
 Doc. No.: X3J16/95-0105
 WG21/N0705
 Date: May 30, 1995
 Project: Programming Language C++
 Reply To: Mats Henricson
 Ellemtel Telecom Systems Labs
 mats.henricson@eua.ericsson.se

 Clause 18 (Language support library) Issues List
 Version 2

Revision History

Version 1 - February 1, 1995: Distributed in pre-Austin mailing.
Version 2 - May 30, 1995: Distributed in pre-Monterey mailing.

Introduction

This document is a summary of the issues identified in Clause 18. For
each issue the status, a short description, and pointers to relevant
reflector messages and papers are given. This evolving document will
serve as a basis of discussion and historical for Language support
library issues and as a foundation of proposals for resolving specific
issues.

Issues

Work Group: Library Clause 18
Issue Number: 18-001
Title: Typedef typedef void fvoid_t(); not used anywhere
Sections: 18.1.2 [lib.stddef.types]
Status: closed

Description:
 The first box in this chapter claims that this typedef is not used
 anywhere:

 typedef void fvoid_t();

 I think this is correct. I have done a global search through the
 previous CD and this is the only place where fvoid_t is mentioned
 (except for in tables 28 and 40 where it is just listed). This means
 that the first paragraph under 18.1.2 should be removed together with
 its code example, and the box itself.

Proposed Resolution:
 Remove the typedef
Resolution: Typedef removed (Austin resolution)
Requestor: Mats Henricson, mats.henricson@eua.ericsson.se
Owner: Mats Henricson, mats.henricson@eua.ericsson.se
Emails: None.
Papers: None.
Discussion:
 However, Andy pointed out this problem to me:

 Removing the typedef would not be editorial, because it would
 change the meaning of a program that uses it.

 Is the use of this typedef widespread?

Work Group: Library Clause 18
Issue Number: 18-002
Title: Redundant typedefs
Sections: 18.1.2 [lib.stddef.types]
Status: closed

Description:
 The second box in this chapter claims that this typedef is redundant
 with what you find in <cstddef>:

 typedef T ptrdiff_t;

 The third box in this chapter claims that this typedef is redundant
 with what you find in <ctime>, <cstddef>, <cstdio>, and <cstring>:

 typedef T size_t;

 The fourth box in this chapter claims that this typedef is redundant
 with what you find in <cwchar> and <cwctype>:

 typedef T wint_t;

 This seems to be correct, so the involved paragraphs under 18.1.2
 should be removed together with code examples and the boxes
 themselves.

Proposed Resolution:
 Remove them.
Resolution: Removed (Austin resolution)

Requestor: Mats Henricson, mats.henricson@eua.ericsson.se
Owner: Mats Henricson, mats.henricson@eua.ericsson.se
Emails: None.
Papers: None.
Discussion:
 Andy pointed out this problem to me:

 If ptrdiff_t is defined in two places, removing one of them is
 not editorial because a program could presumably include one and
 not the other.

 The same problem holds for all the typedefs above.

Work Group: Library Clause 18
Issue Number: 18-003
Title: Call to set_new_handler() with null pointer
Sections: 18.4.1.1.1 operator new [lib.op.new]
Status: closed

Description:
 I think it is still an issue what happens if the last call to
 set_new_handler() was a null pointer, i.e. should the infamous
 footnote be there or not?

Proposed Resolution:
Resolution: According to ANSI X3J16/95-0047, ISO WG21/N0647

Requestor: Mats Henricson, mats.henricson@eua.ericsson.se
Owner: Mats Henricson, mats.henricson@eua.ericsson.se

Emails: ?
Papers: ?
Discussion:
 Andy agrees, and adds:
 A programmer must either be entitled to assume that "new" never
 returns 0 or must not be entitled to assume it. I can see no
 middle ground possible.

 I am not up to date with the discussion on this.

Work Group: Library Clause 18
Issue Number: 18-004
Title: Inherited members explicitly mentioned
Sections: 18.5.2.1 Class bad_cast [lib.bad.cast]
 18.5.2.1.3 bad_cast::what [lib.bad.cast::what]
Status: closed

Description:
 Why is bad_cast explicitly noted to have an inherited member function:

 // virtual string what() const;

 while the class bad_typeid is not, even though they inherit from the
 same base class logic_error? I think the comment noted above should
 be removed. It does not serve any purpose. The fact that public base
 class member functions are inherited should be known by all readers
 of the document.

