
Doc. No.: X3J16/95-0178
WG21/ N0778

Date: September 25, 1995
Project: Programming Language C++
Reply To: Richard K. Wilhelm

Strategic Technology Resources
rwilhelm@str.com

Clause 21 (Strings Library) Issues List
Revision 8

Revision History
Version 1 - January 30, 1995: Distributed in pre-Austin mailing.
Version 2 - March 6, 1995: Distributed at Austin meeting.
Version 3 - March 24, 1995: Distributed in post-Austin mailing. Several issues added. Several
issues updated to reflect decisions at Austin meeting.
Version 4 - May 19, 1995: Distributed in pre-Monetery mailing.
Version 5 - July 9, 1995: Distributed at the Monterey meeting. Includes many issues added from
public comments.
Version 6 - July 11, 1995: Distributed at the Monterey meeting. Added no new issues from
previous version. Included issues prepared for formal vote. Added solutions for issues 8, 21,31,
38, 69, 71. Made only changes to reflect the decisions of the string sub-group, correct working
paper text and to correct typographical errors.
Version 7 - July 27, 1995: Distributed in the post-Monterey mailing. Reflects the resolutions and
discussions of the Monterey meeting.
Version 8 - September 24, 1995: Distributed in the pre-Tokyo mailing. Some new issues added.

Introduction
This document is a summary of the issues identified in Clause 21. For each issue the status, a
short description, and pointers to relevant reflector messages and papers are given. This
evolving document will serve as a basis of discussion and historical record for Strings issues and
as a foundation of proposals for resolving specific issues.

For clarity, active issues are seperated from issues recently closed. Closed issues are retained for
one revision of the paper to serve as a record of recent resolutions. Subsequenly, they will be
removed from the paper for brevity. Any issue which has been removed will include the
document number of the final paper in which it was included.

Active Issues
Issue Number: 21-002
Title: Are string_traits members char_in() and char_out() necessary?
Section: 21.1.1.2 [lib.string.char.traits]
Status: active
Description:

In lib-3398, Nathan Myers writes:

Looking at Clause 21, Strings, I find some string_traits static members:
static basic_istream<charT>
 string_char_traits::char_in(basic_istream<charT>& is,

Clause 21 (Strings Library) Issues List: Rev. 8 - 95-178=N0778

2

charT& a)
{ return is >> a; }

static basic_istream<charT>
 string_char_traits::char_out(basic_ostream<charT>& os,

 charT& a)
{ return os << a; }

Are they necessary? If so, shouldn’t they be parameterized on ios_traits? And
shouldn’t they default to use streambuf put() and get()?

[Note: lib-3398 contained a typo in which char_in() and char_out() were
incorrectly specified as being members of basic_string. The slight error is
corrected above.]

Proposed Resolution:
Remove the members string_char_traits::char_in() and
string_char_traits::char_out() .

Requester: Nathan Myers: myersn@roguewave.com
Owner:
Emails: lib-3398
Papers: (none)

Issue Number: 21-013
Title: There is no provision for errors caused by implementation limits.
Section: 21.1.1.2 [lib.basic.string]
Status: active
Description:

In private email, John Dlugosz wrote:
“There is no provision for errors caused by implementation limits. The class
handles strings up to length NPOS-1, with no specified way to throw an error
saying "I can't do that!" for shorter values. In my implementation I'm simulating
an out-of-memory error if an operation exceeds a `maxcount' length, since that's
what would presumably happen anyway. The maxcount arises due to arithmetic
overflow: I'm limited to size_t-(small constant) _bytes_, not elements, and an
element may be any size. I can't compute the memory requirments without
getting an unreported arithmetic overflow, so I have to check in advance for this
instantiation-specific maxcount.

“In order to simulate the out of memory condition, I just call `new' on NPOS
bytes. That way I get the "correct" behavior for any installed new_handler or
replacement operator new() that may exist. However, that is not the best solution
for a few reasons. First, it will fail if the implementation _does_ in fact allocate
NPOS bytes without error. Second, an out-of-memory exception might not be the
appropriate way for a program to recover from this problem. Third, it is less
efficient, since by spec I must test for an argument of NPOS anyway, and take
one action and _then_ test for the smaller maxcount and take another action. To
summarize, I think that a "length error" should be allowed at an implementation
defined size limit which is less than or equal to NPOS. There should also be a
function available to return this value.”

