators specifying
their behavior on insertors and extractors according to Table 3.

Requestor: John Hinke (hinke@roguewave.com)

Issue Number: 27-102
Title: ios_base::width semantics are incorrect
Section: 27.4.3.2 ios_base fmtflags state functions [lib.fmtflags.state]
Status: active
Description:

The current description for ios_base::width() is:
Returns: The field width (number of characters) to generate on certain output conversions."

It should read "Returns: The minimum field width"

Possible Resolution:

Replace the returns clause by:

Returns: The minimum field width (number of characters) to generate on certain output
conversions.

Requestor: Public Comment

Issue Number: 27-103
Title: proposal for adding ios_base::maxwidth
Section: 27
Status: active
Description:

This is probably too late to make it into the standard (unless the process rolls into further
extensive revisions and balloting anyway, which -- judging from the state of the Input/Output
library section -- seems likely :->}), but I'll point it out it all the same. If we really want
programs to use the iostreams package instead of the FILE I/O calls, the iostreams package
should provide as a minimum the same facilities as the older library. Specifically, the standard C
I/O package provides a convenient method for controlling the maximum number of characters to
write in formatted I/O, e.g.:

 fprintf(fp, "FONT NAME: %.16s\n", font_desc.font_name);

This handles the case of a structure which has enough space for a string which will not
necessarily be NUL-terminated if the maximum number of characters are stored for the string (a
common enough situation when one is manipulating data structures written by someone else's
software).

What are the reasons for leaving this out of the iostreams package? Also (while on the topic of
rounding out iostreams to match what the competition can do), how difficult would it be to
provide the ability to control the (minimum) number of digits in the exponent for a formatted
floating point number written using scientific notation (as, for example, one can do in Ada)?

Possible Resolution:

X3J16/96-0009 WG21/N0827 16

The previous example “fprintf(fp, "FONT NAME: %.16s\n", font_desc.font_name);” can easily
be achieved by iostream, with unformatted output.

Here is an example of achieving the same behavior:

ofstream fp(“filename”);
fp.write (font_desc.font_name , 16);

According to the example above, I think we should close the issue concerning the maxwidth
field, I do not see the advantage of providing the same functionality for the formatted output.

Concerning the second remark “how difficult would it be to provide the ability to control the
(minimum) number of digits in the exponent for a formatted floating point number written using
scientific notation”, I propose the following:

Add to 27.4.3 Class ios_base [lib.ios.base]:

streamsize expwidth() const;
streamsize expwidth(streamsize wide);

Add to 27.4.3.2 ios_base fmtflags state functions [lib.fmtflags.state]

streamsize expwidth() const;

Returns: The minimum exponent width to generate when outputting floating point number in
scientific notation.

 Streamsize expwidth(streamsize wide);

Postcondition: wide == expwidth().
Returns: The previous value of expwidth().

Add to 27.4.4.1 basic_ios constructors [lib.basic.ios.cons] Table 8-ios_base() effects:

expwidth() zero

Add to 27.6 Formating and manipulators [lib.iostream.format] Header <iomanip> synopsis

T7 setexpw(int n);

Add to 27.6.3 Standard manipulators [lib.std.manip]:

smanip setexpw(int n);

Returns: smanip(f, n), where f can be defined as:

ios_base& f(ios_base& str, int n)
 { // set minimum exponent width
 str.expwidth(n);
 return str;
 }

X3J16/96-0009 WG21/N0827 17

Requestor: Public Comment

Issue Number: 27-104
Title: ios_base unitbuf and nounitbuf manipulators
Section: 27.4.5.1 fmtflags manipulators [lib.fmtflags.manip]
Status: active
Description:

In section 27.4.3.1.2 (Type ios_base::fmtflags) Table 3 describes all the different fmtflags, and
section 27.4.5.1 (fmtflags manipulators) describes all the fmtflags manipulators. The remark
is that all the fmtflags are associated with a manipulator or two (ex: showpos and noshowpos
manipulators) except unitbuf fmtflags. I think we should provide manipulators for the unitbuf
fmtflags, otherwise users will have to be familiar with both way of setting the fmtflags.

Possible Resolution:

Add the two following manipulators:

ios_base& unitbuf (ios_base& str);

Effects: Calls str.setf (ios_base::unitbuf).
Returns: str.

ios_base& nounitbuf (ios_base& str);

Effects: Calls str.unsetf (ios_base::unitbuf).
Returns: str.

Requestor: Philippe Le Mouël (philippe@roguewave.com)

Issue Number: 27-105
Title: ios_base storage functions are not exception safe
Section: 27.4.3.4 ios_base storage functions [lib.ios.base.storage]
Status: active
Description:

 This issue is just a reference to Nathan’s proposal, which is in a separate document.
 The document title is “Exception Safety for Iostreams” and its number is “X3J16/96-0024,
WG21/N0842”..

Possible Resolution:

Requestor: Nathan Myers (ncm@cantrip.org)

X3J16/96-0009 WG21/N0827 18

basic_ios issues

Issue Number: 27-203
Title: operator bool() needs to be fixed
Section: 27.4.4.3 basic_ios iostate flags functions [lib.iostate.flags]
Status: active
Description:

Defining ios_base (or, as it appears in my copy of the WP, basic_ios) with a member operator
bool() seemed like a good idea at the time, but perhaps the change should be withdrawn.

The reason is: while a conversion to void* is mostly harmless because few functions accept a
void* argument, and void* doesn't silently convert to anything else, with an operator bool, the
following absurdities are well-defined:

1 + cin
sin(cin)
vector<int> v(cin);

and (worse) ambiguities like

void f(istreambuf_iterator<char>);
void f(double);

f(cin); // ambiguous

have been introduced. In other words, this change broke reasonable code. The problem is that
bool is an arithmetic type, and is ill-behaved.

Possible Resolution:

Replace the member ios_base::operator bool() with member
ios_base::operator const void*(), specified to return 0 if fail() is true, and non 0
if it is false.

This restores the code we broke, and also prevents frustrating ambiguities in new code.

[ED Note: This is assuming that these functions will be moved to ios_base as suggested in
one of the editorial boxes]

The Tokyo meeting add editorial box 25.

Requestor: Nathan Myers (ncm@cantrip.org)

X3J16/96-0009 WG21/N0827 19

basic_streambuf issues

Issue Number: 27-301
Title: imbuing on streambufs: when, how often, etc...
Section: 27.5.2.2.1 Locales [lib.streambuf.locales]
Status: active
Description:

There needs to be something said as to when a new locale can be imbued into a streambuf or
stream. Which operations are considered “atomic” in regards to locale changes.

Possible Resolution:

The effect of calling imbue during activation of any member of a class derived from
basic_ios<> , or of any operator << or >> in which the class is the left argument, is
unspecified. In particular (e.g.) any codeset conversion occurring in the streambuf may
become incompatible with the formats specified by the old locale and still used.

The effect of calling streambuf::imbue or pub_imbue during activation of any streambuf
virtual member is also undefined.

Requestor: Nathan Myers (ncm@cantrip.org)

Issue Number: 27-303
Title: not_eof needs to be used where appropriate
Section: 27.5.2.2.3 Get area [lib.streambuf.pub.get]
Status: active
Description:

27.5.2.2.3 Get area [lib.streambuf.pub.get]

int_type sbumpc();
Returns: “...returns char_type(*gptr())...”

This should be changed to say, “...returns not_eof(*gptr())...”

int_type sgetc();
Returns: “...returns char_type(*gptr()).”

This should be changed to say, “...returns not_eof(*gptr())...”

See also box 29, 30, 31.

P. J. Plauger wrote:

“traits::not_eof is used in two places, both in overrides to virtual members of basic_streambuf.
The first is in overflow, which should begin with code like:

virtual int_type overflow (int_type ch = traits::eof())
 { if (traits::is_eof (ch))

X3J16/96-0009 WG21/N0827 20

 return (traits::not_eof(ch)); }

The second is in pbackfail, which should begin with code like:

virtual int_type pbackfail(int_type ch = traits::eof())
 { if (gptr() !=0 && eback() < gptr() && traits::is_eof(ch))
 { <decrement next pointer for input buffer>;
 return (traits::not_eof(ch)); }

These are the two places in basic_streambuf where an eof argument can lead to a successful (non-
EOF) return”.

Possible Resolution:

I agree with P. J. Plauger and I do not think we should add not_eof in the return statement of
functions sbumpc, sgetc, uflow and sputc. I propose we remove boxes 29, 30 and 31 and change “
… returns the value of traits::not_eof(*gptr()) …” in box 34 to “ … returns the value of *gptr()
…”.

Requestor: Per Bothner (bothner@cygnus.com)

Issue Number: 27-304
Title: uflow needs editing
Section: 27.5.2.4.3 Get area [lib.streambuf.virt.get]
Status: active
Description:

27.5.2.4.3 Get area [lib.streambuf.virt.get]

int_type uflow();
Default behavior: “...returns *gptr().”

This should be changed to, “...returns not_eof(*gptr()).”

Returns: traits::not_eof(c)

This should be changed to, “traits::not_eof(*gptr())”

 See also box 34.

Possible Resolution:

Box 34 describes the correct behavior of the uflow function except for the return value which
should be *gptr() rather than traits::not_eof(*gptr ()) (see issue 27-303). I propose to change
Box 34 to reflect this fact and close the issue.

Requestor: Per Bothner (bothner@cygnus.com)

Issue Number: 27-305
Title: basic_streambuf::showmanyc Incorrect return clause
Section: 27.5.2.4.3 Get area [lib.streambuf.virt.get]
Status: active
Description:

X3J16/96-0009 WG21/N0827 21

basic_streambuf::showmanyc Returns has been corrupted. The function should return the number
of characters that can be read with no fear of an indefinite wait while underflow obtains more
characters from the input sequence. traits::eof() is only part of the story. Needs to be restored to
the approved intent. (See footnote 218.)

Possible Resolution:

Footnote number 12 says “ … The intention is not only that the calls will not return eof() but
that they will return immediately.”. I think the footnote clarifies the above remark and, therefore,
the issue can be closed.

Requestor: Public Comment

Issue Number: 27-306
Title: basic_streambuf::uflow has incorrect default behavior
Section: 27.5.2.4.3 Get area [lib.streambuf.virt.get]
Status: active
Description:

basic_streambuf::uflow default behavior “does” gbump(1), not gbump(-1). It also returns the
value of *gptr() *before* “doing” gbump.

Possible Resolution:

The description of uflow says:
“The constraints are the same as for underflow(), except that the result character is transferred
from the pending sequence to the backup sequence”

The description of underflow says:
“Returns: the first character of the pending sequence, if possible, without moving the input
sequence position past it …”

Therefore uflow must:

+ Call underflow(traits::eof()), which will return the first character of the
 pending sequence (*gptr()) without moving it or traits::eof ().

 + If underflow does not return traits::eof() uflow has to transfer the result
 character (coming from underflow, which is *gptr()) from the pending
 sequence to the backup sequence. This is done by doing gbump(1), and is
 supposed to return the same character as underflow, which is *gptr() before
 doing gbump(1).

