
Document Number: WG21/N0817
X3J16/95-0217

Date: 30 January 1996
Project: Programming Language C++
Reply to: Dan Saks

dsaks@wittenberg.edu

X3J16 Meeting No. 19
WG21 Meeting No. 14
5 - 10 November 1995

Kikai-Shinko-Kaikan Bldg.
Tokyo, Japan

1 Opening activities

Clamage convened the meeting as chair at 09:20 (JST) on Monday, 6 Novem-
ber 1995. Lajoie was the vice-chair, and Corfield was the secretary.

IBM Japan (represented by Kamimura) hosted the meeting.

1.1 Opening comments

1.2 Introductions

Clamage said that applications for chair of X3J16 can be submitted until
Friday.

Corfield circulated an attendance list each day, which is attached as
Appendix A of these minutes. Lajoie circulated a copy of the membership
list (SD-2) for members to make corrections.

1.3 Membership, voting rights, and procedures for the meeting

Lajoie noted that X3J16 had only two members above quorum. She asked
voting members to be sure to be present on Friday. Lajoie also ex-
plained that STR and Object Consultancy Services did not have voting
rights because this was their first meeting.

1.4 Distribution of position papers, WG progress reports, WG work plans for

the week, and other documents not distributed before the meeting

Kiefer said he brought a new version of a proposal to add ’long long’
integral types to C++. Plauger brought a new version of the library
issues. Others had revised issues lists for other WGs. Lajoie brought
a paper on program start and termination issues. Harbison provided a
paper summarizing the CD Ballot votes.

Plum said he would have a paper on extended identifiers.

1.5 Approval of the minutes of the previous meeting

Corfield submitted the minutes from the previous meeting (N0734 =
95-0134) for approval with the following corrections (posted to the -all
reflector by Saks):

-- Under item 1.6, paragraph 1, add a new second sentence:

The agenda was not available electronically and so some (possibly
many) of those present had not seen the agenda yet.

-- Under item 6.1 "Core (Adamczyk)", after the paragraph:

Plum recalled that we earlier proposed to disallow references in

unions, but Skaller objected because it would preclude an extension
he wanted to propose. But we didn’t approve that proposal.

Insert the following new paragraph:

Corfield said it was the UK that objected to the previous attempt to
disallow references in unions; they objected on the grounds of con-
sistency. He also pointed out that the motion was defeated by WG21
in San Diego (3 yes, 4 no, 1 abstain) and that it was politically
unsound to retake the vote in Monterey when three of the four NBs
that voted ’no’ were not present.

-- Under item 6.1 "Core (Lajoie)", under ingredient 5 of Schwarz’s

presentation on the ODR, fix the following errors in the example:

// in one file

class B {
B(int);
B(int, int);

};
<- replace ’B’ with ’B::B’B(int = 0) { }

class D : public B { }
D d1;

// in another file

class B {

B(int);
B(int, int);

};
B(int = 0, int = 0) { } <- replace ’B’ with ’B::B’
class D : public B { }
D d1;

and fix the same error two examples later:

class B {

B(int);
B(int, int);

};
// forbid this <- replace ’B’ with ’B::B’B(int = 0) { }

class D : public B { }
D d1;

-- Under item 11, paragraph 2, sentence 2, change ’"two-rule"’ to

’"two-week" rule’.

-- Under item 11.2, under the action items for "Core WG (Lajoie)"
change "Glassborough" to "Glassborow".

Motion by Lajoie/Bruck:

Move we approve N0734 = 95-0134 as the minutes of the previous
meeting with these corrections.

Motion passed X3J16: lots yes, 0 no, 0 abstain.
Motion passed WG21: 6 yes, 0 no, 0 abstain.

1.6 Agenda review and approval

Clamage submitted the proposed agenda (N0712 = 95-0112) for approval.

Koenig asked if we should hold a technical session on input iterators.
The members agreed to deal with this as part of the Library WG (working
group) discussions.

Motion by Dawes/Rumsby:

Move we accept N0712 = 95-0112 as the agenda for this meeting.

Motion passed X3J16: lots yes, 0 no, 0 abstain.
Motion passed WG21: 6 yes, 0 no, 0 abstain.

1.7 Report on the WG21 Sunday meeting

Harbison summarized his report. The CD ballot vote was: 10 yes, 6 no
with comments. Harbison explained that the comments included the var-
ious WG issues lists and he has asked the various NBs (national bodies)
to track their own issues so that he can formulate the disposition of
comments after the Scotts Valley meeting. He also reported that SC22
approved our revised schedule with a second CD ballot and a two meeting
turnaround for the disposition of comments (as in N0755 = 95-0155).

Harbison explained SC22’s concern that WG21 changed the draft during the
balloting. He also explained that, for the Stockholm meeting (July
’96), we should not take any official votes that would change the draft
but rather continue to work on issues and resolve problems. Lajoie said
we agreed to take straw votes and modify the WP (Working Paper) accord-
ingly, but delay any formal vote(s) on changes until the meeting in
Hawaii (November ’96). Harbison said he’d draft proposed procedures for
the Stockholm meeting.

Koenig wondered if he should produce a revised WP for mailing after the
Stockholm meeting. He suggested two alternatives: 1) He could produce
an unofficial WP with a cover sheet explaining that it only represents
the project editor’s working notes, or 2) he could not publish a WP at
all and send out a machine-readable copy of his latest version on re-
quest. Plum and Stroustrup preferred the latter. In any event, Koenig
felt we needed some document to work from in Hawaii. Harbison suggested
dropping this discussion this until he has spoken further with Bill
Rinehuls of SC22.

Plum said SC22 was not convinced that we should even hold a meeting
during the balloting, but Harbison had persuaded them that we could do
useful work. Plum also noted that NBs that submit comments early should
not get favored treatment over NBs that submit their comments later.

Stroustrup supported Koenig’s suggestion not to produce an official WP,
but he wanted to have an internal document that incorporates changes
made at the Stockholm meeting. Gibbons expressed some concern that we
would revisit issues from Stockholm at the Hawaii meeting if we do not
have an approved WP. Plauger said there is clearly a tradeoff between
getting work done and following the rules. We can’t officially close
issues at the Stockholm meeting; we must risk that issues seemingly
resolved in Stockholm will come up again in Hawaii.

Koenig emphasized the need for a "feature freeze" in order to be able to
fix and improve the wording. He suggested that the appropriate point
for that is when we vote to submit the final CD. After that the com-
mittee should be prepared to work on editorial issues only. Bruck felt
there was already consensus on this issue.

Lajoie was concerned that, if we give the impression that we can’t do
any "real" work in Stockholm, members may be reluctant to attend, even
though we certainly need people there. Harbison said we should already
be in the frame of mind where we are dealing only with NB comments.
Stroustrup agreed, but said that sometimes the best fix is to make a
wider change which may also fix other acknowledged problems.

Welch asked if we had to go through NB channels to fix a clear error.
Plauger said no, but we cannot invent new stuff.

Harbison explained that ISO rejected the proposed JTC1 DIS procedures.
The effect is that we are allowed to edit the draft during DIS ballot to
resolve NB comments. Moreover, if we fail that ballot, we will be able
to stage another DIS ballot without falling back to another CD ballot.
However, he recommended that we proceed under the assumption that we
intend to produce a camera-ready DIS anyway.

1.8 Liaison reports

1.8.1 WG14+X3J11 (C)

Plum reported that WG14+X3J11 met in Nashua, NH, USA from 16-20 October
1995. They are working on the five-year revision of C, known informally
as "C9x".

Plum conveyed WG14’s request that the implicit int "ban" should not
allow const and volatile as the only type-specifiers. That is,

const N = 9;
void f(const i);

should be invalid.

Koenig asked Plum about WG14’s stance on ’int main’, and Plum said he
wasn’t sure.

Plum said C9x is moving toward tag compatibility of structures across
translation units, and generally tightening up the linkage rules. Plum
said he’s urged the C committees to adopt the C++ treatment of tagless
structs.

Plum emphasized that we should view this as a bidirectional compatibil-
ity effort. Koenig wondered if there is a danger of producing a C++
standard that’s compatible with C features that C9x has removed.

Plum said WG14 has starting voting on changes to C9x. The preliminary
results indicate sentiment to add the following features:
-- designated initializers
-- the keyword ’restrict’
-- classes with member functions, single inheritance, virtual

functions, access restrictions
Plum said WG14 intends this subset to be compatible with C++. It
appears that C will not have constructors and destructors (see below),
but will require operator new to create polymorphic objects.

Plauger said the C committee is advancing very slowly and these pre-
liminary votes are not necessarily representative of what the committee
will eventually do. Stroustrup emphasized the importance of remaining
compatible in both directions, but noted that not adopting constructors
and destructors may lead to noticeably different styles of programming
in the otherwise common subset of both languages. Plum said he felt
that C++ and C9x differ in that C++ was designed as a leading edge
experiment while C9x is building on an established language.

Plum reported that the C committees are also considering adding:
-- bool, true, false (as a typedef/macro in a separate header)
-- tag compatibility requirements
-- variable length arrays (as in Cray and gcc)
-- inline
-- complex
-- extended identifiers and extended literals
-- // comments
and have already rejected:
-- overloading
-- constructors and destructors

Gibbons asked about the numerical extensions that have been proposed.
Plum was unsure where they stood.

1.8.2 WG20 (internationalization)

Kung is not the official liaison, but he offered a report. He said WG20
is considering internationalization issues for language design and Uni-
code support. Both of these are probably too late for C++ but will
likely be proposed for C9x.

1.9 New business requiring actions by the committee

None.

1.10 Drafting committee

Corfield said he’d manage the technical aspects of the drafting commit-
tee and Rumsby agreed to manage the administrative aspects. Corfield
asked the WGs to prepare their motions on Tuesday evening so that the
drafting committee can simply merge and edit them. Corfield asked for
additional volunteers for the drafting committee on Wednesday evening.

1.11 Organization of WGs

The WG21+X3J16 prepared to break in WGs.

Koenig volunteered to give a talk about input iterators from 17:30 to
around 18:30 on Monday night.

The committees recessed to WGs at 11:25 and reconvened on Wednesday at 9:10.

2 WG sessions

3 Technical session

4 WG sessions

5 Working Paper for Draft Proposed Standard

5.1 Changes in the Working Paper

Koenig presented the project editor’s report (N0811 = 95-0211). He
thanked the volunteers who helped edit the draft at the end of the
Monterey meeting and in the weeks thereafter. He observed that the
changes in the WP (both the number of lines touched and the number of
separate changes) has decreased substantially over the last few WPs.
This sign of progress is "good news".

He said he did not make one of the changes approved in Monterey. Issue
21-0646 (from the clause 21 issues list) called for changing some return
types from basic_string& to basic_string<charT, traits, Allocator>&. In
this context the types are equivalent, so the change wasn’t necessary.

Koenig summarized some general editorial changes he made, including
-- changing "processor" to "implementation", and
-- adding text to explain that apparent requirements on programs are

abbreviated forms of requirements on implementations.
He also made some "bold changes" -- changes that were editorial propos-
als appearing in editorial boxes (see N0811 = 95-0211 for the list of
changes).

Koenig said he intends to make the following bold changes in the next
draft:
-- Add specializations of the swap template for each container that has

a ’swap’ member. Currently ’swap(a, b)’ works for all containers

but may be inefficient. This proposal uses specializations of the
global ’swap’ template to call the ’swap’ member of the standard
containers.

-- Reinstate <iostream.h>, which includes <iostream> and contains the
appropriate code to match other ’.h’ headers.

Plauger noted that the WP specifies in detail what the .h headers
actually do for the C compatibility headers, but not for the other .h
headers. Koenig suggested this should be a Library WG issue.

Koenig said he intends to make a careful editorial pass through the
language clauses over the next year. He asked for volunteers to do the
same for the library clauses.

Straw Vote: Who approves N0785 = 95-0185 as the current WP? lots yes, 0

no.

(See Motion 1.)

6 General session I

6.1 Core Language WG

==== Adamczyk ====

Adamczyk discussed a proposal to allow declarations of operator void()
in templates, but not allow calls to such functions (N0720 = 95-0120).
He explained that there is precedent for allowing declarations of unus-
able entities such as derived-class-to-base-class conversion operators.