Proposed Resolution:
Requester: John Dlugosz: jdlugosz@objectspace.com
Owner:
Emails: (none)
Papers: (none)

Clause 21 (Strings Library) Issues List: Rev. 8 - 95-178=N0778

3

Issue Number: 21-014
Title: Argument order for copy() is incorrect.
Section: 21.1.1.8.7 [lib.string::copy]
Status: active
Description:

In private email, John Dlugosz wrote:
“In copy() the arguments are in a different order than on other functions. I
suppose this was to provide for a default on pos. However, if someone does
specify both he will be likely to get them backwards and the compiler will not
catch this. I feel it is a point of usability that is not worth the default argument.
Provide two forms of copy() instead:
copy (dest, pos, len);
copy (dest,len);

Note: The current interface to copy is:
size_type copy(charT* s, size_type n, size_type pos=0);

Proposed Resolution:
Provide two forms of copy():
size_type copy(charT* s, size_type pos, size_type n);

This function differs from the current copy only in the order of its last two
arguments and the lack of a default argument.
size_type copy(charT* s, size_type n);

Returns:
copy(s, 0, n);

.Requester: John Dlugosz: jdlugosz@objectspace.com
Owner:
Emails: (none)
Papers: (none)

Issue Number: 21-017
Title: Can reserve() cause construction of characters?.
Section: 21.1.1.6 [lib.string.capacity]
Status: active
Description:

In private email, John Dlugosz wrote:
“Also, totally unspecified, is the treatment of the `reserve' area with respect to
element creation and destruction. I chose to construct elements in the reserve
area right away, and then the string grows into the reserve area using assignment
semantics. This causes dramatic simplification in several areas, and allows me to
implement it without the need for in-place construction and explicit destructor
calls (important when targeting cfront-based compilers).”

Proposed Resolution:
No change required.

Requester: John Dlugosz: jdlugosz@objectspace.com
Owner:
Emails: (none)
Papers: (none)

Issue Number: 21-018
Title: Specification of traits class is constraining.
Section: 21.1.1.2 [lib.string.char.traits]
Status: active

Clause 21 (Strings Library) Issues List: Rev. 8 - 95-178=N0778

4

Description:
In private email, John Dlugosz wrote:
“The austerity of the traits class strongly suggests certain implementations and
prevents certain optimizations. For a simple example, the copy() function does
not provide for overlapping copies. Say I have a string "ABr" where A and B
represent substrings of some length, and r is unused reserve area. I want to
insert "C" into the string, and the length of "ACB" fits into the pre-existing
allocation (because C is shorter or equal in size to r). I can't just copy B down to
the tail end. Instead, I have to reallocate the whole string and copy the A part
also.

“More significantly, the find() functions pretty much have to be implemented by
a brute-force approach as they are defined-- locate a place where the match
occurs. In short, I wish the traits available were richer. It seems inconsistant
w.r.t. copy semantics, as explained in [issue 23-017], and it is so simple as to force
inefficiencies in the implementation. In addition, it would be nice if additional
implementation-specific stuff could be placed in the traits class. This can be done
and still allow for user-defined "custom" traits to be created that only have the
standard members, by using inheritance.”

Proposed Resolution:
Requester: John Dlugosz: jdlugosz@objectspace.com
Owner:
Emails: (none)
Papers: (none)

Issue Number: 21-024
Title: Name of traits delimiter function is confusing
Section: 21.1.1.1 [lib.string.char.traits]
Status: active
Description:

The name of the string_char_traits function is “is_del”. This has the connotation
of “is delete”.

Proposed Resolution:
Remove this member. These sorts of traits are the domain of iostreams.

Requester: John Hinke: jhinke@qds.com
Owner:
Emails: (none)
Papers: (none)

Issue Number: 21-025
Title: Does string_char_traits need a locale?
Section: 21.1.1.2 [lib.string.char.traits.members]
Status: active
Description:

The description of the member string_char_traits::is_del() says it returns:
isspace() . This function is subject to localization. Does this mean that
string_char_traits is locale sensitive?

Proposed Resolution:
Remove the is_del() member. Do not add a locale.