The Tokyo meeting added Box 34, which fixes the problem except for the return clause, which
should be *gptr() and not “traits::not_eof(*gptr())” (see issue 27-304). I propose that we
change the return clause in Box 34 as described previously and close the issue.

Requestor: Public Comment

Issue Number: 27-307
Title: basic_streambuf::uflow has nonsense returns clause
Section: 27.5.2.4.3 Get area [lib.streambuf.virt.get]

X3J16/96-0009 WG21/N0827 22

Status: active
Description:

basic_streambuf::uflow has a nonsense Returns: clause. Should be struck.

Possible Resolution:

Change the Returns: clause to: “traits::eof() to indicate failure.”
The Tokyo meeting added Box 34 which fixes the problem. I propose we close the issue.

Requestor: Public Comment

Issue Number: 27-308
Title: streambuf inlines
Section: 27.5.2
Status: active
Description:

Nathan Myers (ncm@cantrip.org) writes:
I have begun looking more closely into the description of streambuf semantics, particularly the
inlines like sgetc() and sbumpc().

These functions are typically called in inner loops of I/O code, so their performance critically
affects I/O bandwidth. Any unnecessary elaboration costs everyone.

I notice that these functions are specified in terms of pointers that are (e.g.) "NULL or >=
egptr()". This means that the inline functions must check the buffer pointers for both a NULL
value *and* for end-of-buffer. Traditional implementations only check for end-of-buffer,
resulting in smaller/faster code.

Does anyone remember when the possibility of these pointers being set to NULL was added, and
why?

Per Bothner (bothner@cygnus.com) writes:
Traditional implementations allow *all* of the get pointers to be NULL, which is the initial state
before buffers have been allocated. This case would be subsumed by (say) "gptr() < egptr()" on
normal machines. But the standard perhaps does not require that "NULL < NULL" be well-
defined (think weird segmented architectures), so NULL may need to be mentioned especially.

Jerry Schwarz (jss@declarative.com) writes:
(a) It has always been possible for them to be NULL. However when they are NULL they must
all be NULL so you don't need a special check. This is the traditional interface.

(b) These are private pointers. The only way to set them or get them is through member
functions. What those member functions do with NULL values is up to them.

Possible Resolution:

 The Tokyo meeting adds Box 26 in clause 27.5.1 Stream buffer requirements
[lib.streambuf.reqts], which fixes the issue. I propose to close the issue.

Requestor: Nathan Myers (ncm@cantrip.org)

X3J16/96-0009 WG21/N0827 23

Issue Number: 27-309
Title: two return clauses for streambuf::underflow
Section: 27.5.2.4.3 Get area [lib.streambuf.virt.get]
Status: active
Description:

basic_streambuf::underflow has two Returns: clauses. Should combine them to be
comprehensive.

Possible Resolution:

Remove the last return clause “Returns: traits::eof to indicate failure” and correct the typo in the
first return clause “… If the pending sequence is null then the function returns traits::eof() to
indicate failure” and not “… to indicate faulure”.

Requestor: Public Comment

Issue Number: 27-310
Title: streambuf::pbackfail has incorrect Notes: clause
Section: 27.5.2.4.4 Putback [lib.streambuf.virt.pback]
Status: active
Description:

basic_streambuf::pbackfail Note begins a sentence with “Other calls shall.” Can't apply “shall” to
user program behavior, by the accepted conformance model.

Possible Resolution:

A user program will not directly call this function, since it belongs to the protected interface of
the class basic_streambuf. Therefore I think it is reasonable to use the verb shall to point out that
any derived class from basic_streambuf has to meet the listed requirements before calling
pbackfail. I propose to close the issue.

Requestor: Public Comment

Issue Number: 27-311
Title: caching results of calls to locale functions
Section: 27.5.2.4.1 Locales [lib.streambuf.virt.locales]
Status: active
Description:

"Between invocations of this function a class derived from streambuf can safely cache results of
calls to locale functions and to members of facets so obtained." Does this mean that changes in
locale can be effectively ignored by the streambuf?

Possible Resolution:

This issue should be resolved with issue 27-301.

Requestor: Public Comment

X3J16/96-0009 WG21/N0827 24

basic_istream issues

Issue Number: 27-401
Title: istream::isfx
Section: 27.6.1.1.2 basic_istream prefix and suffix [lib.istream.prefix]
Status: active
Description:

What is the purpose of this function? The WP says, “Effects: None.” Should it do something
more? Or is it implementation defined!

Possible Resolution:

The Tokyo meeting deprecated ipfx and isfx in favor of the member type sentry (see Box 38).
Therefore I propose to close the issue.

Requestor: John Hinke (hinke@roguewave.com)

Issue Number: 27-402
Title: examples for ipfx
Section: 27.6.1.1.2 basic_istream prefix and suffix [lib.istream.prefix]
Status: active
Description:

The example for a “typical” implementation of ipfx() has an incorrect function declaration. It
should read:

template<class charT, class traits>
bool basic_istream<charT, traits>::ipfx(bool noskipws)

Possible Resolution:

The Tokyo meeting deprecated ipfx and isfx in favor of the member type sentry (see Box 38).
Therefore I propose to close the issue.

Requestor: John Hinke (hinke@roguewave.com)

Issue Number: 27-403
Title: Clarification of exceptions thrown
Section: 27.6.1.2.2 basic_istream::operator>> [lib.istream::extractors]
Status: active
Description:

27.6.1.2.2 paragraph 4 says
 "If one of these called functions throws an exception, then unless noted otherwise the input
function calls setstate(badbit) and if badbit is on in exception() (sic) rethrows the exception
without completing its actions."

Problem: If badbit is on in exceptions() then ios_base::clear, which is called by setstate(badbit),
will throw an object of ios_base::failure and the original exception will NEVER be rethrown, i.e.,
it will be lost.

X3J16/96-0009 WG21/N0827 25

Discussion:

Jerry Schwarz,
“This has been discussed a lot. My preference has always been that if any of the virtuals throws
an exception then

a) set badbit in error state
b) check badbit in exception state
 b1) if its on then rethrow the original exception

b2) do not throw anything, treat as an error.

“Other implementors have complained that this was hard to do, and have preferred to just let the
exception be passed through without being caught at all.

“Other people think that all iostream operations should only through ios_base::failure.”

Possible Resolution:

See issue 27-504.

Requestor: Modena Software (modena@netcom.com)

Issue Number: 27-404
Title: istream functions need to check for NULL streambuf
Section: 27.6.1.1 Template class basic_istream [lib.istream]
Status: active
Description:

Functions in basic_istream that call members of rdbuf() need to check for a NULL streambuf
before calling the function. There are some functions that make sure rdbuf() is not a NULL
pointer before calling any functions on the buffer, but some functions don’t check for the NULL
pointer. This needs to be consistent.

Discussion:

P.J. Plauger wrote: “Any attempt to store a null stream buffer pointer causes badbit to be set in
the stored status. Hence, no input or output is ever attempted, using such a pointer, by formatted
functions.”

Possible Resolution:

As pointed out by P.J. Plauger, we should add a footnote to explain why there is no need to check
for a NULL streambuf.

We should also add, in section 27.4.4.2 Member functions [lib.basic.ios.members], the
following to the description of basic_streambuf<charT,traits>*
rdbuf(basic_streambuf<charT,traits>* sb); :

Postcondition: sb == rdbuf() and if sb is a NULL pointer rdstate() == badbit.

Note: This issue has to be discussed with issue 27-503.

X3J16/96-0009 WG21/N0827 26

Requestor: John Hinke (hinke@roguewave.com)

Issue Number: 27-405
Title: confusing English in formatted requirements
Section: 27.6.1.2.1 Common requirements [lib.istream.formatted.reqmts]
Status: active
Description:

27.6.1.2.1 [lib.istream.formatted.reqmts]: Paragraph 5: "In case the converting result is a value of
either an integral type ... or a float type ... performing to parse and convert the result depend on
the imbued locale object." This is really French converted to English by translation software,
right? :->}

Possible Resolution:

The imbued locale object is responsible for parsing and converting the result when extracting an
integral type (short, unsigned short, int, unsigned int, long, unsigned long) or a float type (float,
double, long double). So the behavior of the above type extractors are locale-dependent. The
imbued locale object uses an istreambuf_iterator to access the input character sequence.

Requestor: Public Comment

Issue Number: 27-406
Title: operator>>(char_type *) failure
Section: 27.6.1.2.2 basic_istream::operator>> [lib.istream::extractors]
Status: active
Description:

27.6.1.2.2 [lib.istream::extractors]: Paragraph 2: "If the function stores no characters, it calls
setstate(failbit), which may throw ios_base::failure (27.4.4.3). In any case, it then stores a null
character" How can it store anything if an exception is thrown? C++ does not use the
resumption model for exception handling. Different language than "In any case" is needed here.

Possible Resolution:

Change paragraph 2 to:

“If the function stores no characters, it calls setstate(failbit), which may throw ios_base::failure
(27.4.4.3).”

Add paragraph 3:

“Before returning or throwing an exception the function stores a null character into the next
successive location of the array and calls width(0).”

Requestor: Public Comment

X3J16/96-0009 WG21/N0827 27

Issue Number: 27-407
Title: operator>>(char_type) failure
Section: 27.6.1.2.2 basic_istream::operator>> [lib.istream::extractors]
Status: active
Description:

27.6.1.2.2 [lib.istream::extractors]: Paragraph 2:

basic_istream<charT,traits>& operator>>(char_type& c);

Effects: Extracts a character, if one is available, and stores it in c. Otherwise, the function calls
setstate(failbit).

Not eofbit?

Possible Resolution:

In 27.6.1.2.1 Common requirements [lib.istream.formatted.reqmts] paragraph 8 says:

“If the scan fails for any reason, the formatted input function calls setstate(failbit), which may
throw ios_base::failure (27.4.4.3).”

This is one of the requirements for all the formatted input functions. Because of this the user can
call the ios_base member function fail() or the operator bool () to check if the extraction failed.
The user can therefore write code like this:

if (in >> s)
 { perform some action }

Requestor: Public Comment

Issue Number: 27-408
Title: ws manipulator
Section: 27.6.1.4 Standard basic_istream manipulators [lib.istream.manip]
Status: active
Description:

27.6.1.4 [lib.istream.manip]: "... saves a copy of is.fmtflags"
Should this not read "... saves a copy of is.flags"?

Possible Resolution:

The Effects: clause should be changed to:

“Effects: Skips any white space in the input sequence. Saves a copy of the fmtflags by storing the
result of the call to is.flags(), calls is.setf(ios_base::skipws), then constructs a sentry object and
restores the fmtflags to their saved values.”

Requestor: Public Comment

X3J16/96-0009 WG21/N0827 28

Issue Number: 27-409
Title: unsigned short extractors cannot use unsigned long get function
Section: 27.6.1.2.2 basic_istream ::operator>> [lib.istream::extractors]
Status: active
Description:

Unsigned short (and unsigned int) extractors cannot use unsigned long get function in num_get.
It cannot distinguish certain valid inputs from errors.

