
- 1 -

Doc Numbers: WG21/N0737
X3J16/95-0137

Date: 12-July-1995
Reply To: Jim Thomas

jim_thomas@taligent.com
Or: Yinsun Feng

yfeng@taligent.com
Taligent, Inc.
10201 N. DeAnza Blvd.
Cupertino, CA 95014

Annex Proposal: Floating-Point Notes

This is a proposal for an informative annex, entitled Floating-Point Notes, to the C++
draft standard.

Abstract

Like the C standard, the C++ draft standard allows ample latitude for floating-point
arithmetic. It leaves much to “quality of implementation”. Such loose specification
can be problematic for programmers, especially considering portability. At the same
time, C++ extensibility offers new opportunities for numerical programming, and
numerical facilities are well represented in the C++ draft standard libraries.
Implementors with a priority on supporting numerical computation will be faced with
a number of floating-point issues, which though unimportant for C++ conformance,
matter greatly to numerical programmers and users. Two particularly noteworthy
areas are:

1. Implementation decisions that affect basic floating-point predictability—for all
implementations with significant interest in numerical programming.

2. Implementation decisions related to support of IEEE standard floating-point (IEC
559, aka ANSI/IEEE 754, in essentially all modern hardware)—for all
implementations with is_iec559 (in numeric_limits) equal to true.

This annex notes issues and offers guidance to C++ implementors regarding treatment
of floating point. The first part covers predictability, the second part covers IEEE
support. (This annex borrows from “Floating-Point C Extensions”, in the ANSI C
committee’s Technical Report on Numerical C Extensions, the result of a five year
effort to address these issues for ISO C.)

- 2 -

Tentative Outline

Part 1—Predictability

• Expression evaluation. Regularize three common basic methods, providing at
least one well suited method for essentially any floating-point hardware.

• Binary-decimal conversion. Define a useful, practical notion of correct rounding.
• Constant evaluation. Urge translation-time/execution-time consistency. Urge

consistency with expression evaluation.
• Optimization. Note “optimizations” that change numerical values. Suggest a

policy for use of hardware operations that implement multiple C++ operators as
one.

• Documentation. Recommend what to provide.

Part 2—IEEE (IEC 559) support

• Type binding. Map IEEE types to C++ types.
• Operation binding. Map IEEE operations to C++ operators and functions.
• Function binding. Provide a C++ interface for IEEE recommended functions.
• Special values. Address issues about handling IEEE infinities, NaNs, and -0.
• Floating-point environment management. Note implementation prerequisites for

making the global floating-point exception flags and rounding direction modes
available to users.

• Optimization. Note “optimizations” that subvert use of special values, flags, and
modes. Recommend a way to assure availability of IEEE features, yet retain
important optimizations.

• Documentation. Recommend what to provide.