Requester: John Hinke: jhinke@qds.com
Owner:

Clause 21 (Strings Library) Issues List: Rev. 8 - 95-178=N0778

5

Emails: (none)
Papers: (none)

Issue Number: 21-026
Title: Description of string_char_traits::compare() is expressed in code.
Section: 21.1.1.2 [lib.string.char.traits.members]
Status: active
Description:

The description of the string_char_traits member:
static int compare(const char_type* s1, const char_type* s2,

 size_t n);

is expressed in code as follows:
for (size_t i=0; i<n; ++i, ++s1, ++s2)

if (ne(*s1, *s2))
return (lt(*s1, *s2) ? -1 : 1;

return 0;

 It should be expressed in prose.
Proposed Resolution:

Replace the description with the following:
Returns: 0 iff for each i: 0<i<n the expression eq(*(s1+i), *(s2+i)) is true.
Otherwise, returns -1 given i and j such that for j: 0 <= j < n, the expression
lt(*(s1+j), *(s2+j)) is true and for each i: 0 < i < j the expression eq(*(s1+i),
*(s2+i)) is true.
Otherwise returns 1.

Requester: Rick Wilhelm: rkw@chi.andersen.com
Owner:
Emails: (none)
Papers: (none)

Issue Number: 21-027
Title: Description of string_char_traits::compare() overspecifies return value.
Section: 21.1.1.2 [lib.string.char.traits.members]
Status: active
Description:

The description of the string_char_traits member:
static int compare(const char_type* s1, const char_type* s2,

 size_t n);

is expressed in code as follows:
for (size_t i=0; i<n; ++i, ++s1, ++s2)

if (ne(*s1, *s2))
return (lt(*s1, *s2) ? -1 : 1;

return 0;

 Specifiying the exact return values when the comparison returns “less than” or
“greater than” is too constraining.

Proposed Resolution:
Replace “-1” with “an integer less than zero” and replace “1” with “an integer
greater than 0”

Requester: Rick Wilhelm: rkw@chi.andersen.com
Owner:
Emails: (none)
Papers: (none)

Issue Number: 21-028
Title: Description of string_char_traits::length() is expressed in code.
Section: 21.1.1.2 [lib.string.char.traits.members]

Clause 21 (Strings Library) Issues List: Rev. 8 - 95-178=N0778

6

Status: active
Description:

The description of the string_char_traits member:
static int length(const char_type* s);

is expressed in code as follows:
size_t len = 0;
while (ne(*s++, eos())) ++len;
return len;

 It should be expressed in prose.
Proposed Resolution:

Replace the description with the following:
Returns: the lowest value of i such that for i, i>=0, the expression ne(*(s+i),
eos()) returns false and for each j, 0 <= j <= i the expression ne(*(s+j), eos())
returns true and.

Requester: Rick Wilhelm: rkw@chi.andersen.com
Owner:
Emails: (none)
Papers: (none)

Issue Number: 21-029
Title: Description of string_char_traits::copy() is overconstraining.
Section: 21.1.1.2 [lib.string.char.traits.members]
Status: active
Description:

The description of the member string_char_traits::copy ()
char_type* s = s1;
for (size_t i=0; i<n; ++i) assign(*s1++, *s2++);

This overconstrains implementations, in that there is no particular reason to do
the operations in the order specified. (Box 78).

Proposed Resolution:
Replace the description as follows:

Effects: Copies elements. For each non-negative integer i < n, performs
*(s1 + i) = *(s2 + i).

Returns: s1.
Requires: s1 shall not be in the range [s2, s2+n).

Requester: Rick Wilhelm: rkw@chi.andersen.com
Owner:
Emails: (none)
Papers: (none)

Issue Number: 21-030
Title: Description of string_char_traits::copy() is silent on overlapping strings.
Section: 21.1.1.2 [lib.string.char.traits.members]
Status: active
Description:

The description of the member string_char_traits::copy ()
char_type* s = s1;
for (size_t i=0; i<n; ++i) assign(*s1++, *s2++);

Doesn’t explicitly address the issue of overlapping strings.
Proposed Resolution:

Add the following to the description of string_char_traits::copy():
Requires: s1 shall not be in the range [s2, s2+n).

This is similar to the approach followed by copy() in 25.2.1 [lib.alg.copy].
Requester: Rick Wilhelm: rkw@chi.andersen.com

Clause 21 (Strings Library) Issues List: Rev. 8 - 95-178=N0778

7

Owner:
Emails: (none)
Papers: (none)

Issue Number: 21-031
Title: Copy constructor takes extra argument to switch allocator but does not allow

allocator to remain the same.
Section: 21.1.1.4 [lib.string.cons]
Status: active
Description:

The copy constructor:
basic_string(

const basic_string<charT, traits, Allocator>& str,
size_type pos = 0, size_type n = npos,
Allocator& = Allocator());

takes an extra argument, so that it can be used to copy a string while changing its
allocator. Is this the best way to do this? (Box 79).