Possible Resolution:

P.J. Plauger wrote: “num_get should add a get function (and underlying do get) for unsigned
short and unsigned int extractions. Otherwise, input values in the range -1 through -
USHRT_MAX (or -UINT_MAX) look erroneous, and cannot be distinguished from truly
erroneous values.”

Requestor: P.J. Plauger (plauger!pjp@uunet.uu.net)

X3J16/96-0009 WG21/N0827 29

basic_ostream issues

Issue Number: 27-501
Title: ostream<<(char) : formatting, padding, width
Section: 27.6.2.4.2 basic_ostream::operator<< [lib.ostream.inserters]
Status: active
Description:

For historical reasons, this function has usually ignored padding and formatting. In the WP, it
does not mention anything about ignoring padding or formatting. This needs to be clarified.

Reasons for ignoring padding on op<<(char):

1. Historical reasons/compatibility

Reasons for full formatting on op<<(char):

1. put(char) currently does no formatting. But there is no way to insert a char with
formatting.

2. Some implementations do formatting.

Since put can insert a character without formatting, there needs to be a way to insert a character
with formatting. Currently this does not exist. It would be nice not to introduce an inconsistency
with the other formatted inserters, but it would also be nice to provide compatibility. I think that
consistency would be much better in this case than compatibility.

Possible Resolution:

At the Tokyo meeting the straw vote gave the following result:

5 for past practice (no padding), 1 for consistency.

We should organize another straw vote at the next meeting and if the result matches the one
above, close the issue.

Requestor: John Hinke (hinke@roguewave.com),
Bernd Eggink (admin@rrz.uni-hamburg.de)

Issue Number: 27-502
Title: ostream::operator<<(void *)
Section: 27.6.2.4.2 basic_ostream::operator<< [lib.ostream.inserters]
Status: Active
Description:

basic_ostream<charT,traits>& operator<<(void *)

should take ‘const volatile void *’ rather than void *.

Resolution:

The function now takes a const void *.

X3J16/96-0009 WG21/N0827 30

Reopened:

Does anyone know why the resolution was for it to take a const void * rather than a const volatile
void *?

I can't think of any good reason why we should make the code:

#include <iostream>
volatile int x;
int main() {

cout << & x;
return 0;

}

ill-formed.

Possible Resolution:

We need to change basic_ostream<charT,traits>& operator<<(void *) to
basic_ostream<charT,traits>& operator<<(const volatile void *) to avoid breaking the code
above, but also because of issue 27-203. If we adopt issue 27-203 and we do not make the change
described above we will end up with the following:

volatile int x;
cout << &x;

This will call operator const void*() which will return !fail() and then cout the result.

Requestor: Fergus Henderson (fjh@munta.cs.mu.oz.au)
Philippe Le Mouël (philippe@roguewave.com)

Issue Number: 27-503
Title: ostream functions need to check for NULL streambuf
Section: 27.6.2.1 Template class basic_ostream [lib.ostream]
Status: active
Description:

Functions in basic_ostream that call members of rdbuf() need to check for a NULL streambuf
before calling the function. There are some functions that make sure rdbuf() is not a NULL
pointer before calling any functions on the buffer, but some functions don’t check for the NULL
pointer. This needs to be consistent.

Discussion:

P.J. Plauger wrote: “Any attempt to store a null stream buffer pointer causes badbit to be set in
the stored status. Hence, no input or output is ever attempted, using such a pointer, by formatted
functions.”

Possible Resolution:

As pointed out by P.J. Plauger we should add a footnote to explain why there is no need to check
for a NULL streambuf.

X3J16/96-0009 WG21/N0827 31

We should also add in section 27.4.4.2 Member functions [lib.basic.ios.members] the
following to the description of basic_streambuf<charT,traits>*
rdbuf(basic_streambuf<charT,traits>* sb); :

Postcondition: sb == rdbuf() and if sb is a NULL pointer rdstate() == badbit.

Note: This issue has to be discussed with issue 27-404.

Requestor: John Hinke (hinke@roguewave.com)

Issue Number: 27-504
Title: exceptions in ostream
Section: 27.6.2.4.2 basic_ostream::operator<< [lib.ostream.inserters]
Status: active
Description:

In basic_ostream::operator<<(basic_streambuf<charT,traits>* sb), the last line of Effects
paragraph 3 can't happen. Previous sentence says that if ``an exception was thrown while
extracting a character, it calls setstate(failbit) (which may throw ios_base::failure).'' Then the last
sentence says, ``If an exception was thrown while extracting a character and failbit is on in
exceptions() the caught exception is rethrown.'' But in this case, setstate has already thrown
ios_base::failure. Besides, I can find no committee resolution that calls for exceptions() to be
queried in this event. And an earlier sentence says unconditionally that the exception is rethrown.
Last sentence should be struck.

Discussion:

This issue and issue 27-403 are both related to the exception-handling mechanism in iostream.
The problem is that the WP is not clear about which policy we are supposed to implement. Here
is an example where the user is deriving his own stream buffer and istream object:

template <class charT, class traits>
class mon_buffer : public basic_streambuf<charT, traits>
{
 .

.

.

protected:

virtual int_type overflow(int_type c = traits::eof())
 { implementation }
 virtual int_type underflow()
 {

.

.
if (something goes wrong) throw mon_exception; // mon_exception is a user’s class

 .
.

 }

.

X3J16/96-0009 WG21/N0827 32

.

.
};

template <class charT, class traits>
class mon_istream : public basic_istream<charT,traits>
{
 .

.

.

 public:

mon_buffer<charT,traits> *rdbuf() const
{ implementation}
.
.
.

}

Here is the user main:

void main()
 {
 try {
 .
 .
 mon_istream in(parameters);

cout << in.rdbuf();
.
.

 }

 catch (mon_exception op)
 {
 // do something about it
 }
 }

The line cout << in.rdbuf(); callls the function basic_ostream::operator <<
(basic_streambuf<charT,traits> * sb), which outputs the content of mon_buffer to stdout.
A problem arise if, when reading characters from mon_buffer, one of the underflow calls results
in throwing mon_exception. In this case there are several possibilities for the function
basic_ostream::operator << (basic_streambuf<charT,traits> * sb) to handle the problem:

1) The function does nothing and the exception is caught by the user. The problem with
this approach is that the cout object never get its failbit set.

2) The function catches the exception, calls setstate(failbit) and rethrows the exception.
The problem here is that if failbit is on in exceptions(), the call to setstate(failbit)
will result in throwing ios_base::failure and not rethrowing the previous
exception.

X3J16/96-0009 WG21/N0827 33

3) The function catches the exception, calls setstate(failbit), catches ios_base::failure if it is
thrown by the previous call to setstate(failbit), and then rethrows the exception.

4) The function catches the exception, calls setstate(failbit), catches ios_base::failure if it is
thrown by the previous call to setstate(failbit), then if ios_base::failure was thrown,
rethrows the previous exception, otherwise treats as an error.

Possible Resolution:

As first pointed out by Jerry Schwarz, in issue 27-403, there are different ways of implementing
the exception mechanism in iostream. My own preference is the fourth possibility I described
above. If we chose this scheme to handle exceptions in iostream, functions like
basic_ostream::operator << (basic_streambuf<charT,traits> * sb) will look like this:

template <class charT, traits>
basic_ostream<charT, traits>&
basic_ostream<charT, traits>::operator<<(basic_streambuf<charT,traits> *sb)
{
 try {
 //function implementation
 }

 catch (…)
 {
 bool flag = FALSE;
 try {
 setstate(failbit);
 }
 catch (ios_base::failure) { flag = TRUE; }

 if (flag) throw;
 }
}

Requestor: Public Comment

Issue Number: 27-505
Title: incorrect conversion specifier for operator<<(unsigned long)
Section: 27.6.2.4.2 basic_ostream::operator<< [lib.ostream.inserters]
Status: active
Description:

basic_ostream<charT,traits>& operator<<(unsigned long n);

Effects: Converts the unsigned long integer n with the integral conversion specified preceded by
l.

Should this be "... preceded by ul."?

Possible Resolution:

The Effects: clause says:

“Effects: Converts the unsigned long integer n with the integral conversion specifier preceded by
l.”

X3J16/96-0009 WG21/N0827 34

To me this is correct, but it may be not precise enough. The integral conversion specifier can be
“d” for a signed integral type and “u” for a unsigned integral type. If we decide to be precise
about this fact in the Effects clause, we will have to do the same for all the other unsigned
inserters.

Requestor: Public Comment

Issue Number: 27-506
Title: wrong default behavior for padding
Section: 27.6.2.4.1 Common requirements Table 13 Fill padding

[lib.ostream.formatted.reqmts]
Status: active
Description:

27.6.2.4.1 Table13 Fill padding changes the long-standing default behavior for padding output
field. It has always been true that setting none of left, right, and internal called for left padding
(pad after text). Now it calls for right padding (pad before text). Since this is the initial state of
all ios objects, many simple C++ programs will change behavior.

Possible Resolution:

P.J. Plauger wrote: “Table 13 should describe the effect of right/internal/otherwise, as it has long
been, rather than left/internal/otherwise. Change was originally unauthorized, then endorsed (I
hope by accident) at the July ’95 meeting.”

I tested the default padding by compiling the following code:

“cout << setw(10) << setfill(‘@’) << “test” << endl; ”

With the following old iostream library:

- AT&T Release 3.0
- Borland C/C++ Run Time Library - Version 6.5

The result was right padding (pad before text) for all of them.

Therefore I think the current behavior is correct.

Requestor: P.J. Plauger (plauger!pjp@uunet.uu.net)

X3J16/96-0009 WG21/N0827 35

basic_istream/basic_ostream issues

Issue Number: 27-601
Title: istream::operator>>(ios_base&), ostream::operator<<(ios_base&)
Section: 27.6.1.2.2 basic_istream::operator>> [lib.istream::extractors],

27.6.2.4.2 basic_ostream::operator<< [lib.ostream.inserters]
Status: active
Description:

The ios_base manipulators 27.4.5.1[lib.std.ios.manip] will not work as written. They won’t
work because there is no conversion from ios_base to basic_ios.

They are currently declared as:
ios_base& boolalpha(ios_base&);

I propose adding a new insertor/extractor for istream and ostream that does insertion/extraction
for ios_base.

Possible Resolution:

John wrote:

“Add to basic_istream:

basic_istream<charT, traits>& operator>>(ios_base& (*pf)(ios_base&));

Effects: Calls (*pf)(*this)
Returns: *this.

Add to basic_ostream:

basic_ostream<charT, traits>& operator<<(ios_base& (*pf)(ios_base&));

Effects: Calls (*pf)(*this)
Returns: *this.

Also, several footnotes will need to be changed.”

We need to change footnote 9 in 27.4.5.3 basefield manipulators [lib.basefield.manip] to:

“The function signature dec(ios_base& str) can be called by the function signature
basic_ostream<charT,traits>& basic_ostream<charT,traits>::operator << (ios_base& (*)
(ios_base&)) to permit expressions of the form cout << dec to change the format flags stored in
cout.”