Adamczyk said the subgroup agreed to allow declarations and definitions
of operator void() everywhere. They also agreed that such operators can
be called only using explicit operator call notation such as x.operator
void(). They cannot be called implicitly. Stroustrup asked for assur-
ance that (T)x, where T is void, would not invoke an operator void(),
which he got.

Straw Vote: Who favors this proposal? lots yes, 0 no.

(See Motion 2 for the formal wording.)

Adamczyk presented proposed resolutions to issues regarding function
typedefs (N0792 = 95-0192). The subgroup agreed to all points in the
paper, but Gibbons had objections to the last issue (regarding const in
a function typedef). Gibbons and Schreiber (author of N0792 = 95-0192)
proposed to resolve the issue as per the following example:

typedef void G();
typedef void F() const;
struct X {

const G g; // ill-formed
// well-formedF f;

};

(See Motion 5.)

Stroustrup expressed surprise that a member function can be declared
using a typedef. Gibbons said we had previously decided that this would
not be valid inside a template.

Gibbons explained the point of the proposal more-or-less as follows: If
you want a cv-qualifier to apply to a function type, you must write it
in the function declarator for that type, as in the declaration of F
above. You can’t declare a cv-qualified function type by combining a
cv-qualifier with a function type in the decl-specifier-seq of a later
declaration.

Koenig said he supported this decision. He has observed a bug/extension
in Cfront which permits declaring typedefs for member function types.
This proposal does not preserve that bug.

Straw Vote: Who favors this proposal? lots yes, 0 no.

Adamczyk recommended clarifying initialization of call-by-value objects
(as per N0780 = 95-0180). Specifically,
-- access checking is performed on the caller side not the callee side,
-- the lifetime of a parameter is well-defined and it is destroyed

immediately at the end of the function.
(See Motion 3.)

Adamczyk explained that in an expression such as f(x) + f(y), "tempo-
raries" generated to pass x and y by value to f are in fact parameters,
so the destruction of those parameters occurs immediately after each
call, prior to the addition.

Koenig asked Adamczyk to ensure that the formal wording for the WP
acknowledges the "Schwarz" optimization (allowing elision of copy
constructor calls). Expanding on this issue, Adamczyk noted that the
lifetime of the copied parameter is likely to be shorter than the
lifetime of any temporaries introduced.

Straw Vote: Who favors this proposal? lots yes, 0 no.

Adamczyk said the subgroup looked a proposal to allow cv-qualified con-
structors (N0798 = 95-0198), but rejected it because it’s an extension.

Adamczyk presented a proposal to refine the WP’s definitions for "scalar
type" and "fundamental type" (N0774 = 95-0174). The substance of the
proposal is to change:
-- scalar type to include pointer-to-member
-- reclassify enumerated types as compound types (instead of as

fundamental types).
Adamczyk said the subgroup agreed to accept this as editorial.

Bruck asked if enumerated types are PODs. Koenig and Lajoie said yes.
Clamage wanted to be sure there are no semantic changes implied. Kiefer
asked for a vote on the proposal as a formal motion, which he got (see
Motion 4).

Unruh noted that the paper implies that C++ would have to allow bitwise
copying (e.g., using memcpy) of pointers-to-members. This interacts
with an upcoming proposal on pointer-to-member casts.

Adamczyk presented a proposal to clarify how the initialization order of
non-local objects depends on whether initialization is static or dynamic
(item 555 of N0802 = 95-0202). He summarized the proposal as follows.
By the time a non-local object is completely initialized:
-- all preceding non-local objects are also completely initialized
-- following non-local objects may have been initialized statically.
This is a relaxation of the current ordering. (See Motion 6.)

Adamczyk used the following example to clarify the proposal:

struct A {

float x;
A(float p) : x(p) { }

};
extern A b;
extern A a(b.x);
A b(1.0);

He said this is the sort of program that "should not be written" so it’s

unspecified whether ’b’ is initialized when ’a’ is defined. The current
WP guarantees that ’b’ is zero-initialized prior to initializing ’a’.

He went on to explain that all static initialization is done first. The
dynamic initialization is done in the canonical order. This proposal
relaxes requirements to allow an implementation to turn some the dynamic
initializations into static initializations. This can produce unspeci-
fied behavior (as in the example above).

Gibbons said this proposal might break the "as if" rule, but he favored
it nonetheless. Adamczyk agreed that this could happen for the initial-
izations involving forward references, which depend on unspecified beha-
vior. Clamage was concerned that the proposal would change the behavior
of well-formed programs. Stroustrup felt the optimization potential was
more important than the behavior of examples such as the one above.

Unruh asked if an implementation can optimize the initialization of a
class object by initializing parts of the object statically and other
parts of the same object dynamically. Lajoie said the proposed rule did
not address this, but nothing in the draft prevented it either.

Straw Vote: Who favors this proposal? lots yes, 0 no.

==== Lajoie ====

Lajoie said her Core subgroup discussed issues regarding program start
and termination (from N0802 = 95-0202). In the following, numbers in ()
are core issue numbers.

Lajoie began with (551). The WG recommended that all C++ programs must
have a main function, including those produced by freestanding implemen-
tations.

Stroustrup wanted to consider requirements for C++ libraries called from
other languages. Unruh suggested an alternative wherein a freestanding
implementation need not require ’main’. Koenig agreed that the standard
could say the only portable way to provide ’main’ is to write it explic-
itly, but implementations could provide an alternative as an extension.
Stroustrup said it was important not to exclude mixed-language pro-
grams. Lajoie agreed to try rephrasing this part of the proposal to
satisfy Unruh’s and Stroustrup’s concerns.

Lajoie said that, for (462), the WG recommended that calling ’exit’
during destruction of an object with static storage duration has un-
defined behavior. Also, for (429), they recommended that reference
initialization is part of static initialization.

Lajoie presented new terminology for expressing initialization seman-
tics. The new term "reference constant expression" means "an lvalue
designating an object with static storage duration". Further details
appear in N0802 = 95-0202.

Stroustrup asked if "reference initialization is part of static initial-
ization" is a requirement on implementations. Lajoie said yes. Rumsby
asked if there’s an interaction between reference constant expressions
and operator&. Lajoie said no. Stroustrup expressed concerned that
this can’t be implemented. Adamczyk explained that the proposed wording
directly parallels the words in the C standard about address expression
initialization.

Lajoie said that, for (430), the WG recommended that objects with static
storage duration are destroyed in the reverse of the order that their
constructors completed. This is true for _all_ such objects in a pro-
gram, including local static objects.

Clamage asked about dynamic libraries. Lajoie explained that dynamic

libraries are already outside the scope of the WP (they’re an extension)
so it doesn’t matter if dynamic libraries cannot follow the proposed
rule.

Clamage asked if this implies that an implementation must keep track of
the exact order of all constructions in order to satisfy this require-
ment. Lajoie said yes, the implementors present in the subgroup did not
feel this was too onerous. She added that the implementation needs to
track the construction only for "outermost" objects. That is, statics
in an aggregate will be destroyed only after the whole object is de-
stroyed. Unruh asked if "completion of construction" applies to each
array element separately or to the array as a whole. Lajoie replied
that it applies to the array as a whole. Therefore, another object con-
structed within the constructor of an array element will be destroyed
after the entire array is destroyed.

Someone asked what happens if a local static is constructed during the
destruction of objects with static storage duration. Lajoie explained
that it gets constructed, and then it gets destroyed immediately after
the "current" destruction completes; however, if the local static object
in question had already been destroyed, the behavior is undefined. Cor-
field asked if this covers a local static that’s being constructed for
the first time. Lajoie was not sure. Corfield pointed out that this is
one of the issues that concerns the UK. Welch said that the subgroup
intended to cover only local objects that had already been destroyed.

Clamage felt this proposal attempts to provide too many guarantees.
Lajoie said the proposal covers only what several implementations al-
ready do. Clamage said that may just indicate that those implementa-
tions have not been exercised heavily enough.

Unruh expressed concern about the destructor for an object that is
initialized statically. Destructors execute in reverse order of the
constructors. But there’s no point in time when the constructor for
that object executes, so when does the destructor execute? Lajoie said
it was a good question but a separate issue.

Lajoie said the, for (484), the WG recommended that destructor calls
should interleave with calls to the atexit functions. Using this
example:

void f() { static T t1(1); }
void g() { static T t2(2); }
main() {

atexit(f);
atexit(g);
f();
exit(0);

}

she explained that, by this proposal, the steps at exit would be:

1. g() called
2. t2 destroyed
3. f() called
4. t1 destroyed

Unruh asked whether destruction was guaranteed to occur between calls to
registered functions. Lajoie said that order of construction was the
determining factor. Unruh said this implies that the implementation
must track atexit functions as well as static object construction.
Lajoie said yes.

Welch stepped through the example above showing what the implementation
must track. He said that the order was not, in fact, as given above.
Actually t1 is destroyed _before_ g is called, so the call to f from the

atexit chain causes undefined behavior. Schreiber suggested moving the
call to f ahead of the atexit(f) call to show a well-defined ordering:

main() {

f();
atexit(f);
atexit(g);
exit(0);

}

In this case the process at exit would be:

1. call f and construct t1
2. register f
3. register g
4. call exit, which calls g and constructs t2
5. destroy t2
6. call f
7. destroy t1

Gibbons was surprised that atexit affects destruction ordering in this
way. Welch confirmed that the WG intended this. Gibbons asked if this
means atexit calls look a lot like constructor calls. Welch said yes,
you can simulate this process by using static objects that register a
function on construction and call it on destruction. Someone suggested
deprecating atexit.

(Motion 7 formalizes the recommendations above.)

Lajoie said the working group agreed that the following are editorial
corrections (from N0802 = 95-0202):
-- (UK 38): The standard should not say that exit’s argument is

returned to the program’s environment.
-- (552) Confirm that calling exit may not destroy objects with

automatic storage duration
-- (527) Confirm that nonlocal objects with static storage duration

need not be initialized before entering main.
-- The WP should state explicitly that main’s return type is int (N0772

= 95-0172).

Lajoie said the WG rejected an as extension a proposal to specify the
initialization order for global objects (N0717 = 95-0117).

Lajoie explained that N0772 = 95-0172 simply prohibits non-int return
types for ’main’. Koenig said he wanted an exemption to allow an im-
plicit int return type for ’main’. Lajoie said this is a separate
issue. Spicer agreed with the proposal, but asked for a formal vote
instead of treating it as editorial. He wanted to make it clear that we
consciously decided that ’void main()’ is ill-formed.

Lajoie said her Core subgroup discussed the following memory model
issues (from N0803 = 95-0203). Again, numbers in () are core issue
numbers.

Lajoie explained that, for (554), the WG recommended that if a program
attempts to construct an object in storage once occupied by a const
object that’s been destroyed, the program’s behavior is undefined.
Thus, an implementation may place const objects in readonly memory even
when those objects have constructors.

Gibbons asked how this applies to dynamically-allocated objects. He
pointed out two additional cases not yet covered:
1. using new to create a const object, and
2. using new with placement to construct a const object.
Lajoie said she’d add issues for these.

Lajoie said that, for (UK 611), the WG recommended that a program may
use memmove to copy objects that do not overlap. (The WP already allows
a program copy objects using memcpy.)

Unruh asked if an explicit loop that copies objects byte-by-byte as
unsigned chars would also work. Lajoie said no. Plauger explained the
problem as follows. Some mem* functions in the C library have parame-
ters of type char * instead of unsigned char *. On a machine that uses
sign-magnitude arithmetic and uses a signed representation for plain
char, "value collapse" could occur. That is, copying bytes as signed
char might convert -0 to +0, thus changing bit patterns as it copies.
So memcpy is special because it promises a "transparent" copy (one that
preserves the bit pattern) regardless of value collapse.

Lajoie agreed to add an issue for moving objects byte-by-byte as
unsigned chars.