This copy constructor does not allow the user to retain the same allocator as the
current string. Additionally, the string class does not provide a member to access
a string’s allocator.

Proposed Resolution:
The solution to this issue exactly mirrors the solution to a general containers
issue.

At the Monterey meeting, the following change was approved and inserted into
the WP:
In section 21.1.1.9 [lib.string.ops], add the member:
const allocator_type& get_allocator() const;

Returns: a reference to the string’s allocator object.

The resolution to the default Allocator argument is pending the resolution to a
similar issue in Clause 23.

Requester: Rick Wilhelm: rkw@chi.andersen.com. See also public comment T21 (p. 108)
Owner:
Emails: (none)
Papers: (none)

Issue Number: 21-034
Title: Inconsistency in requirements statements involving npos
Section: 21.1.1.4 [lib.string.cons] and 21.1.1.6 [lib.string.capacity]
Status: active
Description:

In the current draft, the requirements for
basic_string(size_type n, charT c, Allocator& = Allocator());

read:
Requires: n < npos .

and the requirements for
void resize(size_type n, charT c);

read:
Requires: n != npos .

These should be expressed in terms of max_size()
Proposed Resolution:

Change the description of resize():

Clause 21 (Strings Library) Issues List: Rev. 8 - 95-178=N0778

8

Requires: n <= max_size()
Throws: length_error if n > max_size()

Requester: Rick Wilhelm: rkw@chi.andersen.com See also public commnet T21 (p. 109)
Owner:
Emails: (none)
Papers: (none)

Issue Number: 21-034a
Title: Expand ability to throw length_error
Section: 21.1.1.3 [lib.basic.string]
Status: active
Description:

The specification carefully dictates that a string should be able to hold the
number of entities indexed by a size_type. This is evidenced, for example, in the
strict specification of when a length_error exception is thrown in
basic_string::replace.

Strictly interpreted, this prevents storage of other information in the same
memory block as the data (e.g., reference counts of string lengths). It should be
possible to throw a length_error when the resulting data size *plus the size of the
overhead information* exceeds the capacity of a size_type.

It may be convenient to specify length_error conditions in terms of the max_size()
value.

Proposed Resolution:
Requester: Judy Ward: ward@roguewave.com
Owner:
Emails: (none)
Papers: (none)

Issue Number: 21-037
Title: Traits needs a move() for overlapping copies.
Section: 21.1.1.4 [lib.string.cons]
Status: active
Description:

A move() member for overlapping copies would be a useful addition to the
string_char_traits class.

Proposed Resolution:
Requester: Judy Ward: ward@roguewave.com
Owner:
Emails: (none)
Papers: (none)

Issue Number: 21-059
Title: String traits have no relationship to iostream traits.
Section: 21.1.1.1 [lib.string.char.traits]
Status: active
Description:

I would like to propose (whether officially or not) to modify the current CD:
 template <class charT> struct ios_traits {};

to
 template <class charT> struct ios_traits :

public string_char_traits<charT> {};

Clause 21 (Strings Library) Issues List: Rev. 8 - 95-178=N0778

9

in order to integrate the closely related traits, 'ios_traits' and 'string_char_traits'.

We can expect the integration of the common features, such as 'eq', 'eos', 'length',
and 'copy' which is now inappropreately separated with no explicit reasons.

In lib-3832, Nathan Myers wrote:
“I have been careful to avoid getting too involved with Clause 21, thus far,
because I have been quite busy with other chapters. However, it would be my
recommendation to eliminate most of the string character traits: eq(), ne(), lt(),
assign(), char_in(), char_out(), and is_del(). Also, I would either add a few
"speed-up functions" needed to efficently implement strings without
specialization, such as a move() member, or eliminate them all, and let the
implementation specialize speedups for types known to it.”

A public comment included the following:
“string_char_traits is missing three important speed-up functions, the
generalizations of memchr, memmove, and memset. Nearly all the mutator
functions in basic_string can be expressed as calls to these three primitives, to
good advantage.”

See also issue 21-018.

