
 Accredited Standards Committee X3 Doc No: X3J16/95-0107 WG21/N0707
 Information Processing Systems Date: May 30, 1995
 Operating under the procedures of Project: Programming Language C++
 American National Standards Institute Reply to: Michael Eager
 (eager@mri.com)

 Volatile Semantics

 Introduction

 The semantics of the volatile keyword are described in very limited terms
 in both the ANSI C standard and the Working Paper [1.8--Program execution].
 Essentially, the only semantics defined is that at a sequence point all
 volatile objects have their values assigned.

 There is a note in [7.1.5.1--The cv-qualifiers] that "volatile is a hint
 to to the processor to avoid aggressive optimization involving the object
 because the value of the object may be changed by means undetectable by
 a processor." Exactly what aggressive optimizations are is left to the
 imagination.

 A flurry of about 100 messages on the core reflector in February and March
 revealed that "everyone knows what volatile means" but that everyone's
 definition is different. Lacking a clear definition, it is difficult to
 provide either compiler writers or users with guidance on what volatile
 should do and how it should be used.

 The Problem

 The current semantics for volatile are to provide minimal support for signal
 handling through the use of the sig_atomic_t type (which is completely
 undefined). This type is intended to be accessed atomically. A volatile
 object of this time will have the last value assigned if a signal handler
 is entered. This is a very limited application.

 Volatile is used in a number of different contexts:

 -- Access to machine registers (both fetch and store)
 -- Reference to memory mapped hardware (I/O ports or clock)
 -- Implementation of shared memory interlocks
 -- Forcing explicit access to memory for each fetch or store

 In a number of cases, the number of accesses and whether they are fetches
 or stores is critical to the correct operation of the program.

 Lacking clear semantics for volatile means that the behavior of the program
 which is most critical to the application is undefined. The programmer is
 unable to write C++ code which are assured to perform the operations intended.
ˇ
 Page 2

 Additionally, although the semantics of volatile are essentially undefined,
 the Working Paper makes volatile a different type, requiring additional effort
 on the part of the user (for example, to explicity create copy constructors)
 which are not required if the volatile qualifier is not used. This also
 creates incompatibilities with C with no clear benefit or purpose for the

 differences.

 The Strawmen

 There are a number of arguments which have been proposed for why we should
 not define volatile semantics.

 Arg 1. Volatile is inherently hardware dependent; let's leave it completely
 implementation defined.

 Ans 1. Being implementation defined is more restrictive than just being
 hardware dependent. It means that two different implementations
 for the same hardware, or even two different versions of the same
 compiler may have different behaviors. And there is no way to
 decide which has the correct behavior.

 Arg 2. Let's leave it to the implementation to define their volatile
 semantics.

 Ans 2. Volatile is not listed as implementation defined, which would
 require that the implementation provide a description. Nor does
 the standard provide a range of possible behaviors, as required in
 [1.3--Definitions].

 Arg 3. Volatile requires the description of how to mask interrupts and lock
 threads [see c++std-core-5253].

 Ans 3. Nope. You might use a volatile object to implement a thread locking
 scheme, but that is derived from the type, not basic to its use.

 Arg 4. The user can write constructors and member functions which implement
 the desired semantics for volatile [see c++std-core-5214]. Volatile
 is a signal that we are doing something outside of the language which
 cannot be described within C or C++ [see c++std-core-5256].

 Ans 4. These two seem to contradict each other. If the meaning of access
 to a volatile object is ill-defined, there is little reason to expect
 that it will be better defined in a member function. And if it truely
 is something that cannot be defined within the language, such as
 issuing hardware specific instructions, probably one needs to descend
 to assembly language.

 Arg 5. We don't have enough experience with using volatile to define it
 clearly, and it is much too complicated.

 Ans 5. Volatile has been in use and misuse for ten years; this should give
 more than enough experience with it's use. It's much less complex
 that many other areas of C++, for example, the compilatin model.
ˇ
 Page 3

 Proposed Changes

 1. Section 1.8 -- Program Execution

 Paragraph 7 contains the following:

 Accessing an object designated by a volatile lvalue, modifying an
 object, modifying a file, or calling a function that does any of
 those operations are all _side effects_, which are changes in the
 state of the execution environment. Evaluation of an expression
 might produce side effects. At certain specified points in the

 execution sequence called sequence points, all side effects of
 previous evaluations shall be complete and no side effects of
 subsequent evaluations shall have taken place.

 I propose that this be followed with:

 Every access to an object (of certain implementation defined types[*])
 designated by a volatile lvalue, whether to obtain the object's
 value or to set it, must occur in exactly the order required by
 the abstract machine model. No access shall occur prior to the
 sequence point preceeding the expression containing the reference
 to the volatile lvalue, nor after the sequence point following the
 instruction. No other access to a volatile lvalue shall occur.

 [*] It may not be possible to read or write a volatile type in a
 single access for some types, e.g., bitfields. It may also
 not be possible to access certain types without also accessing
 adjacent types, e.g., when the type can only be accessed as
 part of a larger unit. These types are specified by the
 implementation. Certainly, sig_atomic_t should be in this list.

 There may be no more and no fewer accesses to an object referenced by
 a volatile lvalue than are expressed in the source code.

 Some of the exmaples mentioned in previous discussions are resolved by this
 change:

 Ex 1. int foo () { volatile int a = 0; return a; }

 This must result in a single store to a to set it to zero. There
 must be a single load of a prior to returning its value.

 Ex 2. void foo () { volatile int a; a = 0; }

 This must result in a single store to a to set it to zero.
 Instructions which do read/modify/write may not be used.

 Ex. 3. void foo () { volatile int a, b; a = b = 0; }

 This must result in a single store of 0 to b, then a single store
 of 0 to a. Section 3.10(p6) says "whenever an lvalue appears in
 a context where an lvalue is not expected, the lvalue is converted
 to an rvalue".
ˇ
 Page 4

 Ex 4. struct X { volatile int a:8; volatile int b:24; } x; x.a = 5;

 It is implementation defined whether there is a single store
 to the 8 bits containing a, or whether b is also accessed when
 a is accessed.

 2. Adopt solution 2 from 95-0056:
 A copy constructor and copy assignment operator may have the form

 X ([cv] X&), operator= ([cv] X&)

 If a class does not have a user-declared copy constructor or
 copy assigment operator, one is implicitly declared.