Requestor: John Hinke (hinke@roguewave.com)

Issue Number: 27-602
Title: positional typedefs in istream/ostream derived classes
Section: 27
Status: active

X3J16/96-0009 WG21/N0827 36

Description:

Remove the positional typedefs from the following classes. The positional typedefs are:

typedef traits::pos_type pos_type;
typedef traits::off_type off_type;

They are not used in the following classes:

basic_istringstream
basic_ostringstream
basic_ifstream
basic_ofstream

Possible Resolution:

John wrote:

“Remove them. They are still inherited from the base classes.”

I do not think that they are inherited from the base classes (see typename discussions).

Requestor: John Hinke (hinke@roguewave.com)

Issue Number: 27-603
Title: istream::read, ostream::write
Section: 27.6.1.3 Unformatted input functions [lib.istream.unformatted] ,

27.6.2.5 Unformatted output functions [lib.ostream.unformatted]
Status: active
Description:

basic_istream<charT,traits>& basic_istream<charT,traits>::read(char_type *,streamsize);
basic_ostream<charT,traits>& basic_ostream<charT,traits>::write(const char_type *,streamsize);

These functions are typically used for binary data.

Possible Resolution:

John wrote:

“These functions should take a void * instead of char_type *. If these functions are changed,
then perhaps we should add another function that replaces this behavior. basic_istream currently
has a get function, which behaves like the read and write functions. It would make sense to add a
corresponding put function in basic_ostream that parallels the behavior of get.”

I think we should let these functions remain the way they are, because no other function performs
the exact same task (see issue 27-103).The get function in basic_istream does not behave like the
read function, it takes an extra parameter, and if this parameter is equal to the current read
character, the function does not read any more characters. The question becomes, do we need to
add functions taking a void* parameter ? They could be useful if you want to insert or extract
binary data from a wide characters stream. In this case, the classic read and write functions are
not sufficient, because the size of the data to be extracted or inserted has to be a multiple of the
character size. The problem is that the underlying streambuf is using charT type and if you want

X3J16/96-0009 WG21/N0827 37

to move inside the streambuf or perform read or write operations, they will have to be done by
multiples of the charT size. The question therefore becomes, is the price to add these two
functions too high ?

Requestor: John Hinke (hinke@roguewave.com)

Issue Number: 27-604
Title: Opening an istream without ios::in set? or an ostream without ios::out set?
Section: 27.6.1.1 Template class basic_istream [lib.input.streams],

27.6.2.1 Template class basic_ostream [lib.output.streams]
Status: active
Description:

Benedikt asks,
“Why can I open an istream without ios::in being set or an ostream without ios::out? I mean, I
just did that by mistake with an ofstream and searched for quite a while to find out, why there
were no actual writes to the newly created file.

“Or, even worse, why can I open an istream with ios::out (and no ios::in) being set and vice
versa?

“Shouldn't the iostreams check whether the given mode flags make any sense, and maybe even
add ios::in if you missed to set this in an istream, or ios::out if you used an ostream?”

Possible Resolution:

The only way to create an istream or ostream object is by calling the constructor “explicit
basic_istream(basic_streambuf<charT,traits>* sb);” for istream and “explicit basic_ostream(
basic_streambuf<charT,traits>* sb);” for ostream. At this point an implementation should do
something like:

In basic_istream constructor:

if (sb->which_open_mode() & ios_base::in)
 init(sb);
 else
 init(0);
In basic_ostream constructor:

if (sb->which_open_mode() & ios_base::out)
 init(sb);
 else
 init(0);

But the actual open mode is really set up in the buffer, which can be basic_stringbuf,
basic_filebuf or strstreambuf according to the kind of object you are using.
In the draft, it is clear that whenever you create an object of type basic_ifstream,
basic_istringstream or istrstream the buffer’s open mode is set to “in” and when you create an
object of type basic_ofstream, basic_ostringstream, or ostrstream, the buffer’s open mode is set to
“out” (see constructor description for all these objects). Therefore a correct implementation will
not allow the behavior described above by Benedikt.

Requestor: Benedikt Erik Heinen (beh@tequila.oche.de)

X3J16/96-0009 WG21/N0827 38

Issue Number: 27-605
Title: get/put type functions should be able to use iterators.
Section: 27.6.1.3 Unformatted input functions [lib.istream.unformatted]

27.6.2.5 Unformatted output functions [lib.ostream.unformatted]
Status: active
Description:

Several functions in istream and ostream take a pointer and a length and optionally a delimiter.
It would be nice to add overloaded functions that take either InputIterators, or OutputIterators.
These new functions would look like:

For basic_istream:

template<class OutputIterator>
istream& get(OutputIterator begin, OutputIterator end, char_type delim);

The begin and end iterators define where the characters will be written. Characters will be
read from the sequence until the end iterator is reached, or the next character is delim.

For basic_ostream:

template<class InputIterator>
ostream& write(InputIterator begin, InputIterator end);

The begin and end iterators define the sequence of characters to be written.

These functions would be added to the current implementation. The current set of functions
should not be removed. They are very commonly used. There are several functions which are
candidates for these begin and end iterators. These functions are:

For basic_istream:

istream& get(char_type *, streamsize, char_type);
istream& getline(char_type *, streamsize, char_type);
istream& read(char_type *, streamsize);

For basic_ostream:

ostream& put(char_type *, streamsize);
ostream& write(void *, streamsize);

Possible Resolution:

I do not think it is really necessary. We should have a vote to decide if we want to adopt this
change or not.

Requestor: Nathan Myers (ncm@cantrip.org)

X3J16/96-0009 WG21/N0827 39

Standard manipulators issues

Issue Number: 27-651
Title: setfill description is wrong
Section: 27.6.3 Standard manipulators [lib.std.manip]
Status: active
Description:

P.J. Plauger wrote: “Setfill description is nonsense, since a fill character is now a charT, which
cannot necessarily be represented as type int. Nor can it be applied to ios_base, since the fill
character now inhabits basic_ios.”

Possible Resolution:

setfill should be changed to:

template <class charT>
smanip<charT> setfill (charT c);

Returns: smanip<charT>(f,c) where f can be defined as:

template <class charT>
basic_ios<charT,ios_traits<charT>>& f (basic_ios<charT,ios_traits<charT>>& str, charT c)
{ // set fill character
 str.fill (c);
 return str;
}

Requestor: P.J. Plauger (plauger!pjp@uunet.uu.net)
Philippe Le Mouël (philippe@roguewave.com)

Issue Number: 27-652
Title: smanip is not a single type
Section: 27.6.3 Standard manipulators [lib.std.manip]
Status: active
Description:

P.J. Plauger wrote: “Description of manipulators strongly suggests that smanip is a single type. It
was supposed to make clear that each manipulator can return a different type, as needed. (And
more than one type is certainly needed here.)”

Possible Resolution:

27.6.3 standard manipulators paragraph 2 says: “The type smanip is an implementation-defined
type (_dcl.fct_) returned by the standard manipulators.”. We need to rewrite this sentence to
make it clear that smanip is not restrained to one physical type.

Requestor: P.J. Plauger (plauger!pjp@uunet.uu.net)
Philippe Le Mouël (philippe@roguewave.com)

X3J16/96-0009 WG21/N0827 40

string stream issues

Issue Number: 27-701
Title: basic_stringbuf::str() needs to clarify return value on else clause
Section: 27.7.1.2 Member functions [lib.stringbuf.members]
Status: active
Description:

“Table 15 in [lib.stringbuf.members] describes the return values of basic_stringbuf::str(). What
does the "otherwise" mean?. Does it mean neither ios_base::in nor ios_base::out is set? What is
the return value supposed to be if _both_ bits are set?”

Possible Resolution:

My understanding is that if both ios_base::in and ios_base::out are set, you should return
basic_string<char_type>(eback(),egptr()-eback()). I propose to change the Returns: clause to
clarify this fact.

Returns: The return values of this function are indicated in Table 15 and the test that determine
these values are carried out in the order shown in Table 15.

Requestor: Angelika Langer (langer@roguewave.com)
Bernd Eggink (admin@rrz.uni-hamburg.de)

Issue Number: 27-702
Title: string streams need allocator and string_char_traits parameters
Section: 27.7.1 Template class basic_stringbuf [lib_stringbuf]
Status: active
Description:

The string streams are currently templatized on the character type (charT) and the traits type
(ios_traits). String template parameters need to be added.

Possible Resolution:

John wrote:

“I propose to change the template parameters of the string streams from:
template<class charT, class traits = ios_traits<charT> >

to:
template<class charT, class IOS_traits = ios_traits<charT>,

class STRING_traits = string_char_traits<charT>,
class Allocator = allocator>

All references to basic_string, or any of the string stream classes will need to be fixed.

All references to traits should be replaced by either IOS_traits or STRING_traits.”

I do not see a good reason for this change and anyway, isn’t it too late ?

Requestor: John Hinke (hinke@roguewave.com)

X3J16/96-0009 WG21/N0827 41

Issue Number: 27-703
Title: stringbuf postconditions
Section: 27.7.1.2 Member functions [lib.stringbuf.members]
Status: active
Description:

basic_stringbuf::str(basic_string s) Postconditions requires that str() == s. This is true only if
which had in set at construction time. Condition should be restated.

Possible Resolution:

 I think the real problem is in “Table 16 - str get/set areas”. Its second line says:

(which & ios_base::out) != 0 setp(str(),str(),str()+str.size())

First, the function setp takes only two parameters. Furthermore it should say:

(which & ios_base::out)!= 0 setp(str(),str()+s.size())
then if: (which & ios_base::app)!=0 pbump(s.size())

Then the postcondition requiring that str() == s in the function void str(const
basic_string<char_type>& s) will be valid if “in” or “out” and “app” are set at construction time.

Table 16 should be changed to:

Table 16—str get/set areas

Condition Setting
(which & ios_base::in)!=0 setg(str(), str(), str()+s.size())
(which & ios_base::out)!=0 setp(str(),str()+s.size())
(which & ios_base::app)!=0 pbump(s.size())

The postcondition should be changed to:

Postcondition: if ios_base::in, or ios_base::out and ios_base::app are set at construction time,
then str()==s. Otherwise str() == basic_string<char_type>(). If s.size() >0, set the get and/or put
pointers as indicated in Table 16.

Requestor: Public Comment

Issue Number: 27-704
Title: stringbuf::stringbuf constructor
Section: 27.7.1.1 basic_stringbuf constructors [lib.stringbuf.cons]
Status: active
Description:

basic_stringbuf::basic_stringbuf(basic_string str, openmode which) Postconditions requires that
str() == str. This is true only if which has in set. Condition should be restated.

Possible Resolution:

This is the same problem described in issue 27-703.

X3J16/96-0009 WG21/N0827 42

The real problem is in “Table 14 - str get/set areas”. The second line says:

(which & ios_base::out) != 0 setp(str(),str(),str()+str.size())

First, the function setp takes only two parameters. Furthermore it should say:

(which & ios_base::out)!= 0 setp(str(),str()+str.size())
then if: (which & ios_base::app)!=0 pbump(str.size())

Then the postcondition requiring that str() == str in the function basic_stringbuf::
basic_stringbuf(basic_string str, openmode which) will be valid if “in” or “out” and “app” are
set.