Proposed Resolution:
More detailed work needed on this topic.

Requester: Norihiro Kumagai: kuma@slab.tnr.sharp.co.jp.
See also Public Comment T21 (p. 108).

Owner:
Emails: lib-3832
Papers: (none)

Issue Number: 21-060
Title: string_char_traits::ne not needed
Section: 21.1.1.1 [lib.string.char.traits]
Status: active
Description:

A public comment included:
“string_char_traits::ne is hardly needed given the member eq. It should be
removed.

Proposed Resolution:
Remove the member string_char_traits::ne().

Requester: Public comment T21 (p. 107)
Owner:
Emails: (none)
Papers: (none)

Issue Number: 21-061
Title: Missing explanation of traits specialization
Section: 21.1.1.2 [lib.string.char.traits.members]
Status: active
Description:

A public comment noted:
“No explanation is given for why the descriptions of the members of template
class string_char_traits are “default definitions.” If it is meant to suggest that the

Clause 21 (Strings Library) Issues List: Rev. 8 - 95-178=N0778

10

program can supply an explicit specialization, provided the specialization
satisfies the semantics of the class, then the text should say so (here and several
other places as well).

Proposed Resolution:
None.

Requester: Public comment T21 (p. 108).
Owner:
Emails: (none)
Papers: (none)

Issue Number: 21-062
Title: Missing explanation of requirements on charT.
Section: 21.1.1.3 [lib.basic.string]
Status: active
Description:

A public comment noted:
Paragraph 1 doesn’t say enough about the properties of a “char-like object.” It
should say that it doesn’t need to be constructed or destroyed (otherwise, the
primitives in string_char_traits are woefully inadequate).
string_char_traits::assign (and copy) must suffice either to copy or initialize a
char-like element. The definition should also say than an allocator must have the
same definitions for the types size_type, difference_type, pointer, const_pointer,
reference, and const_reference as class allocator::types<charT> (again because
string_char_traits has no provision for funny address types).

Proposed Resolution:
Requester: Public comment T21 (p. 108).
Owner:
Emails: (none)
Papers: (none)

Issue Number: 21-063
Title: No constraints on constructor parameter.
Section: 21.1.1.4 [lib.string.cons]
Status: active
Description:

The description of the constructor
basic_string(const charT* s, size_type n, Allocator&);

Doesn’t constrain the size_type parameter.
Proposed Resolution:

Modify the description of the constructor as follows:
Requires: s shall not be a null pointer and n != npos.
Throws: length_error if n == npos

Requester: Public comment T21 (p. 108)
Owner:
Emails: (none)
Papers: (none)

Issue Number: 21-067
Title: Traits specializations are over-constrained for eos() member
Section: 21.1.1.2 [lib.string.char.traits.members]
Status: active
Description:

The current description is:

Clause 21 (Strings Library) Issues List: Rev. 8 - 95-178=N0778

11

Returns: The null character, char_type()
However, if the traits are specialized, the specialization should not be required to
return the result of the default constructor.

Proposed Resolution:
Change the description to be:

Returns: The null character.
Requester: Public comment T21 (p. 108).
Owner:
Emails: (none)
Papers: (none)

Issue Number: 21-068
Title: What is the proper role of the “Notes” section in Clause 21.
Section: 21.1.1.6 [lib.string.capacity] (and several other sections in the clause)
Status: active
Description:

Clause 21 currently contains several sections which include the text:
Notes:

The draft already says that notes are non-normative. However, the contents of
these sections are often normative. Should the contents of these sections be
moved into other sections.

Also, the Notes sections currently give information on the use of some traits. The
Japanese delegation would like to see information on the use of traits expanded
to give the user more information about the impact of traits on the string
template. However, one public comment described these sorts of notes on traits
as over-specification.

Proposed Resolution:
Change all instances of “Notes” sections to conform to the draft convention for
notes as specified in [intro.compliance], with the exception of the following
instances:
• 21.1.1.6 [lib.string.capacity], notes on reserve() which discuss the invalidation

of references and guarantees on reallocation.
• 21.1.1.7 [lib.string.access], notes on operator[] which discuss the validity of

references.
• 21.1.1.8.7 [lib.string::copy], notes on copy() which discuss the absence of a null

object at the end of the string.
In these three cases, the text should be moved to the “Required Behavior”
section. Note: this solution implies that all notes which deal with the use of traits
members are non-normative.

Requester: Public comment T21 (p. 108).
Owner:
Emails: (none)
Papers: (none)

Issue Number: 21-074
Title: Should basic_string have a member semantically equivalent to strlen()
Section: 21.1.1.6 [lib.string.capacity])
Status: active
Description:

The basic_string template contains two member functions which return the
number of characters in the string: size() and length(). Issue 21-054 proposed

Clause 21 (Strings Library) Issues List: Rev. 8 - 95-178=N0778

12

changing the semantics of length() to return the number of characters in the
string which are positioned before the first traits::eos() character.

In discussions in Monterey, the LWG rejected the notion of changing the
semantics of length(), but agreed to discuss addiing a new member which is
semantically equivalent to C’s strlen().

In lib-3973, Jerry Schwarz (jss@declarative.com) spoke against the idea:

“The string class is already large (at least IMO) and adding new functions should
be done only if there is a real justification. c_strlen does not have any such
justification. Firstly, it is inconsistent with the abstraction that string provides in
which traits::eos() is not special . And secondly, string::find can be used to
determine the locations of traits::eos(). So it provides no extra functionality.”

In lib-3997, John Max Skaller suggested that a template function be added to the
library to provide this functionality. In lib-4003, Nathan Myers refined this idea
into:
template <class charT, class Traits, class Allocator>
 typename basic_string<charT,Traits,Allocator>::size_type
 strlen(const basic_string<charT,Traits,Allocator>& s)

 Returns: s.find(Traits::eos()), if that succeeds, or 0 if it fails.
 Note: Result identical to strlen(s.c_str()) for basic_string<char>.

Notice that this is not quite the same as find('\0').

Proposed Resolution:
Add the following member to 21.1.1.6 [lib.string.capacity]
size_type c_strlen() const;

Returns: the minimum of length() and the number of char-like objects currently
in the string which appear before the first traits::eos() character.

An alternative solution is provided above.
Requester: LWG
Owner:
Emails: lib-3967, lib-3968, lib-3972, lib-3973, lib-3979, lib-3983, lib-3993, lib-3995, lib-3997,

lib-3999, lib-4001, lib-4003, lib-4005
Papers: (none)

Issue Number: 21-076
Title: Inconsistent pattern of arguments in basic_string overloads
Section: 21.1.1.3 [lib.template.string]
Status: active
Description:

During discussions at the Monterey meeting, the LWG determined that the
pattern of arguments and overloads used in member functions is often
inconsistent and confusing.

Most of these inconsistencies relate to size_type parameters referring either to the
lvalue (this) or the rvalue (a parameter passed to the member function.

Proposed Resolution:
Paper N0767=95-0167 (pre-Tokyo mailing) contains the proposed resolution for
this issue.

Requester: LWG

Clause 21 (Strings Library) Issues List: Rev. 8 - 95-178=N0778

13

Owner:
Emails: (none)
Papers: (none)

Issue Number: 21-077
Title: basic_string not identified as a Sequence.
Section: 21.1.1.3 [lib.template.string]
Status: active
Description:

Although basic_string has been modified to conform to the requirements for
Sequences specified in Clause 23, no language in the WP specifically states that
basic_string is a Sequence.

Proposed Resolution:
Add the following to 21.1.1.3 [lib.basic.string]:

The template class basic_string conforms to the requirements of a Sequence, as
specified in 23.1.1 [lib.sequence.reqmts]. Additionally, because the iterators
supported by basic_string are random access iterators
[lib.random.access.iterators], basic_string conforms to the the requirements of a
Reversible Container, as specified in 23.1.

Requester: LWG
Owner:
Emails: (none)
Papers: (none)

Issue Number: 21-078
Title: Possible problem with reference counting and strings.
Section: 21.1.1.7 [lib.string.access]
Status: active
Description:

In lib-4097, Uwe Steinmuller wrote:
string s = "abc"; //1
char& r = s[0]; //2
string cs = s; //3
r = x ; //4

Problem: If an implementation prevents (using some flag) that after processing
line //2 this representation cannot be shared (copy is getting its own
representation), then there is no problem.

I doubt many implementations will do so (including my own). If in line //3 cs
shares the representation with s then line //4 will modify both strings. The user
did nothing wrong if he looks at the standard. The reference r should be valid
until a non const operation is performed on s and there is no such operation.