Proposed Resolution:
 Remove the comment
Resolution: The comment is removed (Austin resolution)

Requestor: Mats Henricson, mats.henricson@eua.ericsson.se
Owner: Mats Henricson, mats.henricson@eua.ericsson.se
Emails: None.
Papers: None.
Discussion:
 I think these comments are quite widespread. If we decide to remove
 this comment, then I think we should do it throughout the document.

Work Group: Library Clause 18
Issue Number: 18-005
Title: Call to set_terminate() or set_unexpected() with
 null pointer
Sections: 18.6.1.2 set_terminate [lib.set.terminate]
 18.6.2.2 set_unexpected [lib.set.unexpected]
Status: closed

Description:
 What happens if set_terminate() or set_unexpected() is called with
 a null pointer as argument? "18.6.1.2 [lib.set.terminate]" claims:

 f shall not be a null pointer.

 What does that mean? The compiler cannot know beforehand, so is it
 implementation defined what happens? Or undefined?

Proposed Resolution:
Resolution: This is now stated explicitly as a "Requirement", which
 is defined as a precondition in 17.2.1.3.

Requestor: Mats Henricson, mats.henricson@eua.ericsson.se
Owner: Mats Henricson, mats.henricson@eua.ericsson.se
Emails: None.
Papers: None.
Discussion:

Work Group: Library Clause 18
Issue Number: 18-006
Title: <stdarg.h> and references
Sections: 18.7 Other runtime support [lib.support.runtime]
Status: active

Description:
 It seems like we need a statement in the standard which describes
 the behavior of 'stdarg' when varargs are C++ types. This involves
 references, pointer to member, classes which are no PODS, (maybe
 others). The behavior can be chosen of ill-formed, undefined or
 defined behavior.

 Part of the behavior is already given in [expr.call] 5.2.2. Here
 it is described that passing a non-POD class has undefined
 behavior.

Proposed Resolution:
 Undefined behavior?
Resolution:

Requestor: Erwin Unruh, Erwin.Unruh@mch.sni.de
Owner: Mats Henricson, mats.henricson@eua.ericsson.se
Emails: lib-848-855, 3725, 3728, 3729
Papers: None.
Discussion:

This is lib-3725:

 Erwin have found out that we need some kind of wording in chapter
 18 whether or not references should work with <cstdarg>. This was
 previously discussed in September 1993 (lib-848-855), but there
 was no conclusion, and also nothing mentioned in the CD. Erwin
 has included below the main arguments from 1993.

 I think I would like to see some kind of wording along the line
 of what Jerry say in 851 below:

 My attitude is that to apply the stdargs macros all types and
 the type of parmN must be a "C type". That means a primitive
 type that is also in C or be a PODS.

 Erwin today would like:

 I could live with an error or the requirement to the compiler
 to make it work. I would prefer the compiler doing it right.

 While Jerry, at that time, preferred everything else to be
 undefined.

 Comments? I will later put this on the Chapter 18 issues list.

 Mats

 ********** Message c++std-lib-848

 Subject: VA with a ref parmN

 When parmN in a variable argumented function is a reference,
 some compilers, if not all, may do something confusing,
 though I believe one of the valid possibilities. That is,
 pick up the arguments from some area from the caller (say its
 stack, just after the object being referenced) rather than the
 space reserved for the ...'d arguments.

 Since varargs requires more programmer intervention than I
 personally care for (from a user of the language point of view),
 and parmN is special, but references are not know in ANSI C,
 what is supposed to be the behavior, or is it purposely
 left unspecified (I've looked in what I believe to be the
 last working library spec and didn't see anything on it)?

 ********** Message c++std-lib-849

 Some compilers warn about this problem already:

 #include <stdarg.h>

 void foo(C &r, ...) // va_start will not work as expected
 {
 int x;
 va_list ap;

 va_start(ap, r); // address of 'r' is not necessarily
 for(;;) { // related to the "..." parms
 x = va_arg(ap, int);
 if(x == 0) break;
 cout << x << endl;
 }
 va_end(ap);
 }

 It would be a good thing if we made this a "Common Warning" in
 something similar to Appendix E of the ISO/ANSI C standard since
 it almost always prevents a problem.