The next issue was (417). The WG recommended that, if an operand of [],
++, --, +, -, +=, or -=, has static type T * a dynamic type that is not
T *, the behavior is undefined. This restriction does not apply to
other operators, such as indirection, relational operators, and equality
operators. Hence, these operators may apply to an operand of type T *,
where T is an abstract base class.

Lajoie then presented (597). The WG recommended that adding zero to a
null pointer produces a null pointer; subtracting two null pointers
produces zero. Koenig explained that this allows a program to use two
null pointers to represent an empty range. Unruh asked if this applies
at run-time, for example, when adding a pointer variable and an integer
variable. Lajoie said that was the intent. Clamage asked Lajoie to
make the words clear that "zero" need not be just an integral constant
expression. She agreed.

Lajoie said that, for (513), the WG recommended that pointer comparisons
not described as "well-defined" should have unspecified behavior, not
undefined behavior. Such comparisons will yield some sort of truth
value rather than a possible machine exception. Unruh asked if repeated
comparisons could yield different results. Lajoie said yes, the result
is unspecified. Corfield asked whether the subgroup had considered
architectures where avoiding a machine fault might be expensive. Lajoie
said no one seemed to think this was likely.

(Motion 8 formalizes the recommendations above.)

Lajoie said the working group agreed that the following are editorial
corrections (from N0803 = 95-0203):
-- (UK 382) Change the term "unusable value" to "indeterminate value".
-- (UK 388) Change the term "valid storage" to "allocated storage".
-- (557a) Remove the term "well-defined copy operation" because it’s

meaningless.
-- (557b) Preserve the term "value representation", but define it

better.
-- (471.2 and 471.3) Clarify when a program can access the operand of a

delete-expression.
-- (93) The behavior of ’delete this’ in a member function is

undefined. (It need not be diagnosed.)
-- (596) Clarify the meaning of a relational operator when only one

operand is the null pointer.
-- (476) Clarify that accessing an object with indeterminate value

causes undefined behavior.

Lajoie said her Core subgroup discussed the following object model
issues (from N0804 = 95-0204). Again, numbers in () are core issue
numbers.

Regarding (569), Lajoie said the WG recommended that, in the storage

mapping for objects, the order of members separated by access specifiers
is unspecified rather than implementation-defined. Unruh said an
implementation-defined ordering might be useful. Clamage said the
standard should not prescribe an ABI (an "application binary
interface"). Adamczyk said the subgroup did not want to require
implementations to document something that might be very difficult to
formulate.

Lajoie then discussed (529). The WG recommended that zero-sized base
classes are allowed, but no pair of pointers to base class subobjects
can compare equal.

Kiefer asked how a subobject can have zero size. Adamczyk explained
that sizeof always returns a non-negative value, even for an object with
no members. Thus, the size of an object may be less than the sum of
’sizeof’ applied to each of its members and subobjects.

The next issue was (589). The WG recommended that the relationship
between the return types of overriding functions must be known at
compile time, i.e., the return types must be pointers or references to
complete types for derived classes. Lajoie gave this example to
illustrate the proposal:

class A;
class B;
class C {

virtual A& f();
};
class D : C {

virtual B& f(); // ill-formed; A and B are incomplete
};

(Motion 9 formalizes the recommendations above.)

Lajoie said the working group agreed that the following are editorial
corrections (from N0804 = 95-0204):
-- (OB1) Refine the definition of "object".
-- (533) An anonymous union is neither an object nor a type.

Lajoie said her Core subgroup discussed the following special member
function issues (from N0806 = 95-0206). Again, numbers in () are core
issue numbers.

Lajoie said that, for (575), the WG recommended that a program can refer
explicitly to implicitly-declared special member functions.

Unruh asked if these functions can be declared as friends. Lajoie said
it’s possible, but probably useless. Corfield asked if the subgroup had
looked at his recommendation that such functions should be callable and
addressable (N0718 = 95-0118). The paper also suggests that implicitly-
declared functions should be callable and addressable for arbitrary
types in templates. Lajoie said the subgroup had not looked at this.
Corfield said this issue needs to be addressed.

Lajoie said the group discussed (379) regarding destructor names. They
agreed that the declaration for a destructor cannot use a typedef name,
but an explicit call to a destructor can use a typedef name. Also, the
object expression in an explicit destructor call must have the same type
as the destructor’s class type or (for virtual calls) must have a type
derived from the destructor’s class type.

Lajoie used this example to illustrate the proposal:

struct B {

virtual ~B(); // must use B
};

// must use BB::~B() { }
B* p;
typedef B B_alias;

// okay to use B_aliasp->~B_alias();

Unruh observed that ~B() can be parsed as a destructor call, or as the ~
operator applied to a constructor call. He said we could resolve the
ambiguity by prohibiting unqualified destructor. Gibbons said the WP
already does.

Spicer asked how the name lookup was actually performed after B::.
Lajoie said this remains an open issue. Welch said Pennello has a whole
list of issues like this which need to be resolved. Gibbons suggested
that the lookup should be the same as for B::operator B().

Lajoie explained that, for (95), the WG recommended that a user-declared
constructor for T taking volatile T& is a copy constructor. A user-
declared assignment operator for T taking volatile T& is a copy assign-
ment operator. Generated constructors and assignment operators in de-
rived classes will call these. Generated constructors and assignment
operators are never implicitly declared to take volatile references.

Unruh asked if writing

T::T(volatile T&);

for class T suppresses the usual copy constructor. Lajoie said yes.
Welch said a program that does this for a class T will probably have
many errors because it lacks the usual copy constructor.

The next issue was (574). The WG recommended that, if a class has a
const or reference member, that member must be initialized either by a
ctor-initializer list or by a brace-enclosed initializer list.

Gibbons said this means an implicitly-generated default constructor will
be ill-formed (and the generation will fail). Adamczyk emphasized that
this retains the existing incompatibility with C wherein C++ _requires_
initialization of const scalars.

Lajoie presented two more issues. For (478), the WG recommended that a
union constructor shall initialize only one member of the union. For
(534), the WG recommended that members of a nested anonymous union may
be initialized by a constructor for its enclosing class.

Corfield asked if the constructor of the enclosing class can only ini-
tialize one member of the nested anonymous union. Lajoie said yes.
Corfield said this affects the proposed WP wording. Gibbons asked if a
const member of a union can be set only during initialization. Lajoie
said sje’d take it as a Core issue.

(Motion 10 formalizes the recommendations above.)

Lajoie said her Core subgroup agreed that the following are editorial
corrections (from N0806 = 95-0206):
-- (22) A program is ill-formed if it uses a special member function

that’s inaccessible at the point of use.
-- (576) const and volatile semantics never apply to an object during

the execution of a constructor or destructor; const/volatile seman-
tics apply to const/volatile objects only after their initialization
has completed and only until their destruction starts.

-- (562) A copy constructor is a conversion function. An implicitly-
declared copy constructor is not an explicit conversion constructor;
it can be used for implicit type conversion.

Lajoie said the group considered a proposal to add a ’long long int’
type to C++ (N0715R1 = 95-0115). They recommended rejecting it until we

know what WG14+X3J11 does about this issue. This means it will not
appear in this standard but should be considered for the next revision
of C++.

Kiefer was concerned that C would adopt this and C++ would not. Lajoie
said that members of WG21+X3J16 who are concerned about this should
lobby WG14+X3J11. Harbison said we could urge our liaison to encourage
the C committee to adopt this. Plauger said he’d be glad to present the
results of our straw vote on this to WG14+X3J16. Unruh requested a
formal vote to indicate our support. Clamage preferred a straw vote.
Lajoie suggested discussing this in a later session.

==== Gibbons ====

Gibbons reported that his Core subgroup discussed lookup for friend
declarations. They proposed to ignore scopes outside the nearest
enclosing namespace when looking for a name referred to in a friend
declaration. This is to ensure that friends inject into the same
namespace that they would be found in.

Gibbons explained the proposal with this example:

namespace A {

void f();
namespace B {

class C {
friend void f(); // refers to A::f
friend void f(int); // injects A::B::f

};
}

}

According to the current WP, the two declarations of f do not overload
because the first friend refers to A::f but the second is injected as
A::B::f. Under this proposal, both f() and f(int) inject into A::B, so
the f’s declared in A::B::C become overloaded in A::B.

Stroustrup favored the proposal. Plauger expressed some concern about
the possible impact on the library. Gibbons said a friend declaration
can explicitly specify the namespace in which the name should be de-
clared (i.e., looked up) by using qualified names.

Gibbons then proposed that a friend declaration containing a qualified
name shall not be a definition. He also presented a proposal to change
the implied meaning of an unnamed namespace from:

namespace UNIQUE {

// body
}
using namespace UNIQUE;

to:

namespace UNIQUE { }
using namespace UNIQUE;
namespace UNIQUE {

// body
}

The effect is the name x declared in the unnamed namespace can be
referenced inside the namespace using ::x as well as just x.

Gibbons then presented a proposal to prohibit useless using-declara-
tions. Under this proposal, the following will be ill-formed:

namespace A {

typedef int Int;
}
namespace A {

using A::Int; // previously allowed as harmless
}

Next, Gibbons explained that a constructor does not have a name so it
cannot appear in a using-declaration. The WG proposed to prohibit
using-declarations that name destructors. Lajoie pointed out that the
proposal on destructors from her Core subgroup makes this prohibition
unnecessary. Gibbons said it may as well be added for clarity.

Gibbons presented a proposal to change the C++ grammar to allow unary ::
(as in ::name) in all declarator-ids. He said this does not introduce
any new syntactic ambiguities into C++. (There already is an ambiguity
for pointer-to-member declarations that is resolved by a "maximal munch"
parse and therefore may require parentheses to disambiguate.) Gibbons
said the WG saw no reason to limit this change to friend declarations,
so the proposal augments the grammar to allow a leading :: wherever it
allows a qualified-name.

Gibbons then presented a proposal to consider only namespace names when
looking up names in a namespace-alias-declaration or using-directive.
Gibbons claimed that hiding namespace names makes no sense in these
contexts. Stroustrup commented that this concept already holds for
class names (in lookup for elaborated-type-specifiers). Gibbons agreed
that this proposal simply extends the principle to namespace names.

Next, Gibbons said his Core subgroup discussed the semantics of unnamed
namespaces. He said the WP currently employs the concept of "unique
name", but this is a kludge. He proposed to change the linkage of names
declared in an unnamed namespace to "non-external".

Koenig opposed this proposal, arguing that it prevents using private
types with library templates. Stroustrup agreed with Koenig that we
shouldn’t prevent this. Gibbons said you could always use an "implemen-
tation" namespace to wrap the private types. Clamage felt that was a
bit drastic if the intent was simply to prevent the unique name from
"escaping". Gibbons said that unique names are, in fact, a fiction --
they are hard to generate and not really guaranteed to be unique.

After a bit more controversy, Gibbons agreed to take this issue back to
the Core WG.

No one objected to the other proposals regarding namespaces. (See
Motion 11.)

Gibbons proposed the following minor clarifications for typeid issues:
-- typeid ignores top-level cv-qualifiers in its argument.
-- typeid cannot have an argument with an incomplete class type.
-- type_info is an incomplete type unless <typeinfo> is included (and

the name type_info is not visible).
-- when appearing as an argument to typeid, array and function types do

not decay.
-- type_info objects have static storage duration.

Gibbons presented revised text for all of clause 5.2.7 [expr.typeid].
He pointed out that the replacement text removes the discussion of
’typeid(p[N])’, which is in line with the Core WG’s proposal to prohibit
subscripting of pointers to polymorphic types when the static and
dynamic type differ.

Clamage asked why typeid should ignore the top-level cv-qualifier in its
argument. Gibbons explained that otherwise programs must retain cv-
qualifier information at run-time, and the WG thought this would incur
too much run-time overhead.

Plum asked if the name std::type_info is available on demand. Gibbons
said no. Clamage asked if this was like size_t. Gibbons replied no,
because size_t is not a new type name, only a synonym.

Gibbons then introduced a proposal regarding pointer-to-member casts.
He said the WG agreed on this proposal in Monterey (July ’95) but did
not submit it for a formal vote. In summary, the proposal:
-- disallows casts of pointers-to-members across virtual inheritance,
-- allow upcasts beyond the original member’s class.
(See Motion 13 for details.)