Table 14 should be changed to:

Table 14—str get/set areas

Condition Setting
(which & ios_base::in)!=0 setg(str(), str(), str()+str.size())
(which & ios_base::out)!=0 setp(str(),str()+str.size())
(which & ios_base::app)!=0 pbump(str.size())

The postcondition should be changed to:

Postcondition: if ios_base::in, or ios_base::out and ios_base::app are set at construction time,
then str()==str. Otherwise str() == basic_string<char_type>(). If str.size() >0, set the get and/or
put pointers as indicated in Table 14.

Requestor: Public Comment

Issue Number: 27-705
Title: Incorrect calls to setg and setp in Table 14
Section: 27.7.1.1 basic_stringbuf constructors [lib.stringbuf.cons]
Status: active
Description:

Table 14 describes calls to setg and setp with string arguments, for which no signature exists.
Needs to be recast.

Possible Resolution:

Possible Resolution of issue 27-704 solves this problem.

Requestor: Public Comment

Issue Number: 27-706
Title: Incorrect calls to setg and setp in table 16
Section: 27.7.1.2 Member functions [lib.stringbuf.members]
Status: active
Description:

Table 16 describes calls to setg and setp with string arguments, for which no signature exists.
Needs to be recast.

X3J16/96-0009 WG21/N0827 43

Possible Resolution:

Possible Resolution of issue 27-703 solves this problem

Requestor: Public Comment

Issue Number: 27-707
Title: setbuf function is missing
Section: 27.7.1 Template class basic_stringbuf [lib.stringbuf]
Status: active
Description:

Steve Clamage wrote: “Section 27.7.1.3 should have a basic_stringbuf override of the base class
setbuf() function, but it is missing.”

Possible Resolution:

Add the following description in 27.7.1 Template class basic_stringbuf [lib.stringbuf] and
27.7.1.3 Overridden virtual functions [lib.stringbuf.virtuals] :

basic_streambuf<charT,traits>* setbuf(char_type* s, int n);

Effects: If (mode & ios_base::out) is true, proceed as follows:
If s is not a null pointer, and n > pptr() - pbase(), replace the current buffer (copy its contents and
deallocate it) by the buffer of size n pointed at by s.
In the case where s is a null pointer, and n > pptr() - pbase() resize the current buffer to size n.
If the function fails, it returns a null pointer.
Returns: (basic_streambuf<charT,traits>*)(this)

I am not qualified enough to decide if the return type should be changed to
basic_stringbuf<charT,traits>* as proposed by Steve Clamage in issue 27-809. I tried it with
several compilers, and the results were just error messages. Basically, the compilers were
complaining about the fact that the base class virtual function and the overridden virtual function
should have the same return type.

Requestor: Steve Clamage (stephen.clamage@eng.sun.com)

X3J16/96-0009 WG21/N0827 44

file stream issues

Issue Number: 27-801
Title: filebuf::underflow example
Section: 27.8.1.4 Overridden virtual functions [lib.filebuf.virtuals]
Status: active
Description:

The “as if” example for basic_filebuf::underflow has several “typos”. It should say:

char from_buf[FSIZE};
char* from_end;
char to_buf[TSIZE};
char* to_end;
typename traits::state_type st;

codecvt_base::result r =
getloc().template use<codecvt<char, charT,
typename traits::state_type> >().convert
(st, from_buf, from_buf+FSIZE, from_end,
to_buf, to_buf+TSIZE, to_end);

Possible Resolution:

We should correct the example as follows, and not as described above:

char from_buf[FSIZE};
char* from_end;
charT to_buf[TSIZE};
charT* to_end;
typename traits::state_type st;

 codecvt_base::result r=
 use_facet<codecvt<char,charT,typename ios_traits::state_type> >(getloc()).
 convert(st,from_buf,from_buf+FSIZE,from_end,to_buf,to_buf+to_size,to_end);

Requestor: John Hinke (hinke@roguewave.com)

Issue Number: 27-802
Title: filebuf::is_open is a bit confusing
Section: 27.8.1.3 Member functions [lib.filebuf.members]
Status: active
Description:

It says, “Returns: true if the associated file is available and open.” What is the meaning of
available? This seems a bit confusing.

Possible Resolution:

Change the Returns: statement to:

X3J16/96-0009 WG21/N0827 45

Returns: true after a successful call to the member function open, and before a successful call to
member function close, otherwise false.

Requestor: John Hinke (hinke@roguewave.com),
Bob Kline (bkline@cortex.nlm.nih.gov)

Issue Number: 27-803
Title: ofstream constructor missing trunc as openmode
Section: 27.8.1.9 basic_ofstream constructors [lib.ofstream.cons]
Status: active
Description:

basic_ofstream::basic_ofstream(const char *s, openmode mode = out) has wrong default second
argument. It should be `out | trunc', the same as for basic_ofstream::open (in the definition at
least).

Possible Resolution:

In my version of the WP (30 November 1995) both basic_ofstream::basic_ofstream(const char *s,
openmode mode = out | trunc) and basic_ofstream::open(const char* s, openmode mode=out |
trunc) take the same second argument default value out | trunc. Therefore we should close the
issue.

Requestor: Public Comment

Issue Number: 27-804
Title: ofstream::open missing trunc in openmode
Section: 27.8.1.10 Member functions [lib.ofstream.members]
Status: active
Description:

basic_ofstream::open(const char *s, openmode mode = out) has wrong default second argument.
It should be `out | trunc', the same as for basic_ofstream::open in the definition.

Possible Resolution:

See issue 27-803.

Requestor: Public Comment

Issue Number: 27-805
Title: filebuf::imbue semantics
Section: 27.8.1.4 Overridden virtual functions [lib.filebuf.virtuals]
Status: active
Description:

basic_filebuf::imbue has silly semantics. Whether or not sync() succeeds has little bearing on
whether you can safely change the working codecvt facet. The most sensible thing is to establish
this facet at construction. (Then pubimbue and imbue can be scrubbed completely.) Next best is
while is_open() is false. (Then imbue can be scrubbed, since it has nothing to do.) Next best is to
permit any imbue that doesn't change the facet or is at beginning of file. Next best is to permit

X3J16/96-0009 WG21/N0827 46

change of facet any time provided either the current or new facet does not mandate state-
dependent conversions. (See comments under seekoff.)

Possible Resolution:

Requestor: Public Comment

Issue Number: 27-806
Title: filebuf::seekoff Effects: clause needs work
Section: 27.8.1.4 Overridden virtual functions [lib.filebuf.virtuals]
Status: active
Description:

basic_filebuf::seekoff Effects is an interesting exercise in creative writing. It should simply state
that if the stream is opened as a text file or has state-dependent conversions, the only permissible
seeks are with zero offset relative to the beginning or current position of the file. (How to
determine that predicate is another matter -- should state for codecvt that even a request to
convert zero characters will return noconv.) Otherwise, behavior is largely the same as for
basic_stringstream, from whence the words should be cribbed. The problem of saving the stream
state in a traits::pos_type object remains unsolved. The primitives described for ios_traits are
inadequate.

Possible Resolution:

Requestor: Public Comment

Issue Number: 27-807
Title: filebuf::underflow performance questions
Section: 27.8.1.4 Overridden virtual functions [lib.filebuf.virtuals]
Status: active
Description:

basic_filebuf::underflow is defined unequivocally as the function that calls codecvt, but there are
performance advantages to having this conversion actually performed in uflow. If the
specification cannot be broadened sufficiently to allow either function to do the translation, then
uflow loses its last rationale for being added in the first place. Either the extra latitude should be
granted implementors or uflow should be removed from basic_streambuf and all its derivatives.

Possible Resolution:

To me underflow is also called by uflow, so it is simple to make the actual call to the codecvt
facet in underflow.

Requestor: Public Comment

Issue Number: 27-808
Title: Editorial fixes in wording for fstreams
Section: 27.8.1 File streams [lib.fstreams]
Status: active
Description:

27.8.1 [lib.fstreams], paragraph 2: "... the type name FILE is a synonym for the type FILE." This
seems like an odd sort of synonym, doesn't it? Also, the last sentence of this subsection, "Because

X3J16/96-0009 WG21/N0827 47

of necessity of the conversion between the external source/sink streams and wide character
sequences." is incomplete.

Possible Resolution:

Requestor: Public Comment

Issue Number: 27-809
Title: Description of function setbuf is missing
Section: 27.8.1.4 Overridden virtual functions [lib.filebuf.virtuals]
Status: active
Description:

Steve Clamage wrote: “basic_filebuf version of setbuf() needs a description, and the return type
shown in the draft is basic_streambuf*, which is probably wrong. It was correct before covariant
return types were added to the draft. Now it should probably return basic_filebuf*.”

Possible Resolution:

Add the following description in 27.8.1.4 Overridden virtual functions [lib.filebuf.virtuals] :

basic_streambuf<charT,traits>* setbuf(char_type* s, int n);

Effects: If s is not a null pointer, flush the buffer by calling overflow(traits::eof()) and if the
return value is not traits::eof(), deallocate the current buffer and replace it by the buffer of size n
pointed at by s.
In the case where s is a null pointer, resize the current buffer to size n (this can result in flushing
the buffer).
If the function fails, it returns a null pointer.
Returns: (basic_streambuf<charT,traits>*)(this)

I am not qualified enough to decide if the return type should be changed or not as proposed by
Steve Clamage. I tried it with several compilers, and the results were just error messages.
Basically, the compilers were complaining about the fact that the base class virtual function and
the overridden virtual function should have the same return type.

Requestor: Steve Clamage (stephen.clamage@eng.sun.com)

Issue Number: 27-810
Title: Openmode notation is not consistent in basic_ifstream and basic_ofstream
Section: 27.8.1.5 Template class basic_ifstream [lib.ifstream]

27.8.1.8 Template class basic_ofstream [lib.ofstream]
Status: active
Description:

basic_ifstream, basic_ofstream constructors and member functions open describe the type
ios_base::openmode as openmode and its values as in and out rather than ios_base::in and
ios_base::out as everywhere else in the library.

Possible Resolution:

X3J16/96-0009 WG21/N0827 48

 In 27.8.1.5 Template class basic_ifstream [lib.ifstream] , 27.8.1.6 basic_ifstream
constructors [lib.ifstream.cons] and 27.8.1.7 member functions [lib.ifstream.members]
change the following functions:

explicit basic_ifstream(const char* s, openmode mode = in);
 to:

explicit basic_ifstream(const char* s, ios_base::openmode mode = ios_base::in);

void open(const char* s, openmode mode = in);
 to:
 void open(const char* s, ios_base::openmode mode = ios_base::in);

In 27.8.1.8 Template class basic_ofstream [lib.ofstream] , 27.8.1.9 basic_ofstream
constructors [lib.ofstream.cons] and 27.8.1.10 member functions [lib.ofstream.members]
change the following functions:

explicit basic_ofstream(const char* s, openmode mode = out | trunc);
 to:

explicit basic_ofstream(const char* s, ios_base::openmode mode = ios_base::out | ios_base::trunc);

void open(const char* s, openmode mode = out | trunc);
 to:
 void open(const char* s, ios_base::openmode mode = ios_base::out | ios_base::trunc);

Requestor: Philippe Le Mouël (philippe@roguewave.com)

Issue Number: 27-811
Title: Description of function sync is missing
Section: 27.8.1.4 Overridden virtual functions [lib.filebuf.virtuals]
Status: active
Description:

Description of the overridden sync() function in class basic_filebuf is missing.