 ********** Message c++std-lib-850

 I agree that we need to add words to the library draft in this
 area. The stdarg.h macros are too delicate to expose lightly to
 the extra semantics of C++. Either we ban reference parmNs (my
 preference) or we say what they mean.

 I see a similar accident waiting to happen with the va_list
 argument to the various macros.

 ********** Message c++std-lib-851

 My attitude is that to apply the stdargs macros all types and the type
 of parmN must be a "C type". That means a primitive type that is also
 in C or be a PODS.

 I have a vague recollection that the library working group discussed
 this issue and reached that conclusion, but I don't know that it
 was ever explicitly incorporated in the working paper.

 Everything else (including parmN being a reference type) is undefined.

 ********** Message c++std-lib-853

 Is this going too far? Should passing pointer-to-member via the
 ellipsis be well-defined, too?

 ********** Message c++std-lib-854

 How about implementation defined? If I know how my implementation
 works, then there should be nothing to prevent me from using the
 stdargs macros in an appropriate way for accessing references,
 pointers to members, etc.

 ********** Message c++std-lib-855

 Why restricting the usage of variadic functions? The problems are in
 the C *implementation* of the stdarg macros. We can postulate that the
 Macros can be used with any C++-Type as long as the correct header was
 included.

 It is then up to the implementation to supply correct macros for C++.

 Are there any problems which cannot be solved?

Work Group: Library Clause 18
Issue Number: 18-007
Title: denormal_loss member
Sections: 18.2.1 Numeric limits [lib.limits]
Status: active

Description:
 I would like another member added to the numeric_limits class
 (18.2.1.1):
 static const bool denormal_loss= implementation-defined

 with the following definition in 18.2.1.2:
 true if loss of accuracy is detected as a denormalization loss
 (rather than as an inexact result). Need a footnote to refer
 to IEC 559.

Proposed Resolution:
Resolution:

Requestor: Fred Tydeman, tydeman@netcom.com
Owner: Mats Henricson, mats.henricson@eua.ericsson.se
Emails: None.
Papers: None.
Discussion: From an email from Fred Tydeman:

Better support for ANSI/IEEE Std 754-1985, ANSI/IEEE Std 854-1987,
and ISO/IEC 559.

...

Justification: The IEEE Standard for Binary Floating-Point
Arithmetic (ANSI/IEEE Std 754-1985) and the IEEE Standard for
Radix-Independent Floating-Point Arithmetic (ANSI/IEEE Std 854-1987)
both have similar requirements on the detection of underflow.
Quoting from 754:

 7.4 Underflow. Two correlated events contribute to underflow.
 One is the creation of a tiny non-zero result between +/- 2 ** Emin
 which, because it is so tiny, may cause some other exception later
 such as overflow upon division. The other is extraordinary loss

 of accuracy during the approximation of such tiny numbers by
 denormalized numbers. The implementor may choose how these events
 are detected, but shall detect these events in the same way for
 all operations. Tininess may be detected either
 (1) After rounding -- when a nonzero result computed as though
 the exponent range were unbounded would lie strictly between
 +/- 2 ** Emin
 (2) Before rounding -- when a nonzero result computed as though
 both the exponent range and the precision were unbounded would
 like strictly between +/- 2 ** Emin.
 Loss of accuracy may be detected as either
 (3) A denormalization loss -- when the delivered result differs
 from what would have been computed were exponent range
 unbounded.
 (4) An inexact result -- when the delivered result differs from
 what would have been computed were both exponent range and
 precision unbounded
 (This is the condition called inexact in 7.5).

Given the above requirement on underflow detection, C++ now does not
have a means for a numeric's software writer to write software that
will work on all four possible underflow implementations. C++ has
tinyness_before which describes conditions (1) and (2). I am requesting
that a new member (denormal_loss) be added to cover cases (3) and (4).
With both members, than a writer of numeric software could tell what
definition of underflow is being used on each particular hardware and
taylor the numeric software accordingly.