Gibbons used the following example to illustrate the proposal:

class A { };
class B : public A {
public:

virtual void f();
};
void g() {

B* b = new B;
void (B::*pf)() = &B::f;
(b->*pf)();
A* a = b;
void (A::*pg)() = (void(A::*)())pf; // 1

// 2(a->*pg)();
}

According to the current WP, the cast on // 1 has undefined behavior.
This proposal sanctions the cast. In the dereference a->*pg on // 2,
’a’ points to an object whose static type, ’A’, that does not contain
the member addressed by pointer-to-member ’pg’. However, ’a’ points to
an object whose dynamic type, ’B’, does contain that member. This pro-
posal requires that a pointer-to-member carry enough information to make
this work.

Unruh argued that there is an implementation technique that cannot allow
pointer-to-member dereferencing unless the static type of the object
contains the actual member. Gibbons replied that existing commercial
compilers already have support for the dereference, but currently per-
form optimizations that lose some of the necessary information. He
later explained that the dereference is well-behaved only when the
dynamic type of the object pointed to is actually a type derived from
its static type.

Welch opposed the prohibition on conversions across virtual inherit-
ance. Gibbons said no vendors that failed to implement this had users
complain about it.

Straw vote: Who favors this proposal? lots yes, 2 no, some abstain.

6.2 Library WG

==== Dawes ====

Dawes presented the WG’s proposals to resolve clause 17 [library intro-
duction] issues (from N0801 = 95-0201). He began with issue 17-001,
using the following example:

#include <string>
using namespace std;
int main() {

cout << "Portable C++ code?" << endl;
return 0;

}

The program refers to names declared in <ostream>, but does not include
<ostream>. <string> might include <ostream>, or it might not; the WP
does not say. Plauger pointed out the program is not portable but some
implementations might successfully translate and execute it. The WG
recommended that the WP should specify that headers cannot include other
headers, or rather that they make visible only those names that they are
specified to declare. (See Motion 15.)

Dawes then discussed issue 17-002, which raised a concern that the WP
currently says "A C++ program shall not extend the namespace std." How-
ever, a C++ program must be allowed to extend the namespace std, if only
to specialize class numeric_limits. The WG recommended adding "unless
otherwise specified" to the prohibition on extending namespace std.
This is specifically to allow specializations for numeric_limits.

Dawes said he’d add traits for the string and stream classes to the
library issues list for review. Myers suggested adding the algorithms
templates to the list. Dawes said there are templates in namespace std
that users might want to specialize. Specializations must be in the
same namespace as the original template, so user can’t write such spe-
cializations unless that can extend namespace std.

Unruh asked whether the WP would provide an explicit list of allowable
extensions. Dawes said the WG decided to use the "unless otherwise
specified" form and that additional forms were up to the editor.

Gibbons asked about the is_specialized member of numeric_limits.
Plauger explained that the is_specialized flag is always set true in any
specialization. Only the template sets this flag false to warn that it
is probably not supplying any useful information.

Spicer asked whether the prohibition on extending namespace std is diag-
nosable. Rumsby said the WG intended so. Spicer said there doesn’t
seem to be a distinction between user source and library source (making
diagnosis harder). Plauger pointed out that library source was an
implementation detail and so, in effect, it does have special status.

Unruh said this could be an expensive check for implementations. Koenig
said an implementation could use "magic". Plauger said that making this
diagnosable pretty much requires compilers to check all the names.
Koenig responded that broken implementations are not required to diag-
nose themselves.

Dawes said that "shall not" has been in clause 17 for a long time; he
suggested adding an issue to the list and then moving on. Plauger said
the proposal reads as if implementations cannot extend their own head-
ers. Rumsby said the "shall not" refers to C++ programs, not to the
implementation itself. Koenig said this is the same situation as
attempts by the user to extend the library in C programs.

Straw Vote: Who agrees with this proposal? lots yes, 0 no.

Spicer said the definition of "extending the namespace" needs to be very
clear. He asked why adding a specialization is an extension; it doesn’t
add any new names. Rumsby said we should just log the issue and move
on.

Dawes went on the the next issue, that the WP does not describe the
effect of a program that violates a library "Requires" paragraph. Dawes
said the WG recommended that the effect is "undefined behavior unless
otherwise specified".

(See Motion 16 for the formal wording of the previous proposals.)

Dawes said the WG agreed to resolve issue 18-013 by accepting the recom-
mendation from the issues list (N0784R2 = 95-0174R2). Specifically, the

recommendation is that deleting a pointer obtained by nothrow operator
new has well-defined behavior.

Corfield asked if there is a library issue asking if the form of nothrow
operator new should be:

new (nothrow) T

or:

new (nothrow()) T

Dawes said yes. Myers said it was too late to change this.

Dawes proposed to resolve issue 18-014 by accepting the recommendation
from the issues list (N0784R2 = 95-0174R2). The recommendation speci-
fies a corresponding delete for the nothrow operator new. Dawes ex-
plained that we need this to account for an exception thrown during a
nothrow new expression.

(See Motion 17 for the formal wording of the previous proposals.)

Dawes proposed accepting the recommendation for issue 20-018 (from
N0789R2 = 95-0189R2). The proposal specifies the semantics of
auto_ptr<>.reset().

Dawes then presented the WG’s proposal to resolve issue 20-021 (from
N0789R2 = 95-0189R2) by specifying a default constructor for pair<>.
The paper offered alternative recommendations; the WG proposed the
latter after cleaning it up a little. They intended the specification
to conform to HP’s implementation of the STL.

Dawes said the WG recommended closing the following issues (from N0789R2
= 95-0189R2) with no action:
-- 20-014: add an allocator template
-- 20-017: add an implicit_cast template
-- 20-019: add default constructors to many library classes
-- 20-020: remove make_pair
-- 20-022: add unary_compose and binary_compose

Corfield asked if this means we will keep make_pair, and not add
unary_compose and binary_compose. Dawes said yes.

(See Motion 18 for the formal wording of the previous proposals.)

Dawes said the WG agreed to accept the recommendation for the following
clause 25 [algorithms] issues (from N0793 = 95-0193):
-- 25-001: change the behavior of find_end so it can be implemented
-- 25-002: change the behavior of find_first_of so it can be

implemented
-- 25-003: change the behavior of adjacent_find, min_element, and

max_element so they can be implemented
-- 25-005: remove an extraneous footnote from clause 25.1.9
-- 25-007: add a constraint against overlapping ranges for copying

algorithms
-- 25-009: revise effects of partial_sort to say remaining elements are

in unspecified (not undefined) order
-- 25-010: describe effects of set_difference more precisely
-- 25-011: describe effects of set_symmetric_difference more precisely
They also recommended closing the following issues with no action:
-- 25-006: state explicitly that ’copy’ requires forward copying
-- 25-008: change return type for stable_partition
(See Motion 19.)

==== Myers ====

Myers summarized the WG’s proposals regarding various clause 22 [locale]
issues (from N0788R1 = 95-0188R1). The first proposal addressed issue
22-009. The WG recommended divorcing the global C locale from the glo-
bal C++ locale. That is, calls to setlocale() should not affect the C++
library functions, but calls to locale::global() _may_ affect the C
locale. (See Motion 26, which includes other recommendations.) This
allows the C++ locale machinery to be layered on top of the C locale
machinery.

Plum asked how the C++ locale machinery affects the C locale. Plauger
explained that using only named locales in C++ will keep the C locale in
step; however, if you use other features of the C++ locale, all bets are
off.

Myers elaborated the second locale proposal, which cleans up facet put
and get error handling (as per issues 22-017, 22-044, 22-063, 22-064,
22-065 from N0788R1 = 95-0188R1, and per N0791 = 95-0191):
-- clean up streambuf iterators
-- add failed() to ostreambuf_iterator
-- cleanup argument lists to provide communication of errors via an

ios_base::iostate& argument.
(See Motions 20 through 23.)

Myers presented details of the third proposal, to extend the codecvt
facet to support filebuf extensions (as per issues 22-042 and 22-043):
-- define length() analogous to mblen()
-- define max_length() analogous to MB_CUR_MAX
-- add do_always_noconv() to indicate vacuity (to do with run-time

optimizations)
-- clarify the meaning of do_convert "partial" result
(See Motion 26, which includes other recommendations.)

Myers then presented a few more specific proposals regarding locales,
monetary representation, and input/output. (See Motions 24, 25, 27, 28
and 29.)

Straw vote: Who agrees with these recommendations? lots yes, 0 no.

==== Plauger ====

Plauger presented a proposal to remove the caching semantics from
use_facet. He explained that the changes allow streams to be imbued
with transparent locales in a way that the global locale still "shows
through" so that parts of the locale can be modified independently.
(See Motion 30.)

Dawes asked how strongly the Library subgroup supported this. Plum said
it was 9 for and 2 against. Myers said he recalled that the support was
for Plauger to write the proposal, not the proposal itself. Clamage
said the vote was to assess support for the principle in order to see
whether it was worth writing a proposal.

Plum said this proposal matches the recommendation made in Plauger’s
issue list which has been available for some time. Myers said he
objected to the proposal because it removes protection against some
problems. He also complained that it is a sweeping change to the
architecture of locale that breaks an invariant. He said he has an
alternative proposal to remove the caching behavior without breaking
this invariant.

Clamage asked whether the WG should take the issue back. Plauger felt
that the straw vote indicated that it’s ready for a committee vote.
Plum agreed. Dawes said that the proposal includes a lot of new wording
that we haven’t seen. Corfield said we rarely see detailed wording
until meetings; if the issue has been on an issues list for a long time,
and if the WG’s straw vote favored the proposal, then we should move

forward. Welch and Stroustrup also spoke in favor of moving to a vote.

Myers tried to invoke the two-week rule (X3’s rule that a committee
member may object to voting on an issue not presented to members at
least two weeks before the meeting). Plum said he would rephrase the
proposal in terms of a paper that satisfies the two-week rule. A some-
what tart exchange ensued. Plauger said his recommendation has been on
record since March ’95.

Straw Vote: Should we proceed on this issue: lots yes, 1 no.

Straw Vote: Who favors this proposal: 10 yes, 1 no, 11 abstain.

Welch requested separate WG21 and X3J16 votes.

Straw Vote: Who favors this proposal:

WG21: 2 yes, 0 no, 3 abstain.
X3J16: 9 yes, 1 mo, 12 abstain.

Stroustrup asked the abstaining votes to think carefully about the issue
before the formal vote. Plum asked if we are going to open a debate in
full committee. Harbison said the large number of abstentions indicates
that people just want to read the proposal. Clamage suggested moving
forward with a vote on this issue on Friday.

Myers wanted to continue debating the issue, preferably on the reflec-
tor. Koenig said we have a paper on the table, we should read it and
vote. Bruck said he abstained because he has not had a careful look at
the issue until just now.

==== Koenig ====

Koenig presented a proposal for improving the description of input
iterators. He noted that this will probably cause editorial ripples
through parts of the descriptions of other iterators. (See Motion 31.)

Stroustrup asked if anyone who had studied the issue objected. Koenig
said all four participants in the discussion now agree. Clamage pointed
out that these four did not agree initially, so this represents a step
forward.

Myers recommended a "bold change" for the other iterators. Dawes sug-
gested that these other changes be made sooner rather than later. Unruh
asked which model the proposal represents. Koenig explained that, under
this proposal, ++ invalidates all copies of the iterator.

==== Wilhelm ====

Wilhelm presented a proposal to resolve various basic_string issues (as
per the recommendations in N0800R1 = 95-0200R1). He provided details on
some of the issues. (See Motion 32 for the full list of issues.)

Wilhelm explained that the recommendations for the following issues
clean up string_char_traits: 002, 018, 024, 030, 060, and 067.
Stroustrup asked if this unifies the string and stream char_traits.
Wilhelm said the unification is a separate issue that needs further
discussion.

Unruh asked whether eos can return different values on different calls.
Wilhelm replied that this behavior is not specifically prohibited.
Unruh asked that this be added to an issue list. Wilhelm agreed.