Solutions: We require the implementation (which is implicitly done by the
current draft) to handle this case. This requieres an extra flag and overhead to
check for it. A restriction for the guarantee of r would be also a solution but could
get quite complicated.

In lib-4102, Steven Kearns wrote:
One solution is to have operator[](int index) return a helper class:
class StringHelper {
 int index;

Clause 21 (Strings Library) Issues List: Rev. 8 - 95-178=N0778

14

 String& s;
 StringHelper(String& s0, int index0) : index(index0), s(s0) {}
 operator=(char c) { s.SetAt(index, c); }
};

Unfortunately, this makes the most common idiom:
String s;
s[0] = 'a';

much more inefficient than before. So the only practical solution is to come up
with a suitable restriction on the lifetime of the reference returned. How about
the obvious one of saying that the reference returned is only valid until the next
non-const operation on the string, or until the string is copied or assigned from.

Proposed Resolution:
Requester: Uwe Steinmuller (Uwe.Steinmueller@zfe.siemens.de)
Owner:
Emails: lib-4097, lib-4101, lib-4102, lib-4105, lib-4107
Papers: (none)

Closed Issues
Issues which have been recently closed are included in their entirety. Issues which have
appeared in a previous version of the issues list as “closed” have the bulk of their content deleted
for brevity. The document number of the paper in which they last appeared is included for
reference.

Issue Number: 21-001
Title: Should basic_string have a getline() function?
Last Doc.: N0721=95-0121

Issue Number: 21-003
Title: Character-oriented assign function has incorrect signature
Last Doc.: N0721=95-0121

Issue Number: 21-004
Title: Character-oriented replace function has incorrect signature
Last Doc.: N0759=95-0159

Issue Number: 21-005
Title: How come the string class does not have a prepend() function?
Last Doc.: N0759=95-0159

Issue Number: 21-006
Title: Should the Allocator be the last template argument to basic_string?
Last Doc.: N0721=95-0121

Issue Number: 21-007
Title: Should the string_char_traits speed-up functions be specified as inline?
Last Doc.: N0759=95-0159

Issue Number: 21-008
Title: Should an iostream inserter and extractor be specified for basic_string?
Last Doc.: N0759=95-0159

Clause 21 (Strings Library) Issues List: Rev. 8 - 95-178=N0778

15

Issue Number: 21-009
Title: Why are character parameters passed as “const charT”?
Last Doc.: N0721=95-0121

Issue Number: 21-010
Title: Should member parameters passed as “const_pointer”?
Last Doc.: N0721=95-0121

Issue Number: 21-011
Title: Why are character parameters to the string traits functions passed by reference?
Last Doc.: N0721=95-0121

Issue Number: 21-012
Title: Why are character parameters to the string functions passed by value?
Section: 21.1.1.2 [lib.string.char.traits]
Status: closed
Description:

In the string functions, character parameters are specified as being passed by
“charT”. In the past, the LWG had decided that char-like types should be
considered cheap enough to pass by value.

However during discussions at the Austin meeting, the LWG formed the
consensus that characters should be passed by reference. The rationale was: for
most character types, on most architectures, it was as efficient for characters to be
passed by references instead of by value. The importance of reference
parameters arrived in atypical character types which might be considerably
larger than ASCII characters

Resolution:
All character parameters to all string functions will be passed by const reference.

Requester: Rick Wilhelm: rkw@chi.andersen.com
Owner:
Emails: (none)
Papers: (none)

Issue Number: 21-015
Title: The copy() member should be const.
Last Doc.: N0759=95-0159

Issue Number: 21-016
Title: The error conditions are not well-specified for the find() and rfind() functions.
Last Doc.: N0759=95-0159

Issue Number: 21-019
Title: The Allocator template parameter is not reflected in a member typedef.
Last Doc.: N0759=95-0159

Issue Number: 21-020
Title: Header for Table 42 is incorrect.
Last Doc.: N0759=95-0159

Issue Number: 21-021
Title: compare() has unexpected results

Clause 21 (Strings Library) Issues List: Rev. 8 - 95-178=N0778

16

Last Doc.: N0759=95-0159

Issue Number: 21-022
Title: s.append('c') appends 99 nulls.
Last Doc.: N0759=95-0159

Issue Number: 21-023
Title: Non-conforming default Allocator arguments
Last Doc.: N0759=95-0159

Issue Number: 21-032
Title: Description for operator+() is incorrect
Last Doc.: N0759=95-0159