Possible Resolution:

Add the following description in 27.8.1.4 Overridden virtual functions [lib.filebuf.virtuals] :

int sync();

Effects: If pbase() is non-null calls overflow(traits::eof()), which outputs the content of the
buffer to the associated file.
Returns: If the call to overflow returns traits::eof(), returns -1 to indicate failure, otherwise
returns 0.

Requestor: Philippe Le Mouël (philippe@roguewave.com)

X3J16/96-0009 WG21/N0827 49

Miscellaneous issues

Issue Number: 27-901
Title: input/output of unsigned charT
Section: 27
Status: active
Description:

NOTE: istream here means basic_istream.
ostream here means basic_ostream.

This issue details all of the issues with inserting or extracting characters.

Currently, IOStreams does not allow the insertion/extraction of unsigned charT or signed charT.
There are two types of functions that could insert or extract these character types: formatted IO,
and unformatted IO. Formatted IO use overloaded operators. Example:

istream& istream::operator>>(charT&);
ostream& ostream::operator<<(charT);

Examples of unformatted IO are:

istream& istream::get(charT *, streamsize, charT);
int_type ostream::put(charT);

This does not allow us to overload on unsigned charT. We can make the formatted operators
global, and then overload (“specialize”) on char, and wchar_t, but that doesn’t solve the
unformatted problem.

There is also a problem of inserting or extracting wide-characters from a skinny stream or skinny
characters from a wide-stream:

char c;
wchar_t wc;

cout << wc;
wcout << c;

Possible Resolution:

I propose two different solutions. Both of them solve the problem.

Solution #1

I propose to change the current member functions that “use” charT’s as the argument type to char
and wchar_t. For example:

replace:
istream& istream::operator>>(charT&);

with:
istream& istream::operator>>(char&);

X3J16/96-0009 WG21/N0827 50

istream& istream::operator>>(signed char&);
istream& istream::operator>>(unsigned char&);
istream& istream::operator>>(wchar_t&);

Users can easily add a new global insertion/extraction operator for their new character type.
They can also derive from istream or ostream and add their own unformatted IO functions for
their new character type.

This would also solve the problem of inserting skinny characters into a wide stream or wide
characters into a skinny stream.

For the unformatted IO functions, we replace:
istream& istream::get(charT *, streamsize, charT);

with:
istream& istream::get(char *, streamsize, char);
istream& istream::get(unsigned char *, streamsize, unsigned char);
istream& istream::get(signed char *, streamsize, signed char);
istream& istream::get(wchar_t *, streamsize, wchar_t);

We would also need to replace the other members that make sense reading or writing unsigned
char, or signed char values.

This would still allow users to have streams of unsigned char, or any other type.

Solution #2

Leave the classes as they are, but add several new member functions. For example:

Leave this member function:
istream& istream::operator>>(charT&);

and add these member functions:
istream& istream::operator>>(unsigned char&);
istream& istream::operator>>(signed char&);

For the unformatted IO functions we leave this member function:
istream& istream::get(charT *, streamsize, charT);

and add these member functions:
istream& istream::get(unsigned char *, streamsize, unsigned char);
istream& istream::get(signed char *, streamsize, signed char);

This would still allow users to create their own character type class and also provide backward
compatibility. However, this would mean that users could not have istream<unsigned char>,
which I think is a resonable restriction.

This would not solve the skinny-character-on-wide-stream problem, though. To solve this
problem, we can overload the formatted functions:

We can define global inserters/extractors for these special cases:

namespace std {
 ostream& operator<<(ostream&, wchar_t);
 wostream& operator<<(wostream&, char);

 istream& operator>>(istream&, wchar_t&);

X3J16/96-0009 WG21/N0827 51

 wistream& operator>>(wistream&, char&);
}

This would still not allow us to insert a skinny-character-on-wide-stream using the unformatted
IO routines. I’m not sure if that is a real problem or not. If you need to use the unformatted
operations, you could easily use either read or write.

The following functions would need to be changed for either solution:

istream& operator>>(char_type *);
istream& operator>>(char_type&);
istream& get(char_type *, streamsize, char_type);
istream& getline(char_type *, streamsize, char_type);

ostream& operator<<(char_type *);
ostream& operator<<(char_type);

Requestor: John Hinke (hinke@roguewave.com)

Issue Number: 27-902
Title: default locale
Section: 27
Status: active
Description:

In order to coordinate the C-language locale model, I believe that the default locale value should
not be 'locale::classic ()', what we call "C" locale, but be 'locale::global()', the current global
locale.

Possible Resolution:

In 27.4.4.1 basic_ios constructors [lib.basic.ios.cons] change the following line of “Table 8-
ios_base() effects” from:

getloc() locale::classic()

to:

getloc() locale::global()

The Tokyo meeting recommended acceptance of this issue.

Requestor: Nathan Myers (ncm@cantrip.org)
Norihiro Kumagai (kuma@slab.tnr.sharp.co.jp)

Issue Number: 27-903
Title: [io]{pfs|sfx} and exceptions
Section: 27.6.1.1.2 basic_istream prefix and suffix [lib.istream.prefix]

27.6.2.3 basic_ostream prefix and suffix functions [lib.ostream.prefix]
Status: active
Description:

X3J16/96-0009 WG21/N0827 52

The members ipfx()/opfx and isfx()/osfx() of the streams are not compatible with exceptions. We
need to eliminate them in favor of member classes whose constructor/destructor perfom the same
actions, in the manner of custodian classes.

Possible Resolution:

In order for istream/ostream to be safe with exceptions, the *pfx and *sfx functions need to be
called in pairs. I propose introducing a new class in basic_istream and basic_ostream. This class
will be responsible for “doing” *pfx type operations in the constructor and *sfx type operations in
the destructor. This will guarantee that *pfx and *sfx will be called in pairs even if an exception
is thrown.

Add the following class to basic_istream:

class sentry {
bool ok_; // exposition only

public:
explicit sentry(basic_istream<charT,traits>& is,bool noskipws = false);
~sentry();

operator bool();
};

Add the following class to basic_ostream:

class sentry {
bool ok_; // exposition only

public:
explicit sentry(basic_ostream<charT,traits>& os);
~sentry();

operator bool();
};

Typical usage will be something like:

template<class charT, class traits>
basic_istream<charT, traits>&
basic_istream<charT, traits>::
operator>>(short& s)
{

if(sentry cerberus(*this,false)) {
// read in short

}

return *this;
}

Class basic_istream::sentry

The class sentry defines a class that is responsible for doing ipfx and isfx type operations. This
class makes prefix and suffix operations exception safe.

explicit sentry(basic_istream<charT,traits>& is, bool noskipws = false);

X3J16/96-0009 WG21/N0827 53

Effects: Same as ipfx(), except that the return value is stored in ok_.

~sentry();

Effects: Same as isfx()

operator bool();

Effects: Returns ok_.

Class basic_ostream::sentry

The class sentry defines a class that is responsible for doing opfx and osfx type operations. This
class makes prefix and suffix operations exception safe.

explicit sentry(basic_ostream<charT,traits>& os);

Effects: Same as opfx(), except that the return value is stored in ok_.

~sentry();

Effects: Same as osfx()

operator bool();

Effects: Returns ok_.

Deprecate ipfx/opfx/isfx/osfx in favor of this technique.

The Tokyo meeting recommended approval of this with a note indicating Bill’s objection, who
says that we need to be cautious about infinite loops in osfx. Box 35 in 27.6.1.1 Template class
basic_istream [lib.istream] and Box 44 in 27.6.2.1 Template class basic_ostream need to be
corrected, the constructor of the class sentry does not take the right first parameters.

Requestor: Nathan Myers (ncm@cantrip.org),
John Hinke (hinke@roguewave.com),
Jerry Schwarz (jss@declarative.com)

Issue Number: 27-904
Title: iosfwd declarations: incomplete
Section: 27.2 Forward declarations [lib.iostream.forward]
Status: active
Description:

The list of forward declarations is incomplete. Should it contain all of the forward declarations
available? Forward declarations for template classes basic_ios, basic_istream, and basic_ostream
should have two class parameters, not one. It is equally dicey to define ios, istream, etc. by
writing just one parameter for the defining classes. All should have the second parameter
supplied, which suggests the need for a forward reference to template class ios_char_traits as
well, or at least the two usual specializations of that class.

Possible Resolution:

X3J16/96-0009 WG21/N0827 54

Replace “Header <iosfwd> synopsis” by:

namespace std {
template<class charT> struct ios_traits;
template<class charT, class traits = ios_traits<charT> > class basic_ios;
template<class charT, class traits = ios_traits<charT> > class basic_streambuf;
template<class charT, class traits = ios_traits<charT> > class basic_istream;
template<class charT, class traits = ios_traits<charT> > class basic_ostream;
template<class charT, class traits = ios_traits<charT> > class basic_stringbuf;
template<class charT, class traits = ios_traits<charT> > class basic_istringstream;
template<class charT, class traits = ios_traits<charT> > class basic_ostringstream;
template<class charT, class traits = ios_traits<charT> > class basic_filebuf;
template<class charT, class traits = ios_traits<charT> > class basic_ifstream;
template<class charT, class traits = ios_traits<charT> > class basic_ofstream;
template<class charT, class traits=ios_traits<charT> > class ostreambuf_iterator;
template<class charT, class traits=ios_traits<charT> > class istreambuf_iterator;

typedef basic_ios<char> ios;
typedef basic_streambuf<char> streambuf;
typedef basic_istream<char> istream;
typedef basic_ostream<char> ostream;
typedef basic_stringbuf<char> stringbuf;
typedef basic_istringstream<char> istringstream;
typedef basic_ostringstream<char> ostringstream;
typedef basic_filebuf<char> filebuf;
typedef basic_ifstream<char> ifstream;
typedef basic_ofstream<char> ofstream;
typedef basic_ios<wchar_t> wios;
typedef basic_streambuf<wchar_t> wstreambuf;
typedef basic_istream<wchar_t> wistream;
typedef basic_ostream<wchar_t> wostream;
typedef basic_stringbuf<wchar_t> wstringbuf;
typedef basic_istringstream<wchar_t> wistringstream;
typedef basic_ostringstream<wchar_t> wostringstream;
typedef basic_filebuf<wchar_t> wfilebuf;
typedef basic_ifstream<wchar_t> wifstream;
typedef basic_ofstream<wchar_t> wofstream;

}

Requestor: John Hinke (hinke@roguewave.com)

Issue Number: 27-905
Title: Add iostream, fstream, stringstream,

and strstream
Section: 27
Status: active
Description:

These classes were removed from the WP (date unknown). Users will complain about this.
Library vendors will probably add them back to make their users happy. There has been some
discussion of this on comp.std.c++.

X3J16/96-0009 WG21/N0827 55

Add the classes back to the WP. There is a way around this problem, but it requires users to
change more of their code. If at all possible, I think it would be excellent if we could reduce the
amount of code that users will have to change.

Without these classes, code such as:
fstream inout(“test.txt”);

Would have to be replaced by code such as:
filebuf fb(“test.txt”);
istream in(&fb);
ostream out(&fb);

The problem with this is that there would still be code like:
inout << “Something”;
inout >> someVar;

That would have to be changed and that could be a lot of work.

Possible Resolution:

John wrote:

“Add the classes back following the original AT&T implementation.”

See Bi-directional Iostreams Proposal (doc n° X3J16/96-0010).

Requestor: John Hinke (hinke@roguewave.com)

Issue Number: 27-906
Title: add a typedef to access the traits parameter for a class.
Section: 27
Status: active
Description:

Some classes; such as istream don’t have access to the traits template parameter. Perhaps each
class should provide a typedef for the traits parameter.

You need the traits parameter when you want to say stuff like:

cin.ignore(100, traits::newline(use_facet<ctype<cin.char_type> >(cin.getloc()))

There is no way to get the traits type without saying something like: ios_traits<cin.char_type>
which is almost reasonable, but it would be nicer to say something like: cin::traits_type. There
are some cases where ios_traits is not the traits used to instantiate the stream.

Possible Resolution:

The Tokyo meeting recommends acceptance of the following:

Add “typedef traits traits_type;” to basic_ios and basic_streambuf.

Where traits is the template parameter

X3J16/96-0009 WG21/N0827 56

Requestor: John Hinke (hinke@roguewave.com)

Issue Number: 27-907
Title: Use of “instance of” vs. “version of” in descriptions of class ios
Section: 27.2 Forward declarations [lib.iostream.forward]
Status: active
Description:

Paragraph 2 and 3 describe the class ios and the class wios. One is described as “an instance of
the template...” the other is described as “a version of the template...”.

Possible Resolution:

Change paragraph 3 to:

“The class wios is an instance of the template class basic_ios, specialized by the type wchar_t”

Requestor: John Hinke (hinke@roguewave.com)

Issue Number: 27-908
Title: unnecessary ‘;’ (semicolons) in tables
Section: 27
Status: active
Description:

There are unnecessary semicolons in tables in chapter 27. These probably should be removed.

Possible Resolution:

Remove unnecessary semicolon in section 27.1.2.6 Type POS_T [lib.iostreams.pos.t] “Table 2-
Position type requirements”.

Requestor: John Hinke (hinke@roguewave.com)

Issue Number: 27-909
Title: Editorial issues (typo’s)
Section: 27
Status: active
Description:

Here are a list of “typo’s” and other possible editorial issues.

Editorial Issue #1
Description:
27.4.4.3 basic_ios iostate flags functions [lib.iostate.flags]
The description of ios_base::exceptions is listed under the basic_ios clause.

Possible Resolution:
This needs to be moved back to the ios_base clause.

Editorial Issue #2
Description:
27.4.2 Template struct ios_traits [lib.ios.traits]

X3J16/96-0009 WG21/N0827 57

The template declaration is incorrect C++ code.

Possible Resolution:
Change the template declaration to:

template <class charT> struct ios_traits {

by removing the <charT>.

Editorial Issue #3
Description:
27.1.2.4 Type POS_T [lib.iostreams.pos.t]
Description of type POS_T contains many awkward phrases. Needs rewriting for clarity.

Editorial Issue #4
Description:
27.1.2.3 Type OFF_T [lib.iostreams.off.t]
Footnote 1 should say ``for one of'' instead of ``for one if.'' Also, it should``whose
representation has at least'' instead of ``whose representation at least.''

Requestor: John Hinke (hinke@roguewave.com)

Issue Number: 27-910
Title: remove streampos in favor of pos_type
Section: 27
Status: active
Description:

There are editorial boxes in Chapter 27 that say that streampos was deprecated but no resolution
on what to do with functions that use it as an argument type has been offered.

Possible Resolution:

Change all references to streampos as an argument type to pos_type. Each class in Chapter 27
has a typedef for, or access to, pos_type.

Requestor: John Hinke (hinke@roguewave.com)

Issue Number: 27-911
Title: stdio synchronization
Section: 27.3.1 Narrow stream objects [lib.narrow.stream.objects]
Status: active
Description:

Doing measurements on the performance of streambufs attached to stdin on a variety of systems,
I found that the performance of a simple loop:

while ((c = cin.get()) != EOF) ...

was from 5 to 20 times slower than the equivalent

while ((c = getc(stdin)) != EOF) ...

X3J16/96-0009 WG21/N0827 58

To my horror, I found that this is a result of a mandate in the WP, that stdin and cin (and also
stdout and cout) must be synchronized. As a goal this seems laudable, but if the consequence in
many (most) environments is either:

1. an order of magnitude slower input, or
2. breaking link compatibility with C,

maybe we should reconsider this choice, and instead allow-but-not-require that the two be
synchronized.

Possible Resolution:

Nathan wrote:

“One possibility would be to reintroduce "sync_with_stdio" but give it a boolean argument.
sync_with_stdio(true) would cause syncronization, while sync_with_stdio(false) would cause
unsyncronization.

This would be agreeable to me. I take it this would be a static member of ios_base? How would
it default? I assume that the call with false could be a no-op.”

Requestor: Nathan Myers (ncm@cantrip.org)

Issue Number: 27-912
Title: removing Notes: from the text
Section: 27
Status: active
Description:

This issue is in response to Mats Meta list. It is an attempt to remove normative text from the
WP. This issue removes Notes: from the text. Some Notes: clauses that need to be incorporated
into the text will be handled in another issue.

Remove all Notes: clauses from the following:

27.4.2.1 ios_traits value functions [lib.ios.traits.values]
int_type not_eof(char_type c)

27.4.2.1 ios_traits value functions [lib.ios.traits.values]
char_type newline()

27.4.3.4 ios_base storage functions [lib.ios.base.storage]
void * & pword(int idx)

27.5.2.2.3 Get area [lib.streambuf.pub.get]
int_type snextc()

27.5.2.4.3 Get area [lib.streambuf.virt.get]
int showmanyc()

27.5.2.4.3 Get area [lib.streambuf.virt.get]
streamsize xsgetn(char_type *s, streamsize n)

X3J16/96-0009 WG21/N0827 59

27.6.1.2.2 basic_istream::operator>> [lib.istream::extractors]
basic_istream<charT, traits>& operator>>(char_type *s)

27.7.1.3 Overridden virtual functions [lib.stringbuf.virtuals]
int_type pbackfail(int_type c)

27.7.1.3 Overridden virtual functions [lib.stringbuf.virtuals]
int_type overflow(int_type c)

27.8.1.4 Overridden virtual functions [lib.filebuf.virtuals]
int showmanyc()

Possible Resolution:

Requestor: John Hinke (hinke@roguewave.com)

Issue Number: 27-913
Title: Incorporating Notes: into the text
Section: 27
Status: active
Description:

The following Notes: clauses need to be incorporated into the WP text:

27.5.2.1 basic_streambuf constructors [lib.streambuf.cons]
basic_streambuf()

27.5.2.4.1 Locales [lib.streambuf.virt.locales]
void imbue(const locale&)

27.5.2.4.3 Get area [lib.streambuf.virt.get]
int_type underflow()

27.5.2.4.4 Putback [lib.streambuf.virt.pback]
int_type pbackfail(int c)

27.5.2.4.5 Put area [lib.streambuf.virt.put]
int_type overflow(int_type c)

27.6.1.1.1 basic_istream constructors [lib.basic.istream.cons]
virtual ~basic_istream()

27.6.1.1.2 basic_istream prefix and suffix [lib.istream.prefix]
bool ipfx(bool noskipws)

27.6.1.2.2 basic_istream::operator>> [lib.istream::extractors]
basic_istream<charT, traits>& operator>>(bool& n)

27.6.1.3 Unformatted input functions [lib.istream.unformatted]
basic_istream<charT, traits>& ignore(int n, int_type delim)

27.6.2.2 basic_ostream constructors [lib.ostream.cons]
virtual ~basic_ostream()

X3J16/96-0009 WG21/N0827 60

27.6.2.4.2 basic_ostream::operator<< [lib.ostream.inserters]
basic_ostream<charT, traits>& operator<<(char_type c)
Change this Notes: clause to a Requires: clause.

27.7.1.1 basic_stringbuf constructors [lib.stringbuf.cons]
explicit basic_stringbuf(ios_base::openmode)

27.8.1.4 Overridden virtual functions [lib.filebuf.virtuals]
int_type pbackfail(int_type c)

Possible Resolution:

Requestor: John Hinke (hinke@roguewave.com)

Issue Number: 27-914
Title: rethrowing exceptions
Section: 27.6.2.4.1 Common requirements [lib.ostream.formatted.reqmts]
Status: active
Description:

[NOTE: This follows directly with 27-903 --John Hinke]

The typical operator<< looks like this, given current semantics for exceptions:

{
 sentry cerberos(*this); if (!cerberos) return;
 iostate save = exceptions(); exceptions(0);

 try {
 if (use_facet< num_put<charT,ostreambuf_iterator<charT,traits> >(
 getloc()).put(*this,*this,fill(),getloc(),val).failed())
 setstate(failbit); // won't throw
 }
 catch (...) { exceptions(save); setstate(badbit); throw; }
 exceptions(save); setstate(rdstate());
}

If we change exception semantics so that ios_base::failure just gets rethrown, without setting
badbit, we have instead:

{
 sentry cerberos(*this);
 if (!cerberos) return;
 try {
 if (use_facet< num_put<charT,ostreambuf_iterator<charT,traits> >(
 getloc()).put(*this,*this,fill(),getloc(),val).failed())
 setstate(failbit); // might throw
 }
 catch (const ios_base::failure&) { throw; }
 catch (...) { setstate(badbit); throw; }
}

X3J16/96-0009 WG21/N0827 61

The examples don't constitute an argument for or against the change, but rather are suggestions
for the example code that should appear in [lib.ostream.formatted.reqmts] according to what is
decided.

For the record, I am in favor of the change.

Possible Resolution:

This issue is related to issue 27-504, in which another scheme is proposed.

Requestor: Nathan Myers (ncm@cantrip.org)

Issue Number: 27-915
Title: The use of specialization
Section: 27
Status: active
Description:

There is wording in Clause 27 such as:

“...iostream classes are the instantiations of the...”
“...class ios is an instance of the...”
“...class wios is a version of the...”

This wording needs to be consistent with the rest of the document.

Possible Resolution:

Make the following changes to be consistent:

27.1.1 Definitions [lib.iostreams.definitions]
Replace: “-- narrow-oriented iostream classes ...iostream classes are the instantiations of
the...”
With: “--narrow-oriented iostream classes ...iostream classes are specializations of the...”

27.1.1 Definitions [lib.iostreams.definitions]
Replace: “-- wide-oriented iostream classes ...iostream classes are the instantiations of
the...”
With: “-- wide-oriented iostream classes ...iostream classes are specializations of the...”