Plauger asked whether the additional functions in string_char_traits
provide the memchr and fill functionality. Wilhelm said yes.

Wilhelm explained that the issue 077 addresses the problem that the

second argument to the append member is sometimes a position and other
times a length. He gave this example:

string s = "123";
s.append(string("abc"), 2); // 2 is a position, s = "123c"

// 2 is a length, s = "123ab"s.append("abc", 2);

The WG recommended making the first call an error by requiring both the
position and length arguments in the call, as in:

s.append(string("abc"), 2, 1); // s = "123c"

Wilhelm explained that the WG considered it better to make the previous
use an error instead of silently changing the meaning of the call.
Gibbons asked if the WG considered switching the order of the length and
position arguments. Wilhelm said the WG decided that would confuse
people even more.

Wilhelm listed the remaining open issues that were not addressed at this
meeting:
-- 014: fix argument order for copy out to charT
-- 059: unify of string_ and stream_ char_traits
-- 062: add requirements on charT
-- 080: allow template specializations for basic_string and

string_char_traits
-- 081: remove redundant descriptions

Straw vote: Who agrees with these recommendations? lots yes, 0 no.

==== Podmolik ====

Podmolik presented a proposal to resolve various container issues (as
per the recommendations in N0781R2 = 95-0181R2). He listed the specific
issues:

-- 23-010: requirements for type T closed with no action
-- 23-024: fix copy constructors with respect to allocators by removing

the signature that includes the allocator
-- 23-030: update descriptions of deque operations
-- 23-031: specialize ’swap’ for containers

Plauger asked whether the specializations are packed with the containers
or with ’swap’. Podmolik said they’re with the containers.

-- 23-032: affirm that priority_queue does not require a non-const

top()
-- 23-033: clean up resize() effects for deque, list and vector
-- 23-034: reverse iterator types for list by changing the name of the

adaptor to reflect that list has a bidirectional iterator
-- 23-035: correct argument list to vector<bool>::insert
-- 23-036: add semantics for at() for deque/vector
-- 23-037: add semantics for a.back() in sequence requirements
-- 23-038: specify iterator properties for clauses 21 and 23 -- they

provide bidirectional iterators
-- 23-039: specify that erase(iterator) returns an iterator pointing

just past the erased element(s)
-- 23-040: add typedefs for map and multimap T type

Koenig observed that map and multimap store a {key, value} pair, and
there’s no convenient typedef name for the value part. Podmolik said
the WG did not feel strongly about any particular name.

Myers asked something about the get_allocator() member. Podmolik said
this is an editorial correction to add a line missing from the table.

Myers pointed out the priority_queue template has an incorrect default

container type. (Apparently, this made it into Motion 33.)

Podmolik said two issues remain open:
-- remove empty sections in the WP
-- fix problems with insert() argument lists

Straw vote: Who agrees with these recommendations? lots yes, 0 no.

6.3 ANSI C compatibility WG

Plum presented a proposal to allow extended identifiers and literals in
C++ source programs (N0808 = 95-0208). The proposal introduces a nota-
tion somewhat similar to trigraphs for representing characters from ISO
10646 sets with encodings larger than eight bits. For example, ??u05D0
represents the 16-bit character whose code is x05D0.

Plum explained numerous details of the proposal. Clamage asked whether
this proposal was in the mailing. Plum said no. The committee dis-
cussed more technical issues. A few members expressed uneasiness about
voting on the proposal. Bruck requested the following straw vote.

Straw Vote: Who supports extended characters in identifiers and the

intent of the proposal? lots yes, 1 no.

Koshida asked that we not hold a formal vote on this.

6.1 Core (revisited)

==== Gibbons ====

Gibbons explained that a proposal clarifying "point of instantiation"
was accidentally omitted from the formal motions at the previous meet-
ing. Inasmuch as the committee had accepted the proposal by straw vote,
Gibbons and others managed to get the proposal into the WP along with an
editorial box (number 56) that explained what happened. Gibbons asked
that we simply ratify this change (and then we can remove the editorial
box).

Straw vote: Who favors this proposal? lots yes, 0 no.

(See Motion 14.)

7 WG sessions (if any time is left)

8 Distribution of formal motions

The committee discussed Motion 15 (concerning library header inclu-
sion). Koenig said he would not move the motion because of problems
found during the drafting session. He said he had not yet found a
working alternative.

Plauger explained that the WP spells out which headers a header may
include. Unfortunately, it’s impossible to implement the headers as
specified. Until recently it didn’t matter, because those parts of the
WP weren’t normative. However, a recent editorial change made them
normative. Therefore Plauger was concerned that, without this motion,
it would be impossible to comply with the draft in its present form.

9 General session II

9.1 Core Language WG

Gibbons summarized the recent work of his Core subgroup. He said the
group agreed with N0779 = 95-0179 in recommending editorial changes
regarding exception handling, and they will forward them to the editor.
He said they were working on the template compilation model but had no

firm recommendation(s).

Gibbons said the subgroup has been looking at friend name injection.
The group rejected Gibbons’ original suggestion, and were working on an
alternative similar to the operator name lookup rules.

Stroustrup said we must try to preserve certain well-published program-
ming techniques, but at the same time address all the horrible problems
that general injection causes. Gibbons said that, in order to keep in-
jection but tame it, we might have to introduce a reconsideration rule
that covers the entire translation unit. So the group is trying to find
an alternative. Laughter. Plauger asked what our objection was to com-
piling everything twice. More laughter.

Gibbons said he and Kiefer discussed a canonical name format for the
string returned by type_info::name. This needs further discussion with-
in the subgroup. Plauger suggested that this might be a good subject
for a Technical Report. He explained that TRs have to go through an
approval process, but they are a good approach for difficult issues
where we need guidance.

Lajoie discussed ongoing work in the other Core subgroups. She said the
"Schwarz" optimization as currently worded is too widely applicable --
allowing copied objects to be omitted in too many situations -- and it
breaks certain resource acquisition techniques. Koenig said a discus-
sion on the reflector suggested that the optimization should be allowed
for local automatics and named variables. Murphy was concerned that
this would cause portability problems across platforms.

9.2 Library WG

Dawes outlined the Library WG plans. They intend to work on the
detailed issues arising from NB comments and issues lists.

9.3 ANSI C compatibility WG

Plum said the C Compatibility WG will continue to work on the issue of
extended identifiers since this received a favorable response from the
committee. Plum asked interested parties to contact Koenig if they want
to be added to the -compat reflector. Corfield explained that, although
the committee’s straw vote showed support for the concept, we agreed not
to take a formal vote on extended identifiers at this meeting.

9.4 Edit WG and other general session business

Clamage asked Koenig if there would be an editing session following the
meeting. Koenig said that there would not be an organized session, but
anyone who wants to work on the WP is welcome to do so. Koenig asked
that each motion have an "owner" who can be contacted about the exact
intent of the wording. Plum said that the proposer should be considered
as the owner. Clamage agreed, and announced that the proposer will be
treated as the owner for issues moved at this meeting.

Clamage announced that he has produced a PDF version of the WP with
bookmarks.

Clamage said a few people had expressed concern over some of the motions
so he would discuss them issues offline today. Corfield asked whether
we should reconvene at the end of the day to hear the results of any
such discussions. Clamage agreed to reconvene the committee at 16:00.

The committee recessed into working groups at 9:45 and reconvened at 16:05.

Clamage said we are very close to quorum on X3J16 and asked everyone to
make sure they are present for formal votes. Plum explained that the
X3J16 votes are to establish a position for the US WG21 representative,

so a quorum is not strictly necessary unless a specific X3J16 business
issue arises. Plauger said the danger is that, if X3J16 did not have a
quorum, it would open the committee to criticism in terms of how repre-
sentative the decisions were.

Clamage took a count of X3J16 voting members: 22. This is a quorum...
just.

Clamage asked if any subgroups wanted to change any motions coming up
for a vote.

Podmolik explained a change to motion 33 which adds the resolution of a
new issue, 23-042, added at this meeting. The issue fixes an editorial
error in the default argument of the priority_queue adaptor template.

Myers said the Library subgroup had decided a whole bunch of iostream
issues which will come up for a vote at the next meeting.

The committee discussed Motion 30. During the day, the Library WG voted
to defer this motion. Clamage called for a another straw vote of the
whole committee on Motion 30. Unruh asked for a three-way vote, with
the option to defer the issue to a later meeting. Harbison said that if
the motion should fail tomorrow, more work will be done and some variant
of the proposal will return at a future meeting. He urged a simple
yes/no vote.

Straw vote:

Who would vote YES on the motion tomorrow? 5
Who would vote NO on the motion tomorrow? 0
Who wants to defer the vote to a future meeting? lots

Lajoie said her Core subgroup discussed the ’long long’ proposal from
the C committee. The subgroup agreed to ask WG14+X3J11 to resolve the
issue, and present the solution in the form of a technical report. She
wanted to know if WG21+X3J16 agreed with this position.

Gibbons said we could take either of two approaches. We could say to
the C committee:
1) please address the issue
2) we want longer integers; please add them
He said it’s important to phrase this properly. Lajoie said the sub-
group decided on (2). Gibbons wanted to ensure that the committee had
the option to decide which approach they wanted.

Stroustrup felt that asking the C committee to add an extension was more
serious than simply adding it ourselves.

Plum related the C committee’s approach to this issue. They have
explored two directions:
1. a practical, market-oriented approach to add the type ’long long’
2. a new way of describing integer types wherein the program specifies

the number of bits required, whether a larger integer is acceptable,
and so on

Plum said he has argued that replacing the current simple numeric type
system with a very fine granularity would be very bad for a language
like C++ with overloading. He argued that for compatibility reasons, C
should pursue the ’long long’ solution.

Stroustrup supported Plum’s position on this. However, he still felt
that this looks like "extension by the back door" and he was reluctant
to support another extension. Koenig thought that whatever the C com-
mittee decided would come too late for this C++ standard. Stroustrup
said we that if we send a strong message to the C committee, we will be
obliged to adopt C’s solution -- whatever it is. Welch said users are
concerned that ’long long’ is not a long-term solution.

Straw Vote: Who wants to...
discourage ’long long’? 7
monitor the ’long long’ proposal? 6
encourage ’long long’? 12

Plum asked if we should discuss this on the reflector. He also asked
the ’discourage’ votes to explain their reasons.

Schreiber said ’long long’ is too restrictive; it provides only one more
type to solve this one problem. He preferred a general solution more
like FORTRAN’s width specifiers. Gibbons said it won’t be long before
we need more than 64 bits, but the question should be "do we need longer
integers for pointer arithmetic". Either way, ’long long’ is a stop-gap
solution.

Stroustrup said he has had requests for longer doubles, longer pointers
and longer characters. We have not looked at how it would impact the
conversion and overloading rules, so pushing another committee to add
this is dangerous.

Plum asked if anyone strongly opposed ’long long’. Koenig said that if
C adopts ’long long’, C++ compilers will add it anyway. The straw vote
showed four people were strongly opposed. Stroustrup said he was very
unhappy that, having decided not to add extensions ourselves, we are
considering encouraging someone else to do it.

Plum said SC22 has expressed the position several times that C++ should
stay reasonably compatible with C. Koenig said that there will be other
features that C9x will adopt and those will also have an impact on us.
Plum said we adopted by reference parts of the C library. Koenig said
we agreed not to change the C subset of our library without a vote even
if C changed.

Harbison announced he will discuss the mid-Ballot procedures (to cover
the Stockholm meeting) on Friday. He also asked NB representatives to
consider the progress made on their issues in time for the post-meeting
mailing.

10 WG sessions (if any time is left)

The committee recessed at 17:00 and reconvened Friday at 9:00.

11 Review of the meeting

Clamage called roll because there appeared to be many members missing.
He confirmed that all 22 voting members were present.

Clamage said the working groups have made good progress and the meeting
has gone smoothly.

Plum announced that he has assumed ownership of the locale issues list.
Myers thanked him.

Clamage noted that the proposer of each motion will be recorded as the
owner of that motion. X3J16 votes will be taken first followed by WG21
votes. The abbreviated form of X3J16 voting will be used -- only votes
against will be counted unless otherwise requested.