I have been told that IEC-559 is the "same" as IEEE-754, but since I
have never seen IEC-559, I do not know that for sure. This is why I
quoted from IEEE-754 (of which I do have a copy).

Work Group: Library Clause 18
Issue Number: 18-008
Title: global operator new
Sections: 18.4 Dynamic memory management [lib.support.dynamic]
Status: active

Description:
 The 'operator new' is now placed in the namespace std. This would
 prohibit using it with the syntax "int*p = ::new int;". This would
 call the global operator new.

Proposed Resolution:
 Move the six functions with names
 operator new (two versions)
 operator new[] (two versions)
 operator delete
 operator delete[]
 to the global namespace.

 ((Is this list complete???))

Resolution:

Requestor: Erwin Unruh, erwin.unruh@mch.sni.de
Owner: Mats Henricson, mats.henricson@eua.ericsson.se
Emails: lib-3636, 3638-3643
Papers: None
Discussion:

>From lib-3636:

 What is the reason for putting the operators in std. If it is just
 because 'everything is in there' you should re-consider it.

 It has the similar problem of a user re-defining the operator. When
 redefining it the user would most probably use the global namespace.

 I think the language support library may use the global namespace,
 since very few programs can live without it.

>From lib-3643:

 And yes, there may be a core issue here - in a quick reading of
 5.3.4 and 5.3.5 I can't find any description at all of the meaning
 of :: applied to new or delete. Maybe it is described elsewhere?

Work Group: Library Clause 18
Issue Number: 18-009
Title: whither exception?
Sections: 18 and 19
Status: active

Description:
 Ask anybody where class exception ought to be, and they'd say,
 "In <exception>, of course!". There is such a header, and it
 contains an exception derived from exception, but not exception
 itself. I think the dependency should really run from <exception>,
 which is minimal (and part of the freestanding implementation)
 to <stdexcept>, which contains the library support exceptions.

Proposed Resolution:
 Move class exception from <stdexcept> to <exception>, and from
 clause 19 to clause 18.
Resolution:

Requestor: Nathan Myers, myersn@roguewave.com
Owner: Mats Henricson, mats.henricson@eua.ericsson.se
Emails: lib-3576
Papers: None.
Discussion:

Work Group: Library Clause 18
Issue Number: 18-010
Title: Exception specifications for class numeric_limits
Sections: 18.2.1.1, 18.2.1.2, 18.2.1.4
Status: active

Description:
 I think all static member functions of class numeric_limits should
 have throw() as exceptions specification. This is also how I
 understand the editorial box at the end of 18.2.1.1 should be
 eliminated.

Proposed Resolution:
 Add throw() to the following static member functions of
 numeric_limits:
 static T min();
 static T max();
 static T epsilon();
 static T round_error();

 static T infinity();
 static T quiet_NaN();
 static T signaling_NaN();
 static T denorm_min();

 Also remove the editorial box at the end of 18.2.1.1.

Resolution:

Requestor: Mats Henricson, mats.henricson@eua.ericsson.se
Owner: Mats Henricson, mats.henricson@eua.ericsson.se
Emails: None.
Papers: None.
Discussion:

Work Group: Library Clause 18
Issue Number: 18-011
Title: Exception specifications for set_new_hander()
Sections: 18.4, 18.4.2.3
Status: active

Description:
 I think set_new_hander() should have throw() as exception
 specification.

Proposed Resolution:
 Add throw() as exception specification to set_new_hander().

Resolution:

Requestor: Mats Henricson, mats.henricson@eua.ericsson.se
Owner: Mats Henricson, mats.henricson@eua.ericsson.se
Emails: None.
Papers: None.
Discussion:

Work Group: Library Clause 18
Issue Number: 18-012
Title: Exception specifications for set_unexpected() and
 set_terminate()
Sections: 18.6, 18.6.1.3, 18.6.2.2
Status: active

Description:
 I think set_unexpected() and set_terminate() should have throw()
 as exception specifications.

Proposed Resolution:
 Add throw() as exception specification to set_unexpected() and
 set_terminate().

Resolution:

Requestor: Mats Henricson, mats.henricson@eua.ericsson.se
Owner: Mats Henricson, mats.henricson@eua.ericsson.se
Emails: None.
Papers: None.
Discussion:
