
1

95-0157/N0757 Slides from the Template Complation

Model Technical Session

John Spicer
Edison Design Group

jhs@edg.com

Template Compilation Model 7/19/95 1

Template Instantiation

● automatically instantiate entities that
have not been explicitly instantiated

● provide a single definition of
» template functions

» member functions of template classes
» template static data members

● does not apply to classes

Template Compilation Model 7/19/95 2

Source vs. Instantiation model

● source model specifies how a source
program must be structured for
automatic instantiation to work

● instantiation model describes how a
particular implementation implements
instantiation

Template Compilation Model 7/19/95 3

Why the standard needs a
compilation model

● a source model must be specified so
that users can write portable programs

● the source model should permit as
many different underlying instantiation
models as possible

Template Compilation Model 7/19/95 4

Some Existing Models

● Borland
● Sun

● cfront
● EDG

Template Compilation Model 7/19/95 5

Example of Present Usage
File: a.h:
 struct A {};
 void g(A);
 void h(A, int);

File f.c:

 template <class T> void f(T t)
 {
 A a;
 g(a);
 h(a, t);
 }

File: f.h:
 #include “a.h”
 template <class T> void f(T);
 #ifdef INCLUDE_TEMPLATE_DEFINITIONS
 #include “f.c”
 #endif

File: t.c:
 #include “a.h”
 #include “f.h”

 void g(A){}
 void h(A, int){}

 int main()
 {
 f(1);
 }

Template Compilation Model 7/19/95 6

Existing models - “Borland”

● source model: include all template
definitions
» may or may not be in a separate header

file

● instantiation model: generate all
referenced instantiations, let linker
eliminate duplicates

2

95-0157/N0757 Slides from the Template Complation

Model Technical Session

John Spicer
Edison Design Group

jhs@edg.com

Template Compilation Model 7/19/95 7

Existing Models - Sun

● source model: template definitions in
include file, automatically included by
implementation
» implementation specified means of finding

template definition file when needed
» definitions may also be explicitly included

● instantiation model: repository of template
definition object files generated by normal
compilations

Template Compilation Model 7/19/95 8

cfront model

● source model: template definitions in
file that is automatically included by
implementation

● instantiation model: instantiations done
at link time in synthesized source file
that includes the template definition
include file

Template Compilation Model 7/19/95 9

EDG Model

● source model: template definitions in include
file, automatically included by
implementation
» implementation specified means of finding

template definition file when needed

» definitions may also be explicitly included

● instantiation model: instantiations generated
by normal compilations
» prelinker decides where instantiations are done

Template Compilation Model 7/19/95 10

What would users like?

● template declarations in header files
● template definitions in any source file

● reference those templates from
anywhere

● compile all files as usual
● everything works out by magic,

including templates in libraries

Template Compilation Model 7/19/95 11

Why haven’t implementors
provided this?

● it isn’t because it hasn’t been thought of
● it isn’t (just) because of implementation

complexity

● for the same reason that you can’t buy
a car that seats 10, can do 0-60 (mph)
in 6 seconds, and gets 100 miles/gallon.

Template Compilation Model 7/19/95 12

Current Compilation Model
(as described in N0582/94-0195)

● Template definitions are in separately
compiled files

● Instantiations are done in a synthesized
context at link time

3

95-0157/N0757 Slides from the Template Complation

Model Technical Session

John Spicer
Edison Design Group

jhs@edg.com

Template Compilation Model 7/19/95 13

Example of Current Model

File: a.h:
 struct A {};

File: f.c:
 #include “a.h” // added to declare A
 #include “t.h” // added to declare g(A)

 template <class T> void f(T t)
 {
 A a;
 g(a);
 h(a, t);
 }

File: f2.c:
 // Alternate version of template f
 template <class T> void f(T t) {}

File: f.h:
 template <class T> void f(T);
 // No longer includes f.c

File: t.c:
 #include “f.h”
 #include “a.h”

 void g(A){}
 void h(A, int){}

 int main()
 {
 f(1);
 }

File: t.h:
 void g(A);
 void h(A, int);

Template Compilation Model 7/19/95 14

Separate Compilation and the
current compilation model

Reflector example from Tony Hansen:

File: a.h:
 // declare the template function
 template <class T> int f(T);

File: b.c:
 #include “a.h”
 // define the template function
 template <class T> T f(T a) { return a * a * a; }

File: c.c:
 #include “a.h”

 void foo()
 {
 int x = f(3); // invoke the template
 }

Tony says:

I would fully expect this program to be
compilable by typing in:

xcc b.c c.c

I would also expect to be able to do the following:

xcc -c b.c # compile the template definition
ar r b.a b.o # put it in a library
xcc c.c b.a # link the library with c.c

Template Compilation Model 7/19/95 15

Problems with the Template
Compilation Model

● cannot be implemented efficiently enough to
be usable

● synthesized contexts are difficult to debug
and context synthesis is itself a new source of
errors

● my perspective -- as an implementor
» not looking at problems for the implementor

» looking at problems for users as a consequence of
what an implementation is required to do

Template Compilation Model 7/19/95 16

Who should be concerned
about this?

● Everyone -- profound effect on
compilation of any program that uses
templates

● the standard library is heavily
templatized -- virtually every program
will make extensive use of templates

● even if you don’t use the current model,
a library you use might

Template Compilation Model 7/19/95 17

What are the problems?

● context merging -- expensive to use
● instantiations forced to take place at link

time -- severely constrains the kind of
instantiation mechanisms that can be
provided

● synthesized context -- difficult for users

● poorly specified, novel and untried
technology

Template Compilation Model 7/19/95 18

Context Merging

● information must be saved from the
template definition point

● information must be saved from the
template reference point

● merged in a synthesized instantiation
context

● large amount of information from both
contexts is required

4

95-0157/N0757 Slides from the Template Complation

Model Technical Session

John Spicer
Edison Design Group

jhs@edg.com

Template Compilation Model 7/19/95 19

Implications of the current
model (just how bad is it?)

● nothing can be known about a template
body at compile time

● instantiation is forced to occur at link
time

● lack of knowledge of the template body
makes it impossible to know which
information from the referencing context
will be required by the instantiation

Template Compilation Model 7/19/95 20

Implications of the current
model (continued)

● fully general separate compilation
requires that the context information be
saved for every translation unit
» can’t be optimized because you don’t know

how object files will be combined
» optimization only possible if the complete

set of source files, objects etc. is known in
advance

» but that would eliminate the desired
separate compilation characteristics

Template Compilation Model 7/19/95 21

Context Merging
How expensive is it?

● expense when a referencing translation
unit is compiled

● expense when an instantiation is
generated

Template Compilation Model 7/19/95 22

Information from the
referencing context

● all types used as template arguments
● all functions that could conceivably be

called as “dependent” functions

● all types, members, base classes,
functions, variables, templates, etc. that
could be transitively accessed by the
above

Template Compilation Model 7/19/95 23

Why so much information?

● you know nothing about the body of the
template definition when a reference is
compiled

● all information that could possibly be
accessed by the template body must be
supplied

Template Compilation Model 7/19/95 24

Almost everything must be
saved

● all declarative information must be
saved (i.e., everything but the bodies of
noninline functions)

● it may (or may not) be possible to
exclude certain information
» but it would take extensive analysis to be

sure that something could really be
excluded

5

95-0157/N0757 Slides from the Template Complation

Model Technical Session

John Spicer
Edison Design Group

jhs@edg.com

Template Compilation Model 7/19/95 25

Example of Information that
must be saved

struct A {
 int i;
 void f() { /* ... */ }
};
struct B {
 A a;
 void g();
};
struct C {
 C(int);
};
template <class T> void f(T);
int main()
{
 B b;
 f(b);
}

1. Could f(B) use A? Yes::

 template <class T> void f(T t) { t.a.i = 1; }

2. Could f(B) use C and/or g(int, C)? Yes:

 template <class T> void f(T t) { g(t.a.i, 1); }

Template Compilation Model 7/19/95 26

Information from the
definition context

● representation of the template
● all types, variables, etc. referenced by the

template
● all nondependent functions referenced by

the template
● all functions that could conceivably be called

as dependent functions, either directly or by
a template called by this template

Template Compilation Model 7/19/95 27

Estimating the space required
for context information

● no implementation exists for
measurement

● similar to information required for
precompiled header files
» sample of 3 different compilers,

precompiled header information is 4-8
times the size of the preprocessed source

Template Compilation Model 7/19/95 28

Size of typical contexts

● even simple files are likely to generate
at least .5 MB

● typical applications: 1 - 4MB for each
translation unit
» size is a function of the preprocessed

declarative information (classes, templates,
inline functions)

» small source files with lots of headers would
still generate large context files

Template Compilation Model 7/19/95 29

Multiple contexts in a single
translation unit

● information is more complicated than a
snapshot at a given point
» each instantiation has a different name

binding point
» saved context needs to specify which

names are visible, which types are
complete/incomplete, using directives in
effect, etc. for each instantiation or
template definition

Template Compilation Model 7/19/95 30

Optimizing information to be
saved

● only possible if “project” system is used
» complete list of sources known up front
» template definitions processed before references

» mutual dependencies may make this impossible
» eliminates desired benefits of separate

compilation (i.e., can’t arbitrarily combine object
files)

» would not be standard conforming

6

95-0157/N0757 Slides from the Template Complation

Model Technical Session

John Spicer
Edison Design Group

jhs@edg.com

Template Compilation Model 7/19/95 31

Optimization (continued)

● if a database is being used, you still
need to make sure that all required
information is in the database

● at best, optimization could reduce the
number of places that generate
duplicate contexts, not the amount of
context information required

Template Compilation Model 7/19/95 32

Using the context information

● read referencing context information
● read definition context information

● merge the two sets of information
● unique context for each instantiation

» each instantiation has a different
referencing context

» each template has a different definition
context

Template Compilation Model 7/19/95 33

Instantiations caused by other
instantiations

● the “referencing” context of the new
instantiation is the merged context

● this could require saving synthesized
contexts in addition to the user defined
contexts

Template Compilation Model 7/19/95 34

User problems with context
merging

● instantiations take place in a
synthesized context

● no single place a user can see the full
context of an instantiation

● even worse for instantiations caused by
other instantiations

Template Compilation Model 7/19/95 35

More user problems with
context merging

● errors dependent on which referencing
context is chosen

● merging conflicts are a source of
additional errors
» context merging is unspecified so it is

difficult to know how severe this problem is

● errors delayed to link time, users would
like them at compile time

Template Compilation Model 7/19/95 36

Comparison with cfront
instantiation model

● both generate instantiations at link time
● both do the instantiation in a context not

under the control of the user
» cfront gets this wrong in some cases

despite doing a much simpler context
synthesis

● both require an expensive context
synthesis for instantiations

● both defer errors until link time

7

95-0157/N0757 Slides from the Template Complation

Model Technical Session

John Spicer
Edison Design Group

jhs@edg.com

Template Compilation Model 7/19/95 37

Expected cost of context
merging

● how much time does it take to merge
two .5 MB contexts?

● who knows? but...
» wc runs at about 2.5 MB / second

» compiling a file containing only comments
runs at about 1 MB / second

● context merging is certainly more
complicated than these operations

Template Compilation Model 7/19/95 38

Expected cost of context
merging (continued)

● several seconds for small contexts seems
likely
» 2 seconds / instantiation = 10 minutes for 300

instantiations

● how does this compare with existing
implementations?
» many can generate instantiations in .01 to .03

seconds (3 - 9 seconds for 300)

» a difference of two orders of magnitude

Template Compilation Model 7/19/95 39

Effects on implementations

● forces instantiation at link time
● context merging makes this expensive

● template instantiation was already a
very difficult problem
» need the freedom to provide the best

solution for a given user community
» one instantiation model will not work for

everyone

Template Compilation Model 7/19/95 40

ABI issues

● context information is part of the
information used to link one object file
with another
» this makes it part of the ABI
» format of context information must be well

specified for multiple compilers to
interoperate on the same platform

Template Compilation Model 7/19/95 41

ABI issues (continued)

● an issue even if you don’t care about
compatibility between compilers:
» needs to be a well specified form for release to

release binary compatibility

» unlike PCH which can be specific to a compiler
release

» increases overhead in creating and using the
information

» most compact and stable form is probably just
putting out the preprocessed source

Template Compilation Model 7/19/95 42

Vendors are providing solutions
that work for their users

● all existing compilers (that I’m aware of)
include the template definitions at some
point to generate instantiations

● the instantiation models used by
existing compilers would not be
possible with the current compilation
model

8

95-0157/N0757 Slides from the Template Complation

Model Technical Session

John Spicer
Edison Design Group

jhs@edg.com

Template Compilation Model 7/19/95 43

Proposed Alternatives

● simple - include template definitions
wherever they are used

● more complex - separate compilation,
but without context merging

Template Compilation Model 7/19/95 44

Simple Alternative - typical
objections

● too expensive
» template definitions must be compiled
» additional files needed by template

definitions must also be included

● subjects template definitions to macros
defined in the referencing program

● requires template source to be provided
with libraries

Template Compilation Model 7/19/95 45

Too expensive...

● scanning template definitions is
inexpensive in most implementations

● very inexpensive compared to saving
large volume of context information

● C++ is already header intensive -- there
are well known techniques to optimize
this (e.g., precompiled header files)

Template Compilation Model 7/19/95 46

Subjects template definitions
to macros

● already true of class templates and
inline functions

● already true of existing implementations

Template Compilation Model 7/19/95 47

Providing template source
with libraries

● library vendors don’t want to provide
source to their template definitions

● really a separate issue:
» an implementation could choose to store

template textually in the current model

» techniques exist to encrypt template source
for existing implementations

Template Compilation Model 7/19/95 48

Does not cause instantiations
in every file

● difference between source model and
instantiation model

● provides implementations with
maximum freedom

9

95-0157/N0757 Slides from the Template Complation

Model Technical Session

John Spicer
Edison Design Group

jhs@edg.com

Template Compilation Model 7/19/95 49

Existing practice

● existing compilers textually include the
template definitions at some point

● most do so at compile time
» cfront does so at link time, but still uses

textual inclusion of the template definitions

Template Compilation Model 7/19/95 50

Definitional problems with
the current model

● current model is unspecified in the WP
» motion from Valley Forge simply says:

– “A function template has external linkage”

– “A static member of a class template has external
linkage”

» Chapter 3 already said that templates have
external linkage
– this had been added simply to indicate that templates

are subject to the ODR

Template Compilation Model 7/19/95 51

Definitional problems with
the current model (continued)

● the context merging process is
unspecified

● template instantiation is not included in
the description of the phases of
translation (as would be necessary for
link time instantiation)

Template Compilation Model 7/19/95 52

What needs to be done

● decide whether to replace the current
model

● if so, decide what to replace it with

● if not, we need a description of the
current model