11.1 Formal motions

1) Motion (to accept the WP) by Dawes/Bruck:

Move we accept N0785 = 95-0185 as the current WP.

Motion passed X3J16: lots yes, 0 no.
Motion passed WG21: 6 yes, 0 no, 0 abstain.

==== presented by Adamczyk ====

2) Motion (to reinstate operator void()) by Lajoie/Adamczyk:

Move we amend the WP as follows:

Delete the last sentence of 12.3.2 [class.conv.fct], paragraph
1, and replace the period at the end of the preceding sentence
with:

, or to (possibly cv-qualified) void.

Motion passed X3J16: lots yes, 0 no.
Motion passed WG21: 6 yes, 0 no, 0 abstain.

3) Motion (to define semantics of call-by-value argument initializa-

tion) by Adamczyk/Lajoie:

Move we amend the WP as described in N0780 = 95-0180.

Motion passed X3J16: lots yes, 0 no.
Motion passed WG21: 6 yes, 0 no, 0 abstain.

4) Motion (to adjust the definition of scalar and fundamental type) by

Gibbons/Unruh:

Move we amend the WP as described in N0774 = 95-0174.

Motion passed X3J16: lots yes, 0 no.
Motion passed WG21: 6 yes, 0 no, 0 abstain.

5) Motion (to clarify uses of function typedefs for member functions)

by Schreiber/Adamczyk:

Move we amend the WP as described in N0813 = 95-0213.

Corfield asked if operators can be declared using function typedefs. No
one seemed sure. Lajoie agreed to take this as a Core issue.

Motion passed X3J16: lots yes, 0 no.
Motion passed WG21: 6 yes, 0 no, 0 abstain.

6) Motion (to allow some dynamic initializations to be done statically)

by Lajoie/Rumsby:

Move we amend the WP as follows:

-- add to 3.6.2 [basic.start.init], paragraph 1, at the end of the
sentence "Objects with static storage duration initialized with
constant expressions...":

; see also _dcl.init.aggr_ for additional initialization cases
for which initialization must be done statically.

-- add to 3.6.2 [basic.start.init], after paragraph 1, as a new

paragraph:

An implementation is permitted to perform an initialization of a
nonlocal object with static storage duration as a static ini-
tialization even when such initialization is not required to be
done statically, provided that (a) the dynamic version of the
initialization would not cause the value of any other nonlocal
object with static storage duration to change prior to their
initialization, and (b) the static version of the initialization
produces the same value in the initialized object as would be

produced if all initializations not required to be done static-
ally were done dynamically. [Note: as a consequence, it is
unspecified whether a reference, in an initialization, to a
variable potentially requiring dynamic initialization, and
defined later in that compilation unit, will obtain the value
fully initialized or merely zero-initialized. Example:

struct A {

float x;
A(float p) : x(p) {}

};
extern A b;
A a(b.x); // unspecified forward reference to b.x
A b(1.0);

-- end note]

-- add to 8.5.1 [dcl.init.aggr], at the end of paragraph 13:

If all of the member initializer expressions are constant
expressions, and the aggregate is a POD type, the initialization
is done during the static phase of initialization.

Motion passed X3J16: lots yes, 0 no.
Motion passed WG21: 6 yes, 0 no, 0 abstain.

==== presented by Lajoie ====

7) Motion (to resolve start and termination issues) by Lajoie/Adamczyk:

Move we amend the WP as follows:

-- adopt the proposed resolutions for issue 429 from N0802 =

95-0202.

-- add to 3.6.1 [basic.start.main], paragraph 4:

If ’exit’ is called to end a program during the destruction of
an object with static storage duration, the program has
undefined behavior.

-- replace 3.6.1 [basic.start.main], paragraph 1, first sentence

with:

A C++ program shall contain a global function called main, which
is the designated start of the program. It is implementation-
defined whether a program in a freestanding environment is
required to define a main function. [Note: in a freestanding
environment start-up and termination is implementation-defined;
start-up contains the execution of constructors for nonlocal
objects with static storage duration; termination contains the
execution of destructors for objects with static storage
duration.]

-- replace 3.6.3 [basic.start.term] paragraph 1, sentences 2-4

with:

Objects with static storage duration (declared at block scope or
at namespace scope) are destroyed in the reverse order of the
completion of the execution of their constructors. For an
object of array or class type, all subobjects of that object are
destroyed before any local object with static storage duration
initialized as a side-effect of constructing the subobjects is
destroyed.

If a function contains a local object of static storage duration

that has been destroyed and the function is called during the
destruction of an object with static storage duration, the
program has undefined behavior if the flow of control would pass
through the definition of the previously destroyed object.

If a function is registered with atexit then following the call
to exit, any objects with static storage duration initialized
prior to the registration of that function will not be destroyed
as part of the termination process until execution of the
registered function has completed.

If an object with static storage duration is constructed then
following the call to exit, any functions registered with atexit
prior to completion of the construction of that object will not
be called as part of the termination process until execution of
that object’s destructor has completed.

-- adopt the proposed resolution from N0772 = 95-0172.

Gibbons asked if the subgroup had considered the impact of the fourth
bullet of the motion on a multi-threaded environment. Lajoie said no.
Gibbons said the resolution would require process locks on initializa-
tion. Welch said an implementation must do this already for local
statics and he believed there were optimizations for the global case.
Plum said multi-threading was beyond the scope of the standard and we
should discuss it separately.

Gibbons said historically the static initialization process was a large
fraction of the startup cost. This resolution would increase it, pos-
sibly to where it may be unacceptable for some applications. Plum said
he agreed with Gibbons’ concerns, but maybe the way to resolve this is
to say that these words do not apply to multi-threading. Bruck did not
want to block the proposal, yet he didn’t want to make difficulties for
implementations in multi-threading environment.

Gibbons asked that an editorial box be added to indicate there was con-
tention regarding multi-threading. Coha asked to vote on the fourth
bulleted item separately.

Motion to amend by Coha/Gibbons:

Move we remove the fourth bulleted item from the motion.

Spicer said the WP already contains words on initialization which imply
whatever restrictions on multi-threading Gibbons is concerned about.
Plum spoke against the amendment on the grounds that we might be under-
mining the consistency of the subgroup’s work. Lajoie said it would be
fine to split the motion -- the other bullets remain consistent. Bruck
said he was in favor of the bullets 1, 2, 3 and 5 of the motion but had
a problem with bullet 4.

Motion to amend passed X3J16: lots yes, 4 no, 0 abstain.
Motion to amend passed WG21: 5 yes, 0 no, 1 abstain.

Motion (as amended) passed X3J16: lots yes, 0 no.
Motion (as amended) passed WG21: 6 yes, 0 no, 0 abstain.

7b) Motion (to specify order of destruction for objects with static

storage duration) by Lajoie/Welch:

Move we amend the WP as specified in the original fourth bulleted
item of Motion 7.

Welch noted that his implementation handles multi-threading and shared
libraries that are dynamically loaded and unloaded without noticeable
performance overheads. Myers asked if Watcom implemented locking during

initialization. Welch said yes.

Welch agreed to write a paper for the reflector on how Watcom implements
locking during initialization.

Motion passed X3J16: lots yes, 4 no.
Motion passed WG21: 4 yes, 0 no, 2 abstain.

8) Motion (to resolve memory model issues) by Lajoie/Adamczyk:

Move we amend the WP as follows:

-- adopt the proposed resolution for issue 554 from N0803 =

95-0203.

-- change 3.9 [basic.types], paragraph 2 both occurrences from:

memcpy library function

to:

memcpy or memmove library functions

xx add to 5.2.1 [expr.sub], 5.2.5 [expr.post.incr], 5.3.2
[expr.pre.incr]:

If the operand is a pointer to T and the object pointed to by
the pointer is not an object of type T, the program has unde-
fined behavior.

xx add to 5.3.1 [expr.unary.op] paragraph 1:

If the operand is a pointer to T and the object pointed to by
the pointer is not an object of type T or an object of a type
derived from T, the program has undefined behavior.

++ add to 5.9 [expr.rel] and 5.10 [expr.eq]:

If the operands are of type pointer to T and the pointers do not
refer to objects of type T or to objects of a type derived from
T, the program has undefined behavior.

xx add to 5.17 [expr.ass]:

In a compound assignment (+=, -=), if the left operand is a
pointer to T and the object pointed to is not an object of type
T, the program has undefined behavior.

-- add to 5.7, after paragraph 6, the following new paragraph:

If the value 0 is added to or substracted from a pointer value,
the result compares equal to the original pointer value. If two
pointers point to the same object or function or both point one
past the end of the same array or both are null, and the two
pointers are subtracted, the result compares equal to the value
0 converted to the type ptrdiff_t.

xx change 5.9 [expr.rel], paragraph 2, last bullet to:

-- Other pointer comparisons are unspecified.

Lajoie wanted to amend the motion to remove the changes to 5.2.1, 5.3.1,
and 5.9 since it would be more appropriate to make these changes to the
lvalue/rvalue section. She said she’d add a Core issue regarding the
changes to lvalues and rvalues. Koenig asked Lajoie if she should re-
move the proposed changes to 5.2.5 and 5.3.2 as well as 5.2.1. Lajoie

said yes.

Gibbons said the lvalue/rvalue conversion issue was important. Unruh
suggested also removing the changes to 5.17, because ++p is is defined
to be the same as p += 1. Lajoie agreed to remove them as well.

[Note:
Apparently, there was a procedural lapse here; I have no record of a
motion to amend. However, it seems that no one complained that they did
not know what they were voting on. I have used different "bullets" in
the motion above to indicate what I understand to be the accumulated
effect of this free-for-all:

-- means keep the bullet item this as is
++ means delete the reference to clause 5.9 from this bullet item
xx means delete this entire bullet item

:DS]

Motion passed X3J16: lots yes, 0 no.
Motion passed WG21: 6 yes, 0 no, 0 abstain.

9) Motion (to resolve object model issues) by Lajoie/Rumsby:

Move we amend the WP as follows:

-- change 9.2 [class.mem], paragraph 11 to:

The order of allocation of nonstatic data members separated by
an access-specifier is unspecified.

-- change the first two sentences of 9 [class], paragraph 3 to:

A class with an empty sequence of members and base class objects
is an empty class. Complete objects and member subobjects of an
empty class type shall have a nonzero size.

-- add to 10 [derived], after paragraph 3:

A base class subobject can be of zero size; however, two base
class subobjects of the same class type that belong to the same
complete object shall not be allocated at the same address.

-- add to 10.3 [class.virtual], after paragraph 5:

The return type of the overriding virtual function shall not be
an incomplete class type if it differs from the return type of
the overridden function.

Motion passed X3J16: lots yes, 0 no.
Motion passed WG21: 6 yes, 0 no, 0 abstain.

10) Motion (to resolve special member function issues) by Lajoie/

Corfield:

Move we amend the WP as follows:

-- delete 12 [special], paragraph 1, sentence 2.

-- add to 12 [special], at the beginning of paragraph 1:

The default constructor, copy constructor, copy assignment
operator and destructor are special member functions. The
implementation will implicitly declare these member functions
for a class type when the program does not explicitly declare
them except as noted in _class.ctor_. Programs may explicitly
refer to implicitly declared special member functions.

[Example:

// implicitly-declared A::operator=struct A { };
struct B : A {

B& operator=(const B &);
};
B& B::operator=(const B& s) {

this->A::operator=(s); // well-formed
}

-- end example]

-- change 12.4 [class.dtor], paragraph 1, first sentence to:

A destructor of a class is declared with a ~ followed by the
class name followed by an empty parameter list.

-- add to 12.4 [class.dtor], before paragraph 12:

In an explicit destructor call, the destructor name appears as a
~ followed by a type-name that names the class type. The object
expression in an explicit destructor call shall be of the same
class type as the destructor’s class type or shall be of a class
type derived from the destructor’s class type. [Example:

struct B {

virtual ~B() { }
};
struct D : B {

~D() { }
};
D D_object;
typedef B B_alias;
B* B_ptr = &D_object;
D_object.B::~B(); // calls B’s destructor

// calls D’s destructorB_ptr->~B();
B_ptr->~B_alias(); // calls D’s destructor

-- end example]

-- change 12.8 [class.copy], paragraph 2, first sentence to:

A constructor for class X is a copy constructor if its first
parameter is of type X&, const X&, volatile X& or const volatile
X&, and either there are no other parameters or else all other
parameters have default arguments (_dcl.fct.default_).

-- change 12.8 [class.copy], paragraph 5 to:

The implicitly-declared copy constructor for a class X will have
the form

X::X(const X&)

if
-- each direct or virtual base class B of X has a copy

constructor whose first parameter is of type const B& or
const volatile B&, and

-- for all the nonstatic data members of X that are of a class
type M (or array thereof), each such class type has a copy
constructor whose first parameter is of type const M& or
const volatile M&.

Otherwise, the implicitly declared copy constructor will have
the form

X::X(X&)

-- change 12.8 [class.copy], paragraph 9, first sentence to:

A user-declared copy assignment operator X::operator= is a
non-static member function of class X with exactly one parameter
of type X, X&, const X&, volatile X& or const volatile X&.

-- change 12.8 [class.copy], paragraph 10 to:

If a class definition does not explicitly declare a copy
assignment operator, one is declared implicitly. The
implicitly-declared copy assignment operator for a class X will
have the form

X& X::operator=(const X&)

if

-- each direct base class B of X has a copy assignment operator

whose parameter is of type const B& or const volatile B& and
-- for all the nonstatic data members of X that are of class

type M (or array thereof), each such class type has a copy
assignment operator of type const M& or const volatile M&.

Otherwise, the implicitly declared copy constructor will have
the form

X& X::operator=(X&)

-- replace 12.6.2 [class.base.init], paragraph 2, last sentence

with:

If a ctor-initializer specifies more than one mem-initializer
for the same member, same base or for multiple members of the
same union, the ctor-initializer is ill-formed. A ctor-initial-
izer can initialize a member of an anonymous union defined in
the constructor’s class member list.

-- change 12.6.2 [class.base.init], paragraph 4, last sentence to:

If a class X has a nonstatic data member that is of reference
type or of a const type that is not eligible for default
initialization (_dcl.init_) and there is a constructor for class
X which does not specify that member in its mem-initializer, the
program is ill-formed.

Motion passed X3J16: lots yes, 0 no.
Motion passed WG21: 6 yes, 0 no, 0 abstain.

==== presented by Gibbons ====

11) Motion (to accept proposed resolutions to various namespace issues)

by Spicer/Bruck:

Move we amend the WP as described in 95-0212 = N0812.

Motion passed X3J16: lots yes, 0 no.
Motion passed WG21: 6 yes, 0 no, 0 abstain.

12) Motion (to accept proposed resolutions to various typeid issues) by

Adamczyk/Gibbons:

Move we amend the WP as follows:

-- replace 5.2.7 [expr.typeid] with the following:

The result of a typeid expression is an lvalue of type const
std::type_info (_lib.type.info_), whose lifetime extends to the
end of the program. Whether or not the destructor for the
type_info object is called at the end of the program is
unspecified.

When typeid is applied to a type-id, the result is a type_info
object representing the type of the type-id. If that type is a
reference type, the result is a type_info object for the
referenced type. In both cases, if the type for which the
type_info is returned is a class, that type shall be completely
defined.

When typeid is applied to an lvalue expression whose type is a
polymorphic class type, the result is a type_info object for the
type of the complete object (_intro.object_) that contains the
lvalue. If that expression is the result of applying unary * to
a pointer [Footnote: If p is an expression with pointer type,
then *p, (*p), (*(p)), and so on all meet this requirement.] and
the pointer is a null pointer value (_conv.ptr_), the typeid
expression throws the bad_typeid exception (_lib.bad.typeid_).

When typeid is applied to an expression other than an lvalue of
a polymorphic class type, the result is a type_info object for
the (static) type of the expression. The expression is not
evaluated.

Lvalue-to-rvalue (_conv.lval_), array-to-pointer (_conv.array_),
and function-to-pointer (_conv.func_) conversions are not
applied to the expression. If the type for which the type_info
is returned is a class type, that type shall be completely
defined.

In all cases, typeid ignores the top-level cv-qualifiers of the
type for which the type_info object is returned. [Example:

class D { ... };
D d1;
const D d2;

// yields truetypeid(d1) == typeid(d2);

typeid(D) == typeid(const D); // yields true
// yields truetypeid(D) == typeid(d2);

typeid(D) == typeid(const D&); // yields true

-- end example] [Note: Clause _class.cdtor_ describes the
behavior of typeid applied to an object under construction or
destruction.]

If <typeinfo> (_lib.type.info_) has not been included prior to a
use of typeid, typeid returns an lvalue of type const
std::type_info, but the class std::type_info is considered
incompletely defined and is not visible by name at that point.

Motion passed X3J16: lots yes, 0 no.
Motion passed WG21: 6 yes, 0 no, 0 abstain.

13) Motion (to accept proposed modifications to the rules for casting

pointers to members) by Gibbons/Lajoie:

Move we amend the WP as follows:

-- change 5.2.8 [expr.static.cast], paragraph 9 from:

...can be converted to...where B is a base class of D...

to:

...can be converted to...where B is a nonvirtual base class of
D...

-- change 5.2.8 [expr.static.cast], paragraph 9 from:

If class B contains or inherits the original member, ...
Otherwise ...

to:

If class B is neither a base nor derived class of the class
containing the original member, the behavior of the cast is
undefined.

-- add to 5.5 [expr.mptr.oper], after paragraph 3:

If the dynamic type of the object does not contain the member to
which the pointer refers, the behavior is undefined.

-- add to 4.11 [conv.mem], after "or ambiguous (10.2)":

or virtual (_class.mi_)

Motion passed X3J16: lots yes, 0 no.
Motion passed WG21: 6 yes, 0 no, 0 abstain.

14) Motion (to ratify the point of instantiation) by Unruh/Corfield:

Move we ratify the working paper changes referred to by editorial
box 56 in 14.3.2 [temp.point] paragraph 1, and remove the editorial
box.

Motion passed X3J16: lots yes, 0 no.
Motion passed WG21: 6 yes, 0 no, 0 abstain.

==== presented by Dawes ====

15) Motion (to clarify library header inclusion):

Move we amend the WP as follows:

-- change 17.3.4.1 [lib.res.on.headers], paragraph 2 and footnote

138 to:

Except for names reserved to the implementation
[lib.global.names], the C++ headers in Table 21 shall declare or
define exactly those names required by their descriptions.
[Footnote: It is an implementation convenience for headers to
include each other. Despite the restriction, that convenience
is available by having headers define everything needed for
implementation in a namespace called, say, _Implementation, and
then selectively making those names available through
using-declarations.]

-- throughout the WP, in any Synopsis clause that claims a header

includes other headers, delete the text making such a claim.

This motion was not moved. An editorial box will be added about this
issue.

16) Motion (to resolve several library issues from clause 17 issues

list) by Dawes/Rumsby:

Move we amend the WP as described in the proposed resolutions for
issues 001 through 003 from N0801 = 95-0201 Version 2.

Motion passed X3J16: lots yes, 0 no.
Motion passed WG21: 6 yes, 0 no, 0 abstain.

17) Motion (to resolve several library issues from clause 18 issues

list) by Dawes/Rumsby:

Move we amend the WP as described in the proposed resolutions for
issues 013 and 014 from N0784 = 95-0184 Version 3.

Motion passed X3J16: lots yes, 0 no.
Motion passed WG21: 6 yes, 0 no, 0 abstain.

18) Motion (to resolve several library issues from clause 20 issues

list) by Myers/Dawes:

Move we amend the WP as described in the proposed resolution for
issue 018 (alternative 2) from N0789 = 95-0189 Revision 2, and close
without taking any action issues 014, 017, 019, 020, and 022 from
N0789 = 95-0189 Revision 2, and resolve issue 021 from N0789 =
95-0189 Revision 2 as follows:

-- add to 20.2.2 [lib.pairs], the constructor declaration:

pair();

-- add to 20.2.2 [lib.pairs] the following Effects:

Effects: it initializes its members as if impemented:

pair::pair() : first(T1()), second(T2()) { }

Motion passed X3J16: lots yes, 0 no.
Motion passed WG21: 6 yes, 0 no, 0 abstain.

19) Motion (to resolve several library issues from clause 25 issues

list) by Dawes/Myers:

Move we amend the WP as described in the proposed resolutions for
issues 001, 003, 005, 007, 009, 010 and 011 from N0793 = 95-0193,
and close without taking any action issues 006 and 008 from N0793 =
95-0193, and amend the WP as described in the proposed resolution
issue 002 from N0793 = 95-0193 with the following change:

-- the complexity specification is:

At most (last1 - first1) * (last2 - first2) applications of the
corresponding predicate.

Motion passed X3J16: lots yes, 0 no.
Motion passed WG21: 6 yes, 0 no, 0 abstain.

==== presented by Myers and Clamage ====

20) Motion (to change the ios and locale parameters in facets) by

Myers/Rumsby:

Move we amend the WP as follows:

-- adopt the proposed resolution for 22-044 from N0788R1 =
95-0188R1.

-- throughout 22 [lib.localization], remove the "const locale&"

parameter from every facet member function that takes an

ios_type& [now ios_base&] argument.

Motion passed X3J16: lots yes, 0 no.
Motion passed WG21: 6 yes, 0 no, 0 abstain.

21) Motion (to cleanup streambuf iterator semantics) by Myers/Rumsby:

Move we amend the WP as described in N0791 = 95-0191.

Motion passed X3J16: lots yes, 0 no.
Motion passed WG21: 6 yes, 0 no, 0 abstain.

22) Motion (to simplify the error handling of the facet get members) by

Myers/Rumsby:

Move we amend the WP as described in N0788R1 = 95-0188R1, issue
22-065.

Motion passed X3J16: lots yes, 0 no.
Motion passed WG21: 6 yes, 0 no, 0 abstain.

23) Motion (to make error handling consistent for reading all numeric

types in facets) by Myers/Dawes:

Move we amend the WP as described in N0788R1 = 95-0188R1, issue
22-063.

Motion passed X3J16: lots yes, 0 no.
Motion passed WG21: 6 yes, 0 no, 0 abstain.

24) Motion (to make moneypunct<> and numpunct<> consistent) by

Myers/Dawes:

Move we amend the WP as described in N0788R1 = 95-0188R1, issue
22-048, resolution 1.

Motion passed X3J16: lots yes, 0 no.
Motion passed WG21: 6 yes, 0 no, 0 abstain.

25) Motion (to clarify the semantics of internal padding for all numeric

formats) by Myers/Dawes:

Move we amend the WP as described in N0788R1 = 95-0188R1, issue
22-053, resolution 2.

Motion passed X3J16: lots yes, 0 no.
Motion passed WG21: 6 yes, 0 no, 0 abstain.

26) Motion (to resolve various locale issues) by Myers/Dawes:

Move we amend the WP as follows:

-- adopt the proposed resolutions from N0788R1 = 95-0188R1 for the

following locale issues:

22-009, 22-019, 22-022, 22-035, 22-042, 22-043, 22-045, 22-049,
22-059, 22-066.

-- add to 22.2.6.3.2 [lib.locale.moneypunct.virtuals], in the

description of moneypunct<>::do_pos_format() and
moneypunct<>::do_neg_format():

The base class implementation returns an object of type pattern
initialized to { symbol, sign, value, none }.

Motion passed X3J16: lots yes, 0 no.

Motion passed WG21: 6 yes, 0 no, 0 abstain.

27) Motion (to clarify how monetary values are parsed by moneypunct<>)
by Myers/Dawes:

Move we amend the WP as described in N0788R1 = 95-0188R1, issue
22-055, resolution 2.

Motion passed X3J16: lots yes, 0 no.
Motion passed WG21: 6 yes, 0 no, 0 abstain.

28) Motion (to resolve various iostream issues) by Myers/Dawes:

Move we amend the WP as follows:

-- adopt the proposed resolutions from N0794 = 95-0194 for the

following issues:

27-003, 27-202, 27-302.