Issue Number: 21-033
Title: Requirements for const charT* arguments not specified
Last Doc.: N0759=95-0159

Issue Number: 21-035
Title: Character replacement does not change length.
Last Doc.: N0759=95-0159

Issue Number: 21-036
Title: Character case disregarded during common operations.
Last Doc.: N0759=95-0159

Issue Number: 21-038
Title: Operator < clashes cause ambiguity
Last Doc.: N0759=95-0159

Issue Number: 21-039
Title: Iterator parameters can get confused with size_type parameters.
Last Doc.: N0759=95-0159

Issue Number: 21-040
Title: Repetition parameter non-intuitive
Last Doc.: N0759=95-0159

Issue Number: 21-041
Title: Assignment operator defined in terms of itself
Last Doc.: N0759=95-0159

Issue Number: 21-042
Title: Character assignment defined in terms of non-existent constructor
Last Doc.: N0759=95-0159

Clause 21 (Strings Library) Issues List: Rev. 8 - 95-178=N0778

17

Issue Number: 21-043
Title: Character append operator defined in terms of non-existent constructor
Last Doc.: N0759=95-0159

Issue Number: 21-044
Title: Character modifiers defined in terms of non-existent constructor
Last Doc.: N0759=95-0159

Issue Number: 21-045
Title: Iterator typenames overspecified
Last Doc.: N0759=95-0159

Issue Number: 21-046
Title: basic_string type syntactically incorrect in some descriptions
Last Doc.: N0759=95-0159

Issue Number: 21-047
Title: Error in description of replace() member
Last Doc.: N0759=95-0159

Issue Number: 21-048
Title: Inconsistency in const-ness of compare() declarations
Last Doc.: N0759=95-0159

Issue Number: 21-049
Title: Inconsistency constructor effects and semantics of data()
Last Doc.: N0759=95-0159

Issue Number: 21-050
Title: Incorrect semantics for operator+()
Last Doc.: N0759=95-0159

Issue Number: 21-051
Title: Incorrect return type for insert() member
Last Doc.: N0759=95-0159

Issue Number: 21-052
Title: Unconstrained position arguments for find members.
Last Doc.: N0759=95-0159

Issue Number: 21-053
Title: Semantics of size() prevents null characters in string
Last Doc.: N0759=95-0159

Issue Number: 21-054
Title: Change the semantics of length()
Last Doc.: N0759=95-0159

Issue Number: 21-055
Title: append(), assign() have incorrect requirements
Last Doc.: N0759=95-0159

Clause 21 (Strings Library) Issues List: Rev. 8 - 95-178=N0778

18

Issue Number: 21-056
Title: Requirements for insert() are too weak.
Last Doc.: N0759=95-0159

Issue Number: 21-057
Title: replace has incorrect requirements
Last Doc.: N0759=95-0159

Issue Number: 21-058
Title: Description of data() is over-constraining.
Last Doc.: N0759=95-0159

Issue Number: 21-064
Title: Miscellaneous errors in resize(size_type n)
Last Doc.: N0759=95-0159

Issue Number: 21-065
Title: Incorrect return value for insert()
Last Doc.: N0759=95-0159

Issue Number: 21-066
Title: Description of remove() is over-specific
Last Doc.: N0759=95-0159

Issue Number: 21-069
Title: Swap complexity underspecified.
Last Doc.: N0759=95-0159

Issue Number: 21-070
Title: operator>= described incorrectly
Last Doc.: N0759=95-0159

Issue Number: 21-071
Title: Does getline() have the correct semantics?
Last Doc.: N0759=95-0159

Issue Number: 21-072
Title: Incorrect use of size_type in third table in section
Last Doc.: N0759=95-0159

Issue Number: 21-073
Title: Add overloads to functions that take default character object.
Last Doc.: N0759=95-0159

Issue Number: 21-075
Title: Incomplete specification for assignment operator
Section: 21.1.1.4 [lib.string.cons]
Status: closed
Description:

The current description of the basic_string assignment operator does not handle
the case of a string being assigned to itself.

Resolution:

Clause 21 (Strings Library) Issues List: Rev. 8 - 95-178=N0778

19

In the basic_string assignment operator’s Effects description, add the following
after the table:

If *this and str are the same object, no effect.
Requester: LWG
Owner:
Emails: (none)
Papers: (none)