27.2 Forward declarations [lib.iostream.forward] paragraph 2
Replace: “The class ios is an instance of the template...”
With: “The class ios is a specialization of the template...”

27.2 Forward declarations [lib.iostream.forward] paragraph 3
Replace: “The class wios is a version of the template...”
With: “The class wios is a specialization of the template...”

27.4.2 Template struct ios_traits [lib.ios.traits] paragraph 2
Replace: “An implementation shall provide the following two instantiations of ios_traits:”
With: “An implementation shall provide the following two specializations of ios_traits:”

27.5.2 Templates class basic_streambuf<charT, traits> [lib.streambuf] paragraph 2

X3J16/96-0009 WG21/N0827 62

Replace: “The class streambuf is an instantiation of the template...”
With: “The class streambuf is a specialization of the template...”

27.5.2 Templates class basic_streambuf<charT, traits> [lib.streambuf] paragraph 3
Replace: “The class wstreambuf is an instantiation of the template...”
With: “The class wstreambuf is a specialization of the template...”

Requestor: John Hinke (hinke@roguewave.com)

Issue Number: 27-916
Title: missing descriptions of specializations
Section: 27
Status: active
Description:

For compatibility, each templatized class has two specializations. One for skinny characters and
one for wide characters. For example:

template<class charT, class traits>
class basic_ios : public ios_base {
 //...
};

Class ios is a specialization of...
Class wios is a specialization of...

These descriptions are missing for some of the classes. This proposal adds these missing
descriptions.

Possible Resolution:

Add the following descriptions to the appropriate sections:

For class basic_ios:
27.4.4 Template class basic_ios [lib.ios]
The class ios is a specialization of the template class basic_ios specialized by the type char.

The class wios is a specialization of the template class basic_ios specialized by the type
wchar_t.

For class basic_istream:
27.6.1.1 Template class basic_istream [lib.istream]
The class istream is a specialization of the template class basic_istream specialized by the
type char.

The class wistream is a specialization of the template class basic_istream specialized by the
type wchar_t.

For class basic_ostream:
27.6.2.1 Template class basic_ostream [lib.ostream]
The class ostream is a specialization of the template class basic_ostream specialized by the
type char.

X3J16/96-0009 WG21/N0827 63

The class wostream is a specialization of the template class basic_ostream specialized by the
type wchar_t.

For class basic_stringbuf:
27.7.1 Template class basic_stringbuf [lib.stringbuf]
The class stringbuf is a specialization of the template class basic_stringbuf specialized by the
type char.

The class wstringbuf is a specialization of the template class basic_stringbuf specialized by
the type wchar_t.

For class basic_istringstream:
27.7.2 Template class basic_istringstream [lib.istringstream]
The class istringstream is a specialization of the template class basic_istringstream
specialized by the type char.

The class wistringstream is a specialization of the template class basic_istringstream
specialized by the type wchar_t.

For class basic_ostringstream:
27.7.2.3 Template class basic_ostringstream [lib.ostringstream]
The class ostringstream is a specialization of the template class basic_ostringstream
specialized by the type char.

The class wostringstream is a specialization of the template class basic_ostringstream
specialized by the type wchar_t.

For class basic_filebuf:
27.8.1.1 Template class basic_filebuf [lib.filebuf]
The class filebuf is a specialization of the template class basic_filebuf specialized by the type
char.

The class wfilebuf is a specialization of the template class basic_filebuf specialized by the
type wchar_t.

For class basic_ifstream:
27.8.1.5 Template class basic_ifstream [lib.ifstream]
The class ifstream is a specialization of the template class basic_ifstream specialized by the
type char.

The class wifstream is a specialization of the template class basic_ifstream specialized by the
type wchar_t.

For class basic_ofstream:
27.8.1.8 Template class basic_ofstream [lib.ofstream]
The class ofstream is a specialization of the template class basic_ofstream specialized by the
type char.

The class wofstream is a specialization of the template class basic_ofstream specialized by
the type wchar_t.

Requestor: John Hinke (hinke@roguewave.com)

X3J16/96-0009 WG21/N0827 64

Issue Number: 27-917
Title: Editorial changes
Section: 27.1.2 Type requirements [lib.iostreams.type.reqmts]
Status: active
Description:

27.1.2 [lib.iostreams.type.reqmts]: Last sentence: "... expects to the character container class."
should read "... expects of the character container class."

Possible Resolution:

Requestor: Public Comment

Issue Number: 27-918
Title: Validity of OFF_T to POS_T conversion
Section: 27.1.2.3 Type OFF_T [lib.iostreams.off.t]
Status: active
Description:

27.1.2.3 [lib.iostreams.off.t]: Paragraph 4: "Type OFF_T is convertible to type POS_T. But no
validity of the resulting POS_T value is ensured, whether or not the OFF_T value is valid." Of
what use is the conversion, then?

Possible Resolution:

Requestor: Public Comment

Issue Number: 27-919
Title: Question on Table 2 assertions
Section: 27.1.2.4 Table2 Position type requirements [lib.iostreams.pos.t]
Status: active
Description:

27.1.2.4 [lib.iostreams.pos.t]: table 2: first row has assertion "p == P(i)" but p does not appear in
the expression for that row; also, that row has the note "a destructor is assumed" -- what does this
mean?

Possible Resolution:

The first row of table 2 should be deleted. The second row already specifies the construction and
assignment from an integer value.

Requestor: Public Comment

Issue Number: 27-920
Title: destination of clog and wclog
Section: 27.3.1 Narrow stream objects [lib.narrow.stream.objects],

27.3.2 Wide stream objects [lib.wide.stream.objects]
Status: active
Description:

There is currently an editorial box concerning the destination of clog and wclog. I would like to
propose the following resolution:

X3J16/96-0009 WG21/N0827 65

Possible Resolution:

Change 27.3.1 Narrow stream objects [lib.narrow.stream.objects] paragraph 6 to:
The object clog controls output to an implementation defined stream buffer.

Change 27.3.2 Wide stream objects [lib.wide.stream.objects] paragraph 6 to:
The object wclog controls output to an implementation defined stream buffer.

Requestor: John Hinke (hinke@roguewave.com)

Issue Number: 27-921
Title: default locale argument to constructor
Section: 27
Status: active
Description:

Default locale arguments for stream constructors.

istream and ostream constructors (and all derivations) should have a default locale argument, in
the manner of

obogusstream(const char *name,const locale& l = locale());

Possible Resolution:

Add a new argument to the standard stream constructors:

const locale& l = locale::global()

Add this new argument to the following classes’ constructors:

basic_istream,
basic_ostream,
basic_istringstream,
basic_ostringstream,
basic_ifstream,
basic_ofstream
istrstrem
ostrstream

Requestor: Nathan Myers (ncm@cantrip.org)
Norihiro Kumagai (kuma@slab.tnr.sharp.co.jp)

X3J16/96-0009 WG21/N0827 66

Annex D issues

Issue Number: 27-1001
Title: description of function setbuf is not sufficient
Section: D.6.1.3 strstreambuf overridden virtual functions [depr.strstreambuf.virtuals]
Status: active
Description:

 Description of the overridden setbuf(char* s,streamsize n) function in class strstreambuf is not
sufficient.

Possible Resolution:

Change the current description of function setbuf(char* s, streamsize n) in D.6.1.3 strstreambuf
overridden virtual functions [depr.strstreambuf.virtuals] to:

streambuf* setbuf(char* s, streamsize n);

and not:

streambuf<char>* setbuf(char* s, streamsize n);

Effects: If s is not a null pointer, and n > pptr() - pbase(), replace the current buffer (copy its
contents and deallocate it) by the buffer of size n pointed at by s.
In the case where s is a null pointer, and n > pptr() - pbase() resize the current buffer to size n.
If the function fails, it returns a null pointer.
Returns: (streambuf*)(this)

I am not qualified enough to decide if the return type should be changed to strstreambuf* as
proposed by Steve Clamage in issue 27-809. I tried it with several compilers, and the results were
just error messages. Basically, the compilers were complaining about the fact that the base class
virtual function and the overridden virtual function should have the same return type.

Requestor: philippe Le Mouël (philippe@roguewave.com)

Issue Number: 27-1002
Title: strstreambuf Editorial issues (typos)
Section: D.6.1 Class strstreambuf [depr.strstreambuf]
Status: active
Description:

Class strstreambuf contains several typos and is also missing some typedefs.

Possible Resolution:

The following typedefs need to be added to class strstreambuf (D.6.1 Class strstreambuf
[depr.strstreambuf]) :

- typedef ios_traits<char>::int_type int_type;

X3J16/96-0009 WG21/N0827 67

This typedef is used in the strstreambuf overridden virtual functions overflow , pbackfail
and underflow.

 - typedef ios_traits<char>::pos_type pos_type;

This typedef is used in the strstreambuf overridden virtual functions seekoff and
seekpos.

- typedef ios_traits<char>::off_type off_type;

This typedef is used in the strstreambuf overridden virtual function seekoff.

In D.6.1 Class strstreambuf [depr.strstreambuf] the notation of the strstreambuf base class is
wrong it should say:

class strstreambuf : public basic_streambuf<char>
and not:

class strstreambuf : public streambuf<char> // does not exist

In D.6.1 Class strstreambuf [depr.strstreambuf] the declaration of function freeze is missing
the argument name. It should say:

void freeze(bool freezefl =1);
and not:

void freeze(bool = 1);

Requestor: Philippe Le Mouël (philippe@roguewave.com)

Issue Number: 27-1003
Title: istrstream Editorial issues (typos)
Section: D.6.2 Template class istrstream [depr.istrstream]
Status: active
Description:

Class istrstream contents several typos.

Possible Resolution:

In D.6.2 Template Class istrstream [depr.istrstream] the previous title should be changed to
“D.6.2 Class istrstream”, because the class is not a template class.

In D.6.2 Template Class istrstream [depr.istrstream] the notation of the istrstream base class
is wrong. It should say:

class istrstream : public basic_istream<char>
and not:

class istrstream : public istream<char> // does not exist

Requestor: Philippe Le Mouël (philippe@roguewave.com)

Issue Number: 27-1004

X3J16/96-0009 WG21/N0827 68

Title: ostrstream Editorial issues (typos)
Section: D.6.3 Template class ostrstream [depr.ostrstream]
Status: active
Description:

Class ostrstream contents several typos.

Possible Resolution:

In D.6.3 Template Class ostrstream [depr.ostrstream] the previous title should be changed to
“D.6.3 Class ostrstream”, because the class is not a template class.

In D.6.3 Template Class ostrstream [depr.ostrstream] the notation of the ostrstream base class
is wrong. It should say:

class ostrstream : public basic_ostream<char>
and not:

class ostrstream : public ostream<char> // does not exist

In D.6.3 Template Class ostrstream [depr.ostrstream] and D.6.3.2 Member
functions[depr.ostrstream.members] the declaration of function void freeze(int freezefl = 1) is
not consistent with the declaration in D.6.1 Class strstreambuf [depr.strstreambuf], which is
void freeze(bool freezefl =1). The argument should be bool or int, but not bool in one and int in
the other.

Requestor: Philippe Le Mouël (philippe@roguewave.com)