-- change 27.4.1 [lib.stream.types], before paragraph 2:

typedef INT_T streamsize;

to:

typedef SZ_T streamsize;

Motion passed X3J16: lots yes, 0 no.
Motion passed WG21: 6 yes, 0 no, 0 abstain.

29) Motion (to remove the exceptions from setstate() and clear()) by

Myers/Rumsby:

Move we amend the WP to resolve issue 27-201 from N0794 = 95-0194)
as follows:

-- throughout clause 27 [lib.input.output], delete the exception

specifications from the member functions setstate and clear.

Motion passed X3J16: lots yes, 0 no.
Motion passed WG21: 6 yes, 0 no, 0 abstain.

==== presented by Plauger ====

30) Motion (to remove the caching semantics for locales from use_facet):

Move we amend the WP as follows:

-- delete 22.1.1 [lib.locale] paragraphs 6-8.

-- change 22.1.1.5 [lib.locale.statics], the description of

locale::transparent, change paragraph 3, Returns, and Notes
from:

static locale transparent();

3 The continuously updated global locale.

Returns: A locale which implements semantics that vary
dynamically as the global locale is changed.

Notes: The effect of imbuing this locale into an iostreams
component is unspecified (_lib.ios.members_).

to:

static locale transparent();

3 An empty locale.

Returns: A locale that has no facets.

-- change 22.1.2 [lib.locale.global.templates], the description of

use_facet, Effects, Notes, Returns, and Notes from:

template <class Facet>
const Facet& use_facet(const locale& loc);

1 Get a reference to a facet of a locale.

Effects: If the requested Facet is not present in loc, but
is present in the current global locale, returns the global
locale’s instance of Facet. Because locale objects are
immutable, subsequent calls to use_facet<Facet>(loc) return
the same object, regardless of subsequent calls to setlocale
or locale::global.

Notes: The only exception to this rule is for the locale
returned by locale::transparent(); it always returns the
facet found in the global locale at the time of each call.

Throws: bad_cast if (has_facet<Facet>(loc) ||
has_facet<Facet>(locale())) is false.

Returns: A reference to the requested facet.

Notes: The result is guaranteed by locale’s value semantics
to last as long as the value of loc.

to:

template <class Facet>
const Facet& use_facet(const locale& loc);

1 Get a reference to a facet of a locale.

Throws: bad_cast if (has_facet<Facet>(loc) ||
has_facet<Facet>(locale())) is false.

Returns: If the requested Facet is present in loc, returns a
reference to that instance of Facet. Otherwise, if the
requested Facet is present in the current global locale,
returns a reference to the global locale’s instance of
Facet.

-- delete 22.1.2 [lib.locale.global.templates], in the description

of has_facet, Returns, the sentence:

If use_facet<Facet>(loc) has already been called successfully,
returns true.

-- delete 22.1.1.5 [lib.locale.statics], in the description of

locale::global:

If loc is (a copy of) the value returned by
locale::transparent(), throws runtime_error.

[This last change will not be moved if motion 26 does not pass.]

This motion was not moved.

==== presented by Koenig ====

31) Motion (to clarify the requirements on input iterators) by
Koenig/Myers:

Move we amend the WP by replacing 24.1.1 [lib.input.iterators],
table 3 and the following paragraph with:

Semantics, pre/post conditionsOperation Type

Post: u is a copy of aX u(a); X
Note: a destructor is assumed to
be present and accessible.
Result: uX&u = a;
Post: u is a copy of a

convertable to bool == is an equivalence relationa==b
over its domain

convertable to bool bool(a==b) != bool(a!=b) overa!=b
the domain of ==
Pre: a is dereferenceableT*a
If a == b, and both a and b are in
the domain of ==, then *a is
equivalent to *b
Pre: (*a).m is well-defined.a->m
Equivalent to (*a).m
Pre: r is dereferenceableX&++r
Result: r
Post: r is dereferenceable or
past the end
Post: any copies of the previous
value of r are no longer required
either to be dereferenceable or
to be in the domain of ==.
Equivalent to (void)++r(void)r++
{ T tmp = *r; ++r; return tmp; }T*r++

The term "the domain of ==" is used in the ordinary mathematical
sense to denote the set of values over which == is (required to be)
defined. This set can change over time. Each algorithm places
additional requirements on the domain of == for the iterator values
it uses. These requirements can be inferred from the uses that
algorithm makes of == and !=. [Example: the call find(a,b,x) is
defined only if applying ++ zero or more times to a eventually
yields a value i such that i==b or *i==x.]

Saying that an expression e1 that mentions a is equivalent to an
expression e2 that mentions b means that every expression that does
not mention b and mentions a only in the context of e1 has the same
meaning if every occurrence of e1 is replaced by e2. Every
expression that does not mention a and mentions b only in the
context of e2 has the same meaning if every occurrence of e2 is
replaced by e1.

If a is a copy of b and a or b is in the domain of == then a==b.
However, a==b does not require that a is a copy of b.

Motion passed X3J16: lots yes, 0 no.
Motion passed WG21: 6 yes, 0 no, 0 abstain.

==== presented by Wilhelm ====

32) Motion (to resolve issues with basic_string template) by

Dawes/Kiefer:

Move we amend the WP as described in the recommended resolutions
from N0800R1 = 95-0200R1 for the following issue numbers: 2, 13, 17,

18, 24, 25, 26, 27, 28, 29, 30, 31, 34, 34a, 37, 60, 61, 63, 67, 68,
74, 76, 77, 78, 79.

Motion passed X3J16: lots yes, 0 no.
Motion passed WG21: 6 yes, 0 no, 0 abstain.

==== presented by Podmolik ====

33) Motion (to resolve issues with the containers library) by

Dawes/Myers:

Move we amend the WP as follows

-- adopt the the recommended resolutions from N0781R2 = 95-00181R2
for the following issue numbers: 10, 24, 30, 31, 32, 33, 34, 35,
36, 37, 38, 39, 40.

-- change the declaration of priority_queue in 23.2.4.2 from:

template<class T, class Container = deque<T>,

class Compare = less<Container::value_type>,
class Allocator = allocator>

class priority_queue { ... };

to:

template<class T, class Container = vector<T>,
class Compare = less<Container::value_type>,
class Allocator = allocator>

class priority_queue { ... };

Myers explained that this simply changes ’deque’ to ’vector’ (on the
first line of the declaration). This corrects an error that occurred
while transcribing the STL specification to the WP.

Motion passed X3J16: lots yes, 0 no.
Motion passed WG21: 6 yes, 0 no, 0 abstain.

Koenig asked a procedural question about voting rights for members
representing companies that split into separate companies. Clamage
asked Koenig to ask him offline.

34) Motion (to thank our host for their hospitality) by Harbison/

Clamage.

Motion passed by acclamation.

11.2 Review of action items, decisions made, and documents approved by the

committee

Clamage reminded members that those who proposed motions are responsible
for communicating with Koenig regarding wording changes to the WP.

Dawes said that each library clause owner is responsible for producing
an updated version of that clause’s issue list. Lajoie said the same
applied to the Core subgoups.

11.3 Issues delayed until Friday

Harbison explained the procedures for mid-ballot meeting (Stockholm,
July ’96):
-- Work at the meeting will address issues that we expect to be raised

in National Body comments on the ballot.
-- We will not take any official votes changing the Working Draft;

however, we may take straw votes on changes. The secretary will
record the results of any straw votes in the meeting minutes.

-- At the first meeting after the Summary of Voting becomes available,
we will present any mid-ballot straw votes for ratification in light
of the ballot comments.

-- The project editor may issue a mid-ballot WD that reflects the
impact of straw votes, but he will be able to remove any changes
that we don’t ratify later.

Some members questioned whether the last point was appropriate. Plum
and others said they felt it would be acceptable to SC22.

12 Plans for the future

Clamage said that future work will focus on resolving issues from the
various WGs’ issue lists.

Harbison said that, for the next meeting, we are scheduled to finish
resolving CD Ballot comments and vote out the second and final CD.

Clamage said we should try to clear the issues lists between now and the
next meeting. Harbison said the issues lists do not have to be com-
pletely clear in order to vote out the CD, but we certainly don’t want
to go to a third CD. Several people expressed agreement.

Lajoie said the Core issue lists do not have very many open issues
remaining -- perhaps 50. The only major issue remaining is the template
compilation model, and she thought we’d have a resolution for that in
time for the next meeting.

Harbison asked NB representatives to communicate with their SC22-level
representatives to establish what they require to vote YES on the second
CD Ballot. He asked that NB representatives let him know within the
next few weeks their NB’s opinion of the progress made at this meeting
on their issue lists.

12.1 Next meeting

No one from Borland was present to confirm the arrangements for the next
meeting.

12.2 Mailings

Lajoie said the deadline for the post-Tokyo mailing is December 1.

WG21+X3J16 generally agreed that electronic distribution of the mailings
is working well and should continue.

12.3 Following meetings

Harbison listed the dates and locations for the upcoming meetings:
-- 10-15 March 1996 in Santa Cruz, USA hosted by Borland
-- 7-12 July 1996 in Stockholm, Sweden, hosted by Ericsson
-- 10-15 November 1996, Kona, Hawaii, USA hosted by Plum Hall
-- 9-14 March 1997 (location and host to be determined)
-- 13-18 July 1997, somewhere in the UK, hosted by Programming Research
-- 9-14 November 1997 (location and host to be determined)

13 Adjournment

Clamage asked if there was any other business.

Spicer thanked Corfield for standing in as secretary and Crowfoot for
taking backup notes. Applause.

Motion by Welch/Myers:

Move to adjourn.

Motion passed WG21+X3J16: lots yes, 0 no.

The meeting adjourned at 10:50 on Friday.

Appendix A - Attendance

Stat M Tu W Th FAffiliationName

V V V V VAAT&T Bell LabsKoenig, Andrew
A A A A AAStroustrup, Bjarne AT&T Bell Labs
V V V V VPDynasim ABBruck, Dag
V V V V VPEdison Design GroupAdamczyk, Steve
A A A A AAEdison Design GroupSpicer, John
V V V V VPEricssonJonsson, Fredrik
A A A AOFujitsuUmekawa, Ryuichi
V V V V VAHewlett-PackardCoha, Joseph
A A A A AAIBMMurphy, Michael
V V V V VPIBM (Canada)Lajoie, Josee

A AA AOIBM (Japan)Kamimura, Tom
A AOIBM (Japan)Sawatani, Yuriko

V V V V VPIpso Object SoftwareAndersson, Per
V V V V VPIST GmBHStuessel, Marc
V V V V VPMicrosoftSchreiber, Ben

AA AOMiwa SystemsAdachi, Taka
ANTT Data Comm Systems ONagao, Masahiko
A A A A AObject Consult Services ACorfield, Sean
A A A A AONakano, Kazutoshi Oki Electric
V V V V VPPerennialBenito, John
V V V V VPPlum HallPlum, Tom
V V V V VPProgramming ResearchSouthworth, Mark
V V V V VPRogue Wave SoftwareMyers, Nathan
A A A A AARogue Wave SoftwareSmithey, Randy
V V V V VWengler, Christian SET Software Consulting P
AOKumagai, Norihiro Sharp
V V V V VPSiemens AGKiefer, Konrad
V V V V VASiemens NixdorfUnruh, Erwin

A AAPSilicon GraphicsKung, Michael
A A A APSTRPodmolik, Larry
A A A AASTRWilhelm, Richard
V V V V VASun MicrosystemsClamage, Steve
A A A AATaligentFeng, Yinsun
V V V V VPTaligentGibbons, Bill
V V V V VPTartanHarbison, Sam

AA AOTokyo Engr UnivKoshida, Ichiro
AOToshibaNakamura, Akira
AOToshibaYamada, Asahiro
A A A A AAUKRumsby, Steve
V V V V VAWatcomWelch, Jim
V V V V VPXeroxCrowfoot, Norm
V V V V VPDawes, Beman
A A A A AOPlauger, P. J.

42 37 35 39 32Total Attendance
22 22 22 22 22Total Votes

Stat (Membership Status): P = principal; A = alternate; O = observer
Under M - F: V = Voting; A = attending

